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Figure 6.27 Two distinct rooted phylogenetic networks N1 and N2 that represent
different sets of hardwired clusters, softwired clusters, and rooted phylogenetic
trees.

6.13 Tree containment

The problem of determining whether a given rooted phylogenetic network N contains a
given rooted phylogenetic tree T , on X , is NP-complete [141].

6.14 Comparing rooted networks

Suppose we are given two different phylogenetic networks N1 and N2 on X , as shown
in Figure 6.27, say. How to measure their similarity? For phylogenetic trees, this question
can be answered in a number of ways. For example, we could use the Robinson-Foulds
distance to compare two unrooted phylogenetic trees, or the cluster distance to compare
two rooted phylogenetic trees (Section 3.16). Because splits and clusters correspond one-
to-one to the edges of an associated unrooted or rooted phylogenetic tree, respectively,
comparing the splits or clusters represented by two trees is equivalent to comparing the
trees themselves.

For rooted phylogenetic networks, the situation is different. The association between
a set of clusters or trees and the phylogenetic network used to represent the data is quite
loose. For example, consider the two networks N3 and N4 in Figure 6.28. These two net-
works are topologically distinct, but, in a sense, indistinguishable, because they represent
the same set of hardwired clusters, the same set of softwired clusters and the same set of
rooted phylogenetic trees. So, comparing the clusters or trees represented by two rooted
phylogenetic networks is not the same as comparing the networks themselves.

While biologists are not very interested in distinguishing between different networks
that are indistinguishable in the above sense, this question has nevertheless obtained
some attention in the computational literature and we report on some of the results in
this section.

Below, we first discuss a number of distance functions that aim at comparing the rep-
resented data and then look at some measures that are based on topological invariants
of the networks. With the exception of the subnetwork distance, none of them provide a
proper metric for the set of rooted phylogenetic networks on X , as they all return a dis-
tance of zero for the two distinct networks N3 and N4 displayed in Figure 6.28, and thus
fail to fulfill the identity property of Definition 3.12.1.
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Figure 6.28 Two topologically distinct rooted phylogenetic networks N3 and N4
that represent the same hardwired clusters, softwired clusters, and rooted
phylogenetic trees.

Exercise 6.14.1 (Two indistinguishable networks) Show that the two rooted phylogenetic
networks N3 and N4 displayed in Figure 6.28 represent the same set of hardwired clusters,
the same set of softwired clusters, and the same set of rooted phylogenetic trees.

There is another issue to consider. Rooted phylogenetic networks are usually com-
puted from an input set of incompatible clusters or an input set of incongruent rooted
phylogenetic trees, on X . The size of such an input dataset is usually polynomial in the
number of taxa. However, a rooted phylogenetic network N that is computed to represent
such a dataset will, in general, represent an exponential number of softwired clusters or
rooted phylogenetic trees. This is due to the fact that each reticulation added to the net-
work can potentially double the number of represented softwired clusters or trees. So, a
direct comparison of the softwired clusters or rooted phylogenetic trees represented by
two different networks will sometimes be infeasible, due to the large number of objects,
and might be misleading, if most of the clusters or trees compared are not objects that
the network is intended to represent.

6.14.1 Comparing hardwired networks

Let N1 and N2 be two rooted phylogenetic networks on X , interpreted in the hardwired
sense. A natural way to compare two such networks is to compute their hardwired clus-
ter distance, a simple extension of the cluster distance for rooted phylogenetic trees (see
Section 3.16), defined as follows:

Definition 6.14.2 (Hardwired cluster distance) Let N1 and N2 be two rooted phylogenetic
networks on X . We define the hardwired cluster distance dhard between N1 and N2 as the
cardinality of the symmetric difference of the two sets of hardwired clusters represented by
the two networks, divided by two:

dhard(N1, N2) = |Chard(N1)4Chard(N2)|
2

.

The hardwired distance between any two rooted phylogenetic networks on X is easy
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to compute, because the number of hardwired clusters represented by a rooted phylo-
genetic network equals the number of tree edges in the network. For example, the hard-
wired distance between the two rooted phylogenetic networks N1 and N2 displayed in
Figure 6.27 equals one, because there is exactly one cluster, {c,e}, that is only represented
by N1, and there is exactly one cluster, {d ,e}, that is only represented by N2.

The two rooted phylogenetic networks N3 and N4 shown in Figure 6.28 are topologi-
cally distinct, however they both represent exactly the same set of hardwired clusters. So,
although the hardwired cluster distance is a proper metric for sets of clusters (represented
by hardwired networks), it is not a proper metric on the networks themselves.

6.14.2 Comparing softwired networks

Let N1 and N2 be two rooted phylogenetic networks on X , interpreted in the softwired
sense. A natural way to compare two such networks is to compute their softwired cluster
distance, which is another simple extension of the cluster distance for rooted phyloge-
netic trees (see Section 3.16), defined as follows:

Definition 6.14.3 (Softwired cluster distance) Let N1 and N2 be two rooted phylogenetic
networks on X . We define the softwired cluster distance dsoft between N1 and N2 as the
cardinality of the symmetric difference of the two sets of softwired clusters represented by
the two networks, divided by two:

dsoft (N1, N2) =
|Csoft (N1)4Csoft (N2)|

2
.

For example, the softwired cluster distance between the two rooted phylogenetic net-
works N1 and N2 displayed in Figure 6.27 is 5

2 , because there are exactly four softwired
clusters that are only contained in N1, namely {a,b}, {b,d}, {c,e}, and {a,b,d}, and there
is exactly one that is only contained in N2, namely {d ,e}.

A rooted phylogenetic network N on X can represent an exponential number of dif-
ferent softwired clusters, in the worst case, making this distance impractical to use in
general. However, in Section 6.8 we saw that the number of softwired clusters depends
exponentially on the maximal number of reticulations that span any given tree edge in a
rooted phylogenetic network. While this number might be quite large in the context of the
population genetics of sexually reproducing organisms, say, in phylogenetic applications
this number should often be fairly small.

Moreover, for some topologically restricted classes of rooted phylogenetic networks,
such as galled trees and level-k networks for a fixed level k, the number of softwired clus-
ters is polynomial and so for such networks, the softwired cluster distance can always be
computed efficiently.

The two rooted phylogenetic networks N3 and N4 shown in Figure 6.28 both represent
the same set of softwired clusters, but are topologically distinct. Thus, while the softwired
cluster distance is a proper metric on sets of clusters (represented by softwired networks),
it is not a proper metric for the networks themselves.

One way to avoid the computational difficulties of the softwired cluster distance is to
use the hardwired cluster distance, even when comparing rooted phylogenetic networks
that are being interpreted in the softwired sense. This seems to be a reasonable heuristic,
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because every cluster that is represented by a rooted phylogenetic network in the hard-
wired sense, is also represented by that network in the softwired sense. However, it is
unclear how well the two different distance measures are correlated.

The tripartition distance

The tripartition distance was introduced in an attempt to provide a metric for softwired
networks that is easy to compute [175].

To describe this approach, we need to introduce some additional simple definitions.
Let N be a rooted phylogenetic network on X . Recall that an ancestor u of a node v in
N is called a stable ancestor, if every path from the root to v passes through u. If this is
not the case, then we refer to u as an unstable ancestor. By symmetry, we call v a stable
descendant of u, if u is a stable ancestor of v , and we call v a unstable descendant of u, if
u is an unstable ancestor of v .

Definition 6.14.4 (Tripartitions of a network) Let N be a rooted phylogenetic network on
X . The tripartition associated with a tree edge e = (v, w) in N is defined as

µ(e) = (A(e),B(e),C (e)) ,

where

(i) A(e) = {x 2X | x labels a stable descendant of w},
(ii) B(e) = {x 2X | x labels an unstable descendant of w}, and

(iii) C (e) = {x 2X | x labels a node that is not a descendant of w}.

We use £(N ) to denote the (multi-)set of tripartitions obtained from all internal tree edges
in N .

The set of all tripartitions of a rooted network is easy to compute, and so the following
distance based on comparing the tripartitions can be easily calculated:

Definition 6.14.5 (Tripartition distance) The tripartition distance between two rooted
phylogenetic networks N1 and N2 on X is defined as:

dtripart (N1, N2) = |£(N1)4£(N2)|
2

.

As an example for this distance function, consider the two rooted phylogenetic net-
works N1 and N2 shown in Figure 6.27. The five internal tree edges of N1 give rise to the
following five tripartitions:

({a,b,d}, {c}, {e}), ({a}, {b,c}, {d ,e}), ({d}, {b,c}, {a,e}),
({e}, {c}, {a,b,d}), ({b}, {c}, {a,d ,e}).

The five internal tree edges of N2 give rise to the following five tripartitions:

({a,b,c}, {d}, {e}), ({a}, {b,c}, {d ,e}), (;, {b,c,d}, {a,e}),
({e}, {d}, {a,b,c}), ({b,c},;, {a,b}).

As the two networks have only one tripartition in common, the tripartition distance is
dtripart (N1, N2) = 8

2 = 4.
On rooted phylogenetic trees, the tripartition distance equals the cluster distance. In
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Figure 6.29 Two distinct rooted phylogenetic networks N5 and N6 that represent
different softwired clusters, but have tripartition distance zero.
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(a) Network N7 (b) Network N8

Figure 6.30 Two distinct rooted phylogenetic networks N7 and N8 that represent
the same hardwired clusters, softwired clusters, and rooted phylogenetic trees,
but have a non-zero tripartition distance.

[175] it was claimed that the tripartition distance is a proper metric on rooted phyloge-
netic networks. However, this assertion is now known to be false. For example, the net-
works N5 and N6 displayed in Figure 6.29 are distinct, and represent distinct sets of soft-
wired clusters, and yet their tripartition distance is zero. Interestingly, the two networks
N7 and N8 illustrated in Figure 6.30 are indistinguishable in the sense that they represent
the same hardwired clusters, the same softwired clusters and the same rooted phyloge-
netic trees, and yet their tripartition distance is non-zero.

Exercise 6.14.6 (Tripartition distance) Show that the two networks N7 and N8 displayed
in Figure 6.29 are indistinguishable, and yet they have a non-zero tripartition distance.

The tripartition distance is a proper metric on the set of all rooted phylogenetic net-
works that have the tree-child property and are time consistent [38]:

Lemma 6.14.7 (Metric on tree-child time-consistent networks) The tripartition distance
is a proper metric on the set of all rooted phylogenetic networks that have the tree-child
property and are time-consistent.

6.14.3 Comparing networks representing trees

Let N1 and N2 be two rooted phylogenetic networks on X . If the networks are being used
to represent a collection of rooted phylogenetic trees on X , then it seems reasonable to
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base their comparison on the (multi-)sets of trees that they represent, using the displayed
trees distance:

Definition 6.14.8 (Displayed trees distance) Let N1 and N2 be two rooted phylogenetic
networks on X . We define the displayed tree distance dtrees between N1 and N2 as the car-
dinality of the symmetric difference of the two sets of rooted phylogenetic trees represented
by the two networks, divided by two:

dtrees(N1, N2) = |T (N1)4T (N2)|
2

.

The two rooted phylogenetic networks N1 and N2 displayed in Figure 6.27 both repre-
sent four rooted phylogenetic trees each (if we distinguish between multiple occurrences
of the same tree), but they have no tree in common. Thus, the displayed tree distance
between N1 and N2 is four.

As in the case of the softwired clusters distance, the use of this distance function is
limited by the fact that the number of objects to be compared is exponential in the worst
case.

The two rooted phylogenetic networks N3 and N4 displayed in Figure 6.28 represent
the same set of trees, so their displayed trees distance is zero, although the two networks
are distinct. Hence, the displayed trees distance is not a proper metric for rooted phylo-
genetic networks.

6.14.4 Comparing the topology of networks

Two rooted phylogenetic networks N1 and N2 on X are called isomorphic, if there exists
a directed-graph isomorphism between them that preserves the labeling of the leaves.
The isomorphism distance function assigns a distance of 0 between any two isomorphic
networks and 1 between any two non-isomorphic ones. The complexity of determin-
ing whether two rooted phylogenetic networks are isomorphic, is unknown. However,
if both the indegrees and outdegrees of all nodes are bounded, then isomorphism can be
checked in polynomial time [164].

The isomorphism distance does not tell us how similar two non-isomorphic networks
are. To obtain a more useful distance function, we proceed as follows. For a rooted phy-
logenetic network N = (V ,E) on X and any node v of N , we define the subnetwork N (v)
associated with v to be the rooted phylogenetic network N |V 0 that is embedded in N and
is induced by the set V 0 of all nodes that are descendants of v , with root v . For an example,
see Figure 6.31. We use≠(N ) to denote the multi-set of all rooted phylogenetic networks
that are subnetworks of N and we define [39]:

Definition 6.14.9 (Subnetwork distance) Let N1 and N2 be two rooted phylogenetic net-
works on X . The subnetwork isomorphism distance between N1 and N2 is defined as

dsub°net (N1, N2) = |≠(N1)4≠(N2)|
2

.

As an example, consider the two rooted phylogenetic networks N3 and N4 displayed
in Figure 6.28. They both have the same proper subnetworks, listed in Figure 6.31. But as
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Figure 6.31 The rooted phylogenetic networks N3 and N4 in Figure 6.28 share
exactly the same set of proper subnetworks list here. The two networks differ only
as complete networks.

the full networks themselves are also considered subnetworks, the symmetric difference
of the two sets has cardinality two and so the subnetwork distance is dsub°net (N1, N2) = 1.

In addition to this approach, a number of simpler distance functions have been sug-
gested that try and capture how topologically similar two rooted phylogenetic networks
are. They are based on comparing basic topological invariants of the networks that can be
computed efficiently. Also, they are easier to use than the isomorphism-based approach
when comparing two networks “by hand”. In the following, we describe the two that are
perhaps most useful.

The path-multiplicity distance

Let N be a rooted phylogenetic network on X = {x1, . . . , xn}. The path-multiplicity dis-
tance is based on the idea of counting the number of different paths from any given node
to each of the leaves in N . The path-multiplicity vector of a node v in N is defined as

µ(v) = (m1(v), . . . ,mn(v)) ,

where mi (v) is the number of different directed paths from v to the leaf with label xi (for
i = 1, . . . ,n). Let µ(N ) denote the (multi-)set of all path-multiplicity vectors obtained for
all internal nodes of N . The set of all path-multiplicity vectors is easy to compute and we
define a distance by comparing the sets of path-multiplicity vectors [40]:

Definition 6.14.10 (Path-multiplicity distance) The path-multiplicity distance (also
called the µ-distance) between two rooted phylogenetic networks N1 and N2 on X is de-
fined as

dpath(N1, N2) = |µ(N1)4µ(N2)|
2

.

As an example, consider the two rooted phylogenetic networks N1 and N2 displayed in
Figure 6.27. Both have eight internal nodes. Processing the nodes from top-left to bottom-
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right, the path vectors associated with network N1 are:

(1,2,3,1,1), (1,2,2,1,0), (1,1,1,0,0), (0,1,1,1,0),
(0,0,1,0,1), (0,1,1,0,0), (0,1,1,0,0), (0,0,1,0,0).

Similarly, for N2 we obtain:

(1,2,2,2,1), (1,2,2,1,0), (1,1,1,0,0), (0,1,1,1,0),
(0,0,0,1,1), (0,1,1,0,0), (0,1,1,0,0), (0,0,0,1,0).

The symmetric difference between the two listed sets contains six elements and so
dpath(N1, N2) = 3.

Exercise 6.14.11 (Indistinguishability) Show that the path-multiplicity distance between
the two distinct rooted phylogenetic networks N3 and N4 displayed in Figure 6.28 is zero.

The two networks depicted in Figure 6.28 show that the path multiplicity distance
is not a metric on the set of all rooted phylogenetic networks. However, the path-
multiplicity distance is a proper metric on the set of all root phylogenetic networks that
have the tree-child property [40]:

Lemma 6.14.12 (Metric on tree-child networks) The path-multiplicity distance is a
proper metric on the set of all rooted phylogenetic networks that have the tree-child prop-
erty.

Moreover, the path-multiplicity distance is a also proper metric on the following set of
rooted phylogenetic networks [37]:

Lemma 6.14.13 (Metric on a subset of tree-sibling networks) The path-multiplicity dis-
tance is a proper metric on the set of all bicombining rooted phylogenetic networks that
have the tree-sibling property and are time consistent.

The nested-labels distance

The final distance function that we consider is the nested-labels distance. In order to
compute this distance function, we assign nested labels to all nodes of a rooted phyloge-
netic network N on X recursively as follows:

(i) The nested label of a leaf is the taxon that labels the leaf.
(ii) The nested label of an internal node is defined as the multi-set of all nested labels

of its children.

Let ®(N ) denote the multi-set of all nested labels assigned to nodes of N . The nested-
labels distance can be defined as follows [179, 39]:

Definition 6.14.14 (Nested-labels distance) The nested-labels distance between two
rooted phylogenetic networks N1 and N2 on X is defined as

dnested(N1, N2) = |®(N1)4®(N2)|
2

.
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As an example, consider the two rooted phylogenetic networks N1 and N2 shown in
Figure 6.27. The leaf nodes give rise to the nested labels a, b, . . . , e. Although the labels
are computed bottom-up, we report them here from top-left to bottom-right. The nested
labels of network N1 are:

{{{a, {{b, {c}}}}, {{{b, {c}}},d}}, {{c},e}},
{{a, {{b, {c}}}}, {{{b, {c}}},d}},

{a, {{b, {c}}}},
{{{b, {c}}},d},

{{b, {c}}},
{b, {c}},
{{c},e},

{c},
a, b, c, d , e.

The nodes of the network N2 give rise to the following nested labels:

{{{{a}, {{b,c}}, }, {{{b,c}}, {d}}}, {{d},e}},
{{{a}, {{b,c}}, }, {{{b,c}}, {d}}},

{{a}, {{b,c}}, },
{{{b,c}}, {d}},

{{d},e},
{{b,c}},
{b,c},
{d},

a, b, c, d , e.

The symmetric difference of these two sets contains sixteen labels and so we have
dnested(N1, N2) = 16

2 = 8.

Exercise 6.14.15 (Indistinguishability) Show that the nested label distance between the
two distinct rooted phylogenetic networks N3 and N4 displayed in Figure 6.28 is zero.

In [39] it is shown that this distance is a proper metric on a number of different classes
of networks. Here we report one of the results:

Lemma 6.14.16 (Metric on tree-child networks) The nested label distance is a proper
metric on the set of all rooted phylogenetic networks that have the tree-child property.

6.14.5 Alignment of rooted phylogenetic networks

To aid a visual comparison of two rooted phylogenetic networks N1 and N2 on X , it would
be helpful to algorithmically match nodes that are similarly situated in the two networks.
In general terms, an alignment of two rooted phylogenetic networks N1 and N2 on X is
given by a one-to-one mapping between a subset of the nodes of N1 and a subset of the
nodes of N2, which defines a set of aligned pairs of nodes.

In the computation of the path-multiplicity distance in Section 6.14.4, each inter-
nal node in both rooted phylogenetic networks under comparison is assigned a path-
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multiplicity vector. These vectors can be used to compute an alignment between the two
networks [40].

In more detail, consider the network alignment graph A(N1, N2) = (V1 [V2,E), whose
node set is the union of the set V1 of internal nodes of network N1 and the set V2 of internal
nodes of network N2, and whose edge set E consists of all possible edges between a node
in V1 and a node in V2.

In this bipartite graph, we assign a weight !(e) to each edge e = (v1, v2), with v1 2 V1

and v2 2 V2, that is base on the negative sum of absolute differences of the components
of the path-multiplicity vectors µ(v1) and µ(v2), namely

!((v1, v2)) =W °
n
X

i=1
|mi (v1)°mi (v2)|,

where W is a large constant that ensures that all weights will be non-negative. Recall from
graph theory that a matching M is a set of edges in a graph such that no two nodes are in-
cident to more than one edge in M . It is called a maximum weighted matching, if, in addi-
tion, it maximizes the sum of edge weights

P

e2M !(e). Determining a maximum weighted
matching for a bipartite graph is computationally easy [152].

So, let M be a maximum weighted matching in the alignment graph A(N1, N2). An
alignment of N1 and N2 is then given as follows: Any two nodes that are connected by
an edge that is contained in the matching M form an aligned pair. In addition, each pair
of leaves that are labeled by the same taxon form an aligned pair.

Exercise 6.14.17 (Special case) In a rooted phylogenetic network N1, assume that r is a
reticulate node that has exactly one child, v. Compare the path vectorsµ(r ) andµ(v). What
problem can arise for r and v in a matching-based alignment to some other network N2?
How can the problem be solved?

To illustrate the alignment of networks, consider the two rooted phylogenetic networks
N1 and N2 displayed in Figure 6.27. A maximum weighted matching M in A(N1, N2) is
achieved by pairing the internal nodes in the two networks in the order that they occur
when listed from top-left to bottom-right, as illustrated in Figure 6.32.

Chapter notes

This chapter contains many new results and a fair amount of unpublished material. To
the best of our knowledge, this is the first attempt to develop a theory of clusters and
rooted phylogenetic networks. We became aware of the importance of distinguishing
between “softwired” and “hardwired” rooted phylogenetic networks while writing this
chapter. The hardness of the cluster containment problem (and also of the tree contain-
ment problem) for softwired networks suggests that simply reporting a rooted phyloge-
netic network without further annotations may be too uninformative and thus additional
information indicating how clusters or trees are embedded in the network may be useful
(for example, see Figures 4.5 and 4.6).
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Figure 6.32 An alignment of the two rooted phylogenetic networks N1 and N2.
Dashed lines are used to connect aligned pairs of nodes. For simplicity, we have
omitted the lines between the two root nodes and between the paired leaves.


