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2 Introduction and Related Work

We can not always describe the evolution of species via a phylogenetic tree. For example, there is
hybridization among plants and some bacteria can acquire genes from other bacterial species. In
these cases, a phylogenetic network is better suited to explain evolutionary relationships.

2.1 What is a Phylogenetic Network?

In literature, there exists a plethora of different phylogenetic network definitions. Here, we focus on
phylogenetic networks which we characterize by a set of displayed trees. We assume that incomplete
lineage sorting is not present in the dataset.

A binary phylogenetic network N is a single-source, directed, acyclic graph. We call its source
node the root node of N . There are three types of nodes in a binary phylogenetic network:

– Internal tree nodes with 1 incoming edge and 2 outgoing edges,
– reticulation nodes with 2 incoming edges and 1 outgoing edge, and
– leaf nodes with one incoming edge and no outgoing edges.

Each edge in a phylogenetic network has a branch length and a probability. The incoming
edges of a reticulation node (called hybridization edges) have inheritance probabilities assigned to
them which must sum up to 1.0. The probability of a non-hybridization edge is 1.0.

Often in phylogenetic inference, a multiple sequence alignment (MSA) A has multiple partitions
A1, . . . ,Ap. A partition consists of a set of sites for which we believe that they evolved together
(e.g., sites of a single gene), following the same evolutionary process. In NetRAX, we allow for
branch lengths and inheritance probabilities being either linked among all partitions (this means,
all partitions share the same branch lengths and probabilities), or unlinked branch lengths. By
default, we use linked branch lengths.

We assume that neither incomplete lineage sorting (ILS) nor recombination has taken place in
the set of sites within a partition Ai. We make this assumption because it reduces the computa-
tional complexity, and ILS is not an issue if species did not split recently.

We characterize a phylogenetic network by its set of induced displayed trees (see Figures 2.1
and 2.1).

A phylogenetic network on a set of n taxa has exactly n leaves. We characterize each displayed
tree by the probabilities of the hybridization edges taken in order to obtain the tree. The probability
P (T |N) of a displayed tree T in a phylogenetic network N is the product of the probabilities of
the hybridization edges that display T .

Fig. 1: A phylogenetic network with two reticulation nodes.



Fig. 2: A displayed tree in a phylogenetic network. The probability of the shown displayed tree is
the product of its taken reticulation parents’ probabilities, which is p ∗ q.

2.2 Related Work

Past approaches for inferring phylogenetic networks include NEPAL [8], PhyloDAG [10], and
PhyloNet [14].

In PhyloNet,
Celines moves papers ( [5] and cite) Empirical dataset paper ( [6])
Raxml paper [9] libpll [1] and pll-modules [2] MPFR C++ [7]
non-treelike evolutionary events



3 Preliminaries

3.1 Multiple Sequence Alignment

TODO: Explain what is a MSA, what is a partitioned MSA, what are MSA sites and patterns

3.2 Phylogenetic Tree

TODO: Explain what is a phylogenetic tree

3.3 Felsenstein Algorithm

TODO: Explain Felsenstein algorithm and CLVs

3.4 Newton-Raphson Optimization

TODO: Explain idea behind Newton-Raphson optimization

3.5 Brent Optimization

TODO: Explain idea behind Brent optimization



4 Phylogenetic Network Likelihood Model

We characterize a phylogenetic network by its set of displayed trees, because we assume that
incomplete lineage sorting has not taken place in the dataset.

4.1 Recap: Tree Loglikelihood

Definition 1. Site-based Phylogenetic Tree Loglikelihood
Let T = (V,E) be a phylogenetic tree. Let A be a partitioned MSA with partitions A1, . . . ,Ap.

Let ϑ be the parameter vector, storing branch lengths and likelihood model parameters. The likeli-
hood of T given A is:

L(T |A) =

p∏
i=1

L(T |Ai, ϑ) =

p∏
i=1

∏
s∈Ai

L(T |s, ϑ) (1)

In order to avoid numerical issues, one usually focuses on tree loglikelihood:

logL(T |A) =

p∑
i=1

logL(T |Ai, ϑ) =

p∑
i=1

∑
s∈Ai

logL(T |s, ϑ). (2)

Definition 2 (Likelihood of a Phylogenetic Tree). Let T = (V,E) be a phylogenetic tree. Let
A be a partitioned MSA with partitions A1, . . . ,Ap. Let ϑ be the parameter vector, storing branch
lengths and likelihood model parameters. The likelihood of T given A is:

L(T |A, ϑ)) =

p∏
i=1

L(T |Ai, ϑ) =

p∏
i=1

∏
s∈Ai

L(T |s, ϑ)

4.2 Network Loglikelihood

Definition 3 (Probability of a Displayed Tree). Let N = (V,E) be a phylogenetic network
and T be a displayed tree of N . Let Er be the set of reticulation edges that need to be taken in
order to obtain/generate T . Let P (e) be the probability of an edge e. The probability of T in N is
then:

P (T |N) =
∏
e∈Er

P (e).

Let N = (V,E) be a phylogenetic network with set of displayed trees T (N). Let A be a
partitioned MSA with partitions A1, . . . ,Ap. Let ϑ be the parameter vector, storing network
branch lengths and other likelihood model parameters.

We define the likelihood of a phylogenetic network as the product over the per-partition like-
lihoods:

L(N |A, ϑ) =

p∏
i=1

L(N |Ai, ϑ).

To avoid numerical underflow, we focus on the network loglikelihood:

logL(N |A, ϑ) =

p∑
i=1

logL(N |Ai, ϑ).

We assess and implement two versions for computing the loglikelihood on partitioned phylo-
genetic networks. They both aggregate over the loglikelihood of the phylogenetic trees displayed
by the network:

1. Weighted Average Version:

logL(N |Ai, ϑ) = log

 ∑
T∈T (N)

L(T |Ai, ϑ) ∗ P (T |N)

. (3)



2. Best Tree Version:

logL(N |Ai, ϑ) = log

(
max

T∈T (N)
L(T |Ai, ϑ) ∗ P (T |N)

)
. (4)

In the weighted average version, the likelihood of a network for a given partition is the weighted
average over the displayed tree likelihoods. We use the sum here, because the probability of event
A or B to occur is the sum of the probability of observing A and the probability of observing
B. The weighted average we have in here is thus the expected value, if we treat each displayed
tree as a statistical event. To avoid numerical problems, we use arbitrary-precision arithmetics
(using MPFR C++ (http://www.holoborodko.com/pavel/mpfr/)) to compute L(N |Ai) from
the displayed tree likelihoods.

We use libpll and pll-modules to compute displayed tree likelihoods via the standard Felsenstein
pruning algorithm.

5 Branch Length Model

In its current implementation, NetRAX supports two branch length models: Under the linked
branches model, we share the same set of branch lengths among all partitions. Under the unlinked
branches model, each partition has its own independent set of branch lengths.

The branch length model choice has an effect on which reticulations we can recover. Figure 5
shows an example network with a reticulation that is impossible to infer under the unlinked
branches model.

Fig. 3: Two displayed trees in a phylogenetic network. Both displayed trees induce the same topol-
ogy after collapsing simple paths. They only differ in some branch lengths.

http://www.holoborodko.com/pavel/mpfr/


6 Computing the Likelihood of a Phylogenetic Network

Key ideas:

– Use per-node displayed tree CLVs for faster incremental computation of network loglikelihood.
– Share per-node CLVs among displayed trees where-ever possible. Summarize reticulation par-

ent choices that lead to the same displayed tree.

In order to compute the pyhylogenetic network loglikelihood, we first need to compute the
loglikelihoods and probabilities of all trees displayed by the network. To avoid numerical underflow,
we use the MPFR C++ wrapper [7] to compute the network loglikelihood given the displayed tree
likelihoods and displayed tree probabilities.

We use the Felsenstein pruning algorithm [4] as implemented in libpll for computing the log-
likelihood of a phylogenetic tree. For this, libpll stores a conditional likelihood vector (CLV) for each
node in the tree (see https://github.com/xflouris/libpll/wiki/Computing-the-likelihood-of-a-tree).
A CLV stores the per-site likelihoods for a subtree rooted at a given node (see Figure 6).

Fig. 4: A Conditional Likelihood Vector (CLV) for a node in a phylogenetic tree T and a MSA
partition A.

6.1 Iteration Order

Instead of processing one displayed tree after another, we conduct a bottom-up traversal (reversed
topological sort) of the phylogenetic network. For each node v we visit, we update the CLVs
for each of the displayed subtree topologies present at the node v. We represent each of these
displayed subtree topologies by a so called ReticulationConfigSet. The ReticulationConfigSet stores
all possible ways to select reticulation parents which result in the given subtree topology. Note
that multiple reticulation parent choices can lead to the same underlying displayed tree topology,
because we effectively collapse simple paths and prune dead nodes when computing the likelihood.

6.2 Incremental Likelihood Computation

To avoid recomputing all CLVs from scratch after we modified the network topology, we maintain a
clv valid array for all nodes and all displayed trees. This array tells us which CLVs were not affected
by changing the network. Analogously, – as already provided by libpll –, we keep a pmatrix valid
array which stores information about which transition probability matrices P for which branch
length values we need to recompute.

https://github.com/xflouris/libpll/wiki/Computing-the-likelihood-of-a-tree


6.3 Handling Single-child Nodes

When setting the reticulation node parents (activating one parent, deactivating the other parent)
in order to display a particular tree, we end up with a tree-like structure which is not strictly
bifurcating. After choosing the active reticulation parents, each reticulation only has one active
parent and one active child. However, libpll requires a strictly bifurcating tree for its likelihood
computations. In order to handle these paths and to avoid complicated code that temporarily
merges nodes and branches together, we use the following trick: We introduce a new, “fake” node.
The CLV of this “fake” node consists of only 1-s. A skipped node is a node that has only one
active child. Whenever we encounter a skipped node, we temporarily add a second child to it, with
branch length zero and this all-1s “fake” CLV.

Fig. 5: A displayed tree which contains nodes that have only one active child. For likelihood
computation using libpll, we add an imaginary fake node with branch length zero as the second
active child of all one-child nodes.

6.4 Skipping Dead Nodes

Depending on which reticulation parents we select, it can happen that a large part of the resulting
displayed tree consists of dead nodes (see image below). A dead node is a non-leaf node that either
has no active children, or is the only active child of a dead node, or a node with no active parent
and only a single active child. We pre-detect such nodes in order to reduce the total number of
required CLV update operatons. We also handle the case where we need to assign root node for a
given displayed tree to another node, like in the situation presented in Figure 6.4.



Fig. 6: Dead and therefore skipped nodes in a given displayed tree. In this figure, we mark dead
nodes by the letter X. Note that the original virtual root node belongs to the set of dead nodes.
For this displayed tree, we use the highest non-dead node as its temporary virtual root node.



6.5 Sharing CLVs among Displayed Trees

Naively, one would require number of network nodes * number of displayed trees CLV vectors to
calculate the likelihood of a network. However, there exist regions in a network that are exactly
identical for several of the displayed trees. In this case, we can share per-node CLVs among
displayed trees.

Fig. 7: A network an its displayed trees. On the right side, we see which reticulation configurations
need their own CLV vector.

For each node v in a rooted phylogenetic network, we store as many CLVs as there are different
displayed subtree topologies rooted at the v.

We use libpll and pll-modules to compute the displayed tree likelihoods. See Appendix 21 for
the adaptations needed in order to use libpll and pll-modules for networks.

Processing a node When processing a node via a bottom-up traversal, we iterate over all
combinations of reticulation configurations from the node’s left and right child. If a combination
is valid (this is, both children configurations agree on reticulation parent choice), we create a new
NodeDisplayedTreeData at the node for this combination (TODO: Add pseudocode and explain
NodeDisplayedTreeData).



7 Phylogenetic Network Loglikelihood Derivatives

7.1 Derivatives of Tree Loglikelihood and Tree Likelihood

The derivatives of tree loglikelihood are:

(logL(T |Ai, ϑ))
′

=
∑
s∈Ai

logL(T |s, ϑ)
′

=
∑
s∈Ai

L′(T |s, ϑ)

L(T |s, ϑ)
. (5)

(logL(T |Ai, ϑ))
′′

=

(∑
s∈Ai

L′(T |s, ϑ)

L(T |s, ϑ)

)′

=
∑
s∈Ai

(
L′(T |s, ϑ)

L(T |s, ϑ)

)′

=
∑
s∈Ai

L′′(T |s, ϑ) ∗ L(T |s, ϑ)− (L′(T |s, ϑ))
2

(L(T |s, ϑ))
2 .

(6)

We compute the tree likelihood derivatives out of L(T |Ai, ϑ), (logL(T |Ai, ϑ))
′
and (logL(T |Ai, ϑ))

′′

as follows:

L′(T |Ai, ϑ) =

(∏
s∈Ai

L(T |s, ϑ)

)′

=

(∏
s∈Ai

L(T |s, ϑ)

)
∗

(∑
s∈Ai

L′(T |s, ϑ)

L(T |s, ϑ)

)
= L(T |Ai, ϑ) ∗ (logL(T |Ai, ϑ))

′
.

(7)

L′′(T |Ai, ϑ) =
(
L(T |Ai, ϑ) ∗ (logL(T |Ai, ϑ))

′)′
= L′(T |Ai, ϑ) ∗ (logL(T |Ai, ϑ))

′
+ L(T |Ai, ϑ) ∗ (logL(T |Ai, ϑ))

′′
.

(8)

7.2 Network Loglikelihood Derivatives

The first and second derivatives of a phylogenetic network loglikelihood (with respect to a changed
branch length) are:

(logL(N |A, ϑ))
′

=

p∑
i=1

(logL(N |Ai, ϑ))
′
. (9)

(logL(N |A, ϑ))
′′

=

p∑
i=1

(logL(N |Ai, ϑ))
′′
. (10)

Weighted Average Version

(logL(N |Ai, ϑ))
′

=

log

 ∑
T∈T (N)

L(T |Ai, ϑ) ∗ P (T |N)

′

=

(∑
T∈T (N) L(T |Ai, ϑ) ∗ P (T |N)

)′
∑

T∈T (N) L(T |Ai, ϑ) ∗ P (T |N)

=

∑
T∈T (N) L

′(T |Ai, ϑ) ∗ P (T |N)∑
T∈T (N) L(T |Ai, ϑ) ∗ P (T |N)

.

(11)



Let u :=
∑

T∈T (N) L
′(T |Ai, ϑ) ∗ P (T |N) and v :=

(∑
T∈T (N) L(T |Ai, ϑ) ∗ P (T |N)

)
.

u′ =

 ∑
T∈T (N)

L′(T |Ai, ϑ) ∗ P (T |N)

′

=
∑

T∈T (N)

L′′(T |Ai, ϑ) ∗ P (T |N).

(12)

v′ =

 ∑
T∈T (N)

L(T |Ai, ϑ) ∗ P (T |N)

′

=
∑

T∈T (N)

L′(T |Ai, ϑ) ∗ P (T |N).

(13)

Using equations 12 and 13, we obtain:

(logL(N |Ai, ϑ))
′′

=

(∑
T∈T (N) L

′(T |Ai, ϑ) ∗ P (T |N)∑
T∈T (N) L(T |Ai, ϑ) ∗ P (T |N)

)′

=
(u
v

)′
=
u′ ∗ v − u ∗ v′

v2

=

(∑
T∈T (N) L

′′(T |Ai, ϑ) ∗ P (T |N)
)
∗
(∑

T∈T (N) L(T |Ai, ϑ) ∗ P (T |N)
)
−
(∑

T∈T (N) L
′(T |Ai, ϑ) ∗ P (T |N)

)2(∑
T∈T (N) L(T |Ai, ϑ) ∗ P (T |N)

)2 .

(14)

Best Tree Version We know that

(max f(x), g(x))
′

=


f ′(x), if f(x) > g(x)

g′(x), if f(x) < g(x)

f ′(x), if f(x) = g(x) and f ′(x) = g′(x)

undefined, otherwise.

(15)

We assume that for empirical use it holds that

(L(T1|Ai, ϑ) ∗ P (T1|N) = L(T2|Ai, ϑ) ∗ P (T2|N))⇐⇒ T1 = T2. (16)

Let T̂ be a displayed tree for which L(T |Ai, ϑ) ∗ P (T |N) is maximal among all T ∈ T (N).
With the above assumption, we obtain

(logL(N |Ai, ϑ))
′

=

(
log

(
max

T∈T (N)
L(T |Ai, ϑ) ∗ P (T |N)

))′

=

(
maxT∈T (N) L(T |Ai, ϑ) ∗ P (T |N)

)′
maxT∈T (N) L(T |Ai, ϑ) ∗ P (T |N)

=
L′(T̂ |Ai, ϑ) ∗ P (T̂ |N)

L(T̂ |Ai, ϑ) ∗ P (T̂ |N)
=
L′(T̂ |Ai, ϑ)

L(T̂ |Ai, ϑ)

=
(

logL(T̂ |Ai, ϑ)
)′
.

(17)

(logL(N |Ai, ϑ))
′′

=
(

logL(T̂ |Ai, ϑ)
)′′
. (18)



8 Branch-Length Optimization in Phylogenetic Networks

Key ideas:

– Optimize branches using the Newton-Raphson method.
– Virtually re-root displayed trees during branch-length optimization, in order to save costly

CLV recomputations.

When optimizing a branch length b in a phylogenetic network, our goal is to optimize the
Phylogenetic Network Loglikelihood function. This is, we aim to find the best branch length
assignment b̂ in the parameter vector ϑ, such that

logL(N |A, ϑ) =

p∑
i=1

logL(N |Ai, ϑ)

gets maximized.
As in RAxML-NG, we use pll-modules to optimize branches using the Newton-Raphson op-

timization method. For this, we need the first and second derivatives of Phylogenetic Network
Loglikelihood. We derive them in Appendix ??.

All displayed trees of a network share the same branch lengths. When optimizing the length
of a branch, we must thus repeatedly recompute the loglikelihood of all displayed trees where the
branch is active. A branch is active in a displayed tree, if (see also Figure 8):

– Its source is not a dead node.
– Its target is not a dead node.
– It is not connecting an inactive parent to a reticulation.

Fig. 8: A displayed tree in a phylogenetic network. The branches b1, b2, b3, and b4 are inactive in
this displayed tree. When optimizing the length of any of the inactive branches, we do not need
to recompute the likelihood of this displayed tree.

Appendix 20 describes the rationale against optimizing branches on each of the displayed trees
separately (using tree loglikelihood) and then merging them.



8.1 Recap: Virtually Rerooting a Phylogenetic Tree

In order to avoid costly CLV updates when optimizing a branch (u, v) in a tree, RAxML-NG
virtually re-roots the tree at the one of the nodes u defining the branch (see Figure 8.1).

After virtually rerooting a tree, we need to update all CLVs that lie on the path between the
old and the new virtual root (both ends included). When trying different values for the branch
length (u, v) in such a virtually rerooted tree, we can reuse the CLVs stored at u and v without
having to recompute them. For this, libpll provides a function compute edge loglikelihood.

Fig. 9: When optimizing the length of a branch (u, v) in a tree, we virtually re-root the tree at
node u, which is the source of the edge whose length we want to optimize. Some edge directions
may change in this process. Note that, the phylogenetic likelihood is the same regardeless of the
(virtual) root placement under time-reversible models. After the virtual reroot operation, we need
to recompute the CLVs that lie on the path between the old virtual root and the new virtual root
u.

8.2 Virtually Rerooting a Phylogenetic Network

Analogously, for networks, we need to recompute the CLVs which lie on any path between the old
and new virtual root (both ends included).

The difficulty here is that while we had the fixed network root, a network node always had
the same children and the same parent. But now with the virtual rerooting, the edge directions
depend on the specific displayed tree we are currently considering (see Figure 8.2). These different
edge directions affect the order in which we need to process the CLVs. Thus, for each different set
of edge directions, we need to do update the CLVs separately.



Fig. 10: On path (u,w,y,x), the node y has children A and x. We process the paths and fill the
node DisplayedTrees/CLVs accordingly. When updating the CLVs for node z at path (u, w, z, x),
node x has child y. The CLVs for y we actually need here are the ones where y has child A (and
inactive child w). However, by processing the previous path, we have overwritten the CLVs stored
at y to be the ones where x is a child of y.

We devised the following approach for resolving the edge direction problem:
Before processing the next path, we invalidate the old CLVs at all path nodes except for the

new virtual root node. We detect in advance at which nodes we need to restore the old displayed
trees (from how they were when we had old virtual root), save and restore them accordingly.
(Simple example: Call it with two times the same pmatrix index. First time recovering the CLVs
worked perfectly, second time because the first time overwrote some things we are not able to
correctly recover the old CLVs anymore.)

After we finished optimizing a branch, we then re-update the CLVs with regard to the original
network root (see Section ?? for a rationale). This means, when optimizing multiple branches,
we virtually re-root the network as follows: virtual root 1 → network root → virtual root 2 →
network root → . . . virtual root k → network root.

8.3 Combining Displayed Trees after Virtual Reroot

When updating CLVs for the virtually rerooted displayed trees around a branch b we want to
optimize, we only update CLVs for the displayed trees where b is an active branch. The likelihood
of the remaining displayed trees does not change, thus we do not need to recompute it. We store
the updated likelihood of all displayed trees in the original, permanent network root node.

For the network loglikelihood evaluation, we need to combine the active displayed trees stored
at the source node with the active displayed trees stored at the target node of the branch we want
to optimize. (Here we call a displayed tree active, if the branch we want to optimize is active in
the displayed tree.)

In order to combine a displayed tree stored at the source node and a displayed tree stored
at the target node, their reticulation parent choice sets need to be compatible. Two reticulation
parent choice sets are compatible, if their intersection is not empty. For example, the intersection
of {0−, 11} and {10, 01} is {01}.

For when the branch we want to optimize is inactive, we obtain the remaining displayed trees
to account for by reusing the old displayed tree loglikelihood data stored in the original network
root node before we did the virtual rerooting.

We can reuse them from oldDisplayedTrees as the branch length has no effect in this case.



As displayed trees can have more than one set of reticulation parent choices, we need to re-infer
the reticulation parent choices leading to the current inactive displayed tree. For each old displayed
tree, we need to recompute the reticulation parent choices leading to this displayed tree.

Algorithm 1: combineTrees: Obtain the active and inactive displayed trees after virtually
rerooting a network.

Input: The branch (u, v) we want to optimize. The current network annNetwork,
virtually re-rooted at u. The old displayed trees loglikelihood data with respect to
the original network root, oldDisplayedTrees.

Output: The set of active and inactive displayed trees after virtual rerooting, with
respect to (u, v).

1 activeTrees ← None
2 inactiveTrees ← None
3 for sourceTree ∈ displayedTreesAt(u) do
4 for targetTree ∈ displayedTreesAt(v) do
5 combinedChoices ← combineReticulationChoices(sourceTree.reticulationChoices,

targetTree.reticulationChoices)
6 if combinedChoices 6= ∅ and isActiveBranch((u, v), combinedChoices) then
7 activeTrees.append({combinedChoices, sourceTree.clv, targetTree.clv})
8 end

9 end

10 end
11 for oldTree ∈ oldDisplayedTrees do
12 remainingChoices ← unseenChoices(oldTree.reticulationChoices, combinedTrees)
13 if remainingChoices 6= ∅ then
14 inactiveTrees.append({remainingChoices, oldTree.loglh})
15 end

16 end
17 return (activeTrees, inactiveTrees)

Algorithm 2: computeNetworkLoglhBrlenOpt: Compute network loglikelihood after vir-
tual re-rooting.

Input: The branch (u, v) we want to optimize. The set of active and inactive displayed
trees after virtually re-rooting the network at node u.

Output: The current network loglikelihood with respect to branch (u, v).
1 displayed trees ← ∅
2 for activeTree ∈ activeTrees do
3 displayed trees.append(activeTree.reticulationChoices,

computeEdgeLoglikelihood(activeTree.source clv, activeTree.target clv, (u, v)))

4 end
5 for inactiveTree ∈ inactiveTrees do
6 displayed trees.append(inactiveTree.reticulationChoices, inactiveTree.loglh)
7 end
8 return computeLoglikelihood(displayed trees)

8.4 Computing Network Loglikelihood Derivatives

We use the active displayed trees we computed in Algorithm 1 for computing the network loglike-
lihood derivatives. First, we use libpll to compute the loglikelihood and loglikelihood derivatives
for each of the active displayed trees, both with respect to the branch (u, v) whose length we
aim to optimize. Then we use our formulas from Section 7 to compute the network loglikelihood
derivatives.



9 Optimizing Non-Topology Parameters

When optimizing non-topology parameters, our goal is to optimize the Phylogenetic Network
Loglikelihood function. This is, we aim to find optimal parameters in the parameter vector ϑ, such
that we maximize

logL(N |A, ϑ) =

p∑
i=1

logL(N |Ai, ϑ).

9.1 Likelihood Model Parameter Optimization

We reuse the TreeInfo class from RAxML-NG for calling likelihood model optimization. As this uses
only pll partition t objects, we can directly reuse the pre-existing likelihood model optimization
for trees to optimize the likelihood model parameters for networks.

9.2 Optimization of Reticulation Probabilities

We use Brent optimization (as provided by libpll) for optimizing the first-parent probability of a
reticulation.

9.3 Complete Nontopology Optimization Routine

NetRAX provides full optimization of all nontopology parameters (likelihood model, branch lengths,
reticulation probabilities) in three variants: QUICK, NORMAL, and SLOW. These variants differ
in how often we repeat an optimization step (see Algorithm 3).



Algorithm 3: optimizeNonTopology: Optimize all non-topology parameters.

Input: The current network annNetwork with parameter vector ϑ; the optimization type type.
Output: The current network, with optimized non-topology parameters in ϑ.

1 score epsilon ← 0.01
2 max rounds slow ← 2
3 act rounds slow ← 0
4 got better slow ← True
5 while got better slow and act rounds slow < max rounds slow do
6 score slow before ← scoreNetwork(annNetwork)
7 got better slow ← False
8 do brlen opt ← True
9 do model opt ← True

10 do reticulation opt ← True
11 got better ← True
12 while got better do
13 got better ← False
14 score before ← scoreNetwork(annNetwork)
15 if do model opt then
16 score before modelopt ← scoreNetwork(annNetwork)
17 optimizeModel(annNetwork)
18 score after modelopt ← scoreNetwork(annNetwork)
19 if score before modelopt - score after modelopt < score epsilon then
20 do model opt ← False
21 end

22 end
23 if do brlen opt then
24 score before brlenopt ← scoreNetwork(annNetwork)
25 optimizeBranches(annNetwork)
26 score after brlenopt ← scoreNetwork(annNetwork)
27 if score before brlenopt - score after brlenopt < score epsilon then
28 do brlen opt ← False
29 end

30 end
31 if do reticulation opt then
32 score before reticulation opt ← scoreNetwork(annNetwork)
33 optimizeReticulations(annNetwork)
34 score after reticulation opt ← scoreNetwork(annNetwork)
35 if score before reticulation opt - score after reticulation opt > score epsilon then
36 do reticulation opt ← False
37 end

38 end
39 score after ← scoreNetwork(annNetwork)
40 if score before - score after > score epsilon then
41 if type 6= QUICK then
42 got better ← True
43 end

44 end

45 end
46 score slow after ← scoreNetwork(annNetwork)
47 if score before - score after > score epsilon and type = SLOW then
48 got better slow ← True
49 end
50 act rounds slow += 1

51 end
52 return annNetwork



10 Network Moves

NetRAX implements the following rooted network topology rearrangement moves, as well as re-
versal (undo) operations for them: rNNI move, rSPR move, rSPR1 move, head move, tail move,
delta plus move, delta minus move, arc removal move, arc insertion move. These are all the moves
from Gambette et al. [5].

When undoing a move, we restore the original topology and branch lengths. Doing or undoing
a move also invalidates some CLV vectors. (When a CLV is invalid, it means that we cannot reuse
its entries and need to recompute it.)

Since we require all CLV and pmatrix indices to be consecutive, we sometimes need to swap
them before performing or undoing a move.

10.1 rNNI Move

An rNNI move has the following properties:

– No arcs {u, t} or {s, v} are present before the move.
– The nodes u and v exchange their neighbors.
– The edge direction between u and v may change.
– The in- and outdegrees of s and t do not change.
– The resulting network needs to be acyclic.

Fig. 11: Generalized visualization of a rNNI move.

When implementing an rNNI move, there are seven cases to consider (see Figure 10.1).

Fig. 12: All seven cases that can occur when implementing a rNNI move.



10.2 rSPR Move

An rSPR move has the following properties:

– No arcs x′z, zy′, xy are present before the move.
– The resulting network needs to be acyclic.

The arcs xy, yz are the donor arcs and the arc x′y′ is the recipient arc.

Fig. 13: Generalized visualization of a rSPR move.

Fig. 14: An rSPR move is either tail-moving or head-moving.

A rSPR1 move is a special kind of rSPR move where the recipient arc is incident to one of the
donor arcs (i.e., x = y′, x′ = x, x′ = y, or y = y′).

10.3 Arc Removal/Insertion Move, Delta Plus/Minus Move

An arc removal move removes an arc uv from a reticulation v. When performing an arc removal
move, we

– remove 1 bifurcation
– remove 1 reticulation
– remove 5 arcs
– add 2 new arcs

An arc insertion move chooses two distinct arcs ab and cd, with cd not being ancestral to ab.
When performing an arc insertion move, we

– add 1 bifurcation



– add 1 reticulation
– remove 2 arcs
– add 5 new arcs

Fig. 15: Arc removal and arc insertion move.

A delta minus move is an arc removal move where a = c, b = d, or b = c. A delta plus move is
an arc insertion move where a = c, b = d, or b = c.

Adding a Node or an Edge Adding an element is easy: We search for an unused space in
the underlying non-consecutive array in the network, create a new object there, and assign it the
highest active index + 1.

Deleting a Node or an Edge When removing a node or an edge, we need to ensure that
CLV, pmatrix, and reticulation indices remain consecutive after the operation. Thus, we swap the
element at the current highest index with the element we want to remove. We update all references
to both affected elements. This essentially swaps the indices associated with the element we want
to remove and the element that was previously referred to by the highest index.

The references we need to update include:

– nodes by index, edges by index, reticulations by index
– edge pmatrix index and node clv index of the links
– reticulation index, link to first parent and link to second parent in the ReticulationData
– reticulation choices in the DisplayedTreeData stored at each node in the network
– all references to clv index and pmatrix index in the current move data



11 Network Search

Key ideas:

– Pre-filter and rank move candidates to take the best one.
– Search in waves by move type, trying horizonal moves after accepting an arc insertion move.

11.1 Search in Waves

Scoring a Network NetRAX supports vertical topology-rearrangement moves that can increase
(ArcInsertion move, DeltaPlus move) or decrease (ArcRemoval move, DeltaMinus move) the num-
ber of reticulations in a network. Because model complexity changes when adding or removing
reticulations from a network, we cannot compare networks directly via their loglikelihood. For
this, NetRAX implements AIC, AICc, and BIC scoring. By default, NetRAX uses the BIC score
to compare different networks. Park and Nakleh [11] showed that using BIC performs best in
network searches.

The BIC score of a network N with r reticulations on a partitioned MSA A is:

BIC(N |A) = −2 ∗ logL(N |A) + n free parameters ∗ log(sample size).

The free parameters consist of substitution model parameters, reticulation first-parent proba-
bilities, and branch lengths. The sample size is the product of the number of taxa and the number
of MSA sites.

Start Networks NetRAX can start the network topology search from:

– A user-specified start network
– A random tree (generated with RAxML-NG)
– A maximum-parsimony tree (generated with RAxML-NG)

So far, NetRAX cannot directly start a RAxML-NG tree search in order to initiate the network
search from the best tree found by RAxML-NG. In order to obtain this behavior, the user has to
carry out the RAxML-NG tree search first and then pass the maximum-likelihood tree inferred by
RAxML-NG to NetRAX. We recommend using NetRAX with a maximum likelihood tree inferred
by a preceding RAxML-NG run.

Outer Search Loop The current NetRAX search algorithm iterates over the possible move types
in the following order: ArcRemovalMove, RSPRMove, RNNIMove, ArcInsertionMove.

For each move type, we have a set of candidate move operations (e.g., there are multiple
resulting networks we can reach by doing a single move of a given type on the network – each of
these possible moves is a candidate move). Searching and evaluating all move candidates varies in
speed across move types, because for some move types there are more possible candidates than for
others. In order to reduce the number of candidates to evaluate, we only consider moves within a
pre-specified search radius (by default, we use a radius of 5) around each node.

Whenever NetRAX finds a better network than the currently best one, it overwrites the best
network found so far on the file system.

NetRAX has an outer search loop 4 and an inner search loop 5.
The network search starts with the fastest move type (which is the ArcRemovalMove). Only

if a topology search loop did not lead to a better network topology with the specified move type,
it continues with the next-slower move type. The search loop ends when even the slowest/most
thorough move type does not yield a better network topology likelihood.

NetRAX uses a greedy hillclimbing approach for optimizing the network topology (see Algo-
rithm 4).



Algorithm 4: The outer network search loop, iterating over move types.

Input: The current best-scoring network annNetwork, the search radius searchRadius

Output: The best-scoring network found in the search bestNetwork
1 bestNetwork ← annNetwork
2 continueSearch ← True
3 while continueSearch do
4 continueSearch ← False
5 for moveType in {ArcRemovalMove, rSPR move, rNNI move, ArcInsertionMove} do
6 newNetwork ← innerSearch(annNetwork, moveType, searchRadius)
7 if scoreNetwork(newNetwork) < scoreNetwork(bestNetwork) then
8 bestNetwork ← newNetwork
9 continueSearch ← True

10 end

11 end

12 end
13 return bestNetwork

11.2 Inner Search Loop (Topology Search Algorithm, for a given move type)

When gathering possible move candidates, NetRAX by default uses a search radius of 5. This is,
for each node in the network, we only consider rSPR moves and arc insertion moves within radius
of 5 nodes around the current node. The searchRadius parameter does not affect our choice of
rNNI or arc removal moves.

When accepting a move, we optimize all branch lengths, reticulation probabilities, and model
parameters in the new best network. We also update the clv index and pmatrix index references in
the set of remaining candidate moves, according to the index remappings induced by the accepted
move. When updating the old move candidates, we also remove the now invalid ones.

Filtering Move Candidates (to find the promising ones) When filtering the set of move
candidates, we use three different filtering modes. These differ in the number of branches we
optimize before evaluating a candidate.

– FilterType::PREFILTER – Do not optimize branch lengths. (Exception: For prefiltering an
ArcInsertionMove, we need to optimize the length of the newly introduced branch, because
we do not have a usueful initial guess for it.)

– FilterType::RANK – Optimize branches directly affected by the move.

– FilterType::CHOOSE – Optimize all branches in the network.

Elbow Method In the elbow method [13] [12], we sort the list of pre-scored move candidates by
increasing BIC score. We need to find the point with the largest distance to the line from the first
to the last candidate; this point corresponds to our chosen cutoff value. We keep all candidates
with score smaller-or-equal than this cutoff score value (see Figure 33).



Algorithm 5: The inner network search loop, for a given move type.

Input: The current best-scoring network annNetwork, the current move type moveType, the
search radius searchRadius

Output: The best-scoring network found in the search bestNetwork
1 bestNetwork ← annNetwork
2 continueSearch ← True
3 candidates ← gatherCandidates(annNetwork, moveType, searchRadius)
4 triedWithAll ← True
5 while continueSearch do
6 continueSearch ← False
7 candidates ← filterCandidates(bestNetwork, candidates, FilterType::PREFILTER)
8 chosenMove ← selectBestCandidate(bestNetwork, candidates)
9 if chosenMove then

10 bestNetwork ← acceptMove(annNetwork, chosenMove)
11 if moveType 6= ArcInsertionMove then
12 continueSearch ← True
13 candidates ← updateOldCandidates(candidates, chosenMove)
14 triedWithAll ← False
15 if candidates == ∅ then
16 candidates ← gatherCandidates(annNetwork, moveType, searchRadius)
17 triedWithAll ← True

18 end

19 end

20 end
21 else if triedWithAll == False then
22 candidates ← gatherCandidates(annNetwork, moveType, searchRadius)
23 triedWithAll ← True
24 continueSearch ← True

25 end

26 end
27 return bestNetwork



Algorithm 6: filterCandidates: Reduce the set of move candidates.

Input: The current best-scoring network annNetwork, the set of move candidates candidates,
the filter type filterType

Output: The reduced set of move candidates.
1 oldScore ← scoreNetwork(annNetwork)
2 filteredCandidates ← None
3 scoredCandidates ← None
4 oldModel ← extractModel(annNetwork)
5 for cand ∈ candidates do
6 performMove(annNetwork, cand)
7 if filterType == FilterType::PREFILTER then
8 if cand.moveType == ArcInsertionMove then
9 optimizeNewBranch(annNetwork, cand.u v pmatrix index)

10 optimizeNewReticulation(annNetwork, cand.new reticulation index)

11 end

12 end
13 else if filterType == FilterType::RANK then
14 optimizeBranches(annNetwork, getBranchesAffectedByMove(cand))
15 optimizeReticulations(annNetwork)

16 end
17 else
18 // filterType == FilterType::CHOOSE
19 optimizeAllBranches(annNetwork)
20 optimizeReticulations(annNetwork)

21 end
22 actScore = scoreNetwork(annNetwork)
23 scoredCandidates.append(cand, actScore)
24 undoMove(annNetwork, cand)
25 assignModel(annNetwork, oldModel)

26 end
27 sortByIncreasingScore(scoredCandidates)
28 nKeep ← elbowMethod(scoredCandidates)
29 if filterType == FilterType::PREFILTER then
30 nKeep ← max{nKeep, numberOfCandidatesWithBetterBIC(scoredCandidates, oldScore)}
31 end
32 scoredCandidates.resize(nKeep)
33 return all candidates moves from the remaining scoredCandidates array



Fig. 16: The elbow method. We keep all candidates with BIC smaller-or-equal to the cutoff value.
In this example, we keep the first six candidates, candidates 0 to 5.

Deciding on the most promising move candidate In order to determine the most promising move
candidate, we filter the candidates until we identified the one that improves the BIC the most.

Algorithm 7: selectBestCandidate: Finding the best score-improving move candidate.

Input: The current best-scoring network annNetwork, the set of move candidates
candidates

Output: The best score-improving move to apply to the network.
1 chosenMove ← None
2 rankCandidates(annNetwork, candidates, FilterType::RANK)
3 chooseCandidates(annNetwork, candidates, FilterType::CHOOSE)
4 if candidates 6= ∅ then
5 chosenMove ← candidates[0]
6 end
7 return chosenMove

Updating a list of Move Candidates After we accepted a move in the search, we want to reuse
other promising candidate moves. Because of index remappings, we need to also update the indices
stored in the remaining move candidates after accepting a move. For this, each Move object stores
a list of remapped CLV indices, remapped pmatrix indices, and remapped reticulation indices.
After accepting a move, we update the other move candidates by applying the index remappings
from the accepted move in order. When undoing a move, we perform its index remappings in
reverse order. We also update the stored CLV and pmatrix index references in the move objects.



12 Implementation

Key ideas:

– Modular software architecture
– MPI parallelization of loglikelihood computation and computation of loglikelihood derivatives

over sites in the MSA

12.1 Modular Architecture

TODO: Picture showing how we split up NetRAX into separate modules

12.2 Parallelization

We parallelized both displayed-tree loglikelihoood and displayed tree loglikelihood derivatives com-
putation in NetRAX over the MSA sites by using MPI. For this, we reuse the ParallelContext

class and load balancing solutions provided by RAxML-NG.
In order to avoid redundant computations and making best use of per-tree MPI paralleliza-

tion, we first iterate over nodes in a network. Then, we go over all displayed trees stored in a
node. We precompute data (prob invar and diagpable in libpll) that remains unchanged among
computations for multiple displayed trees.



13 Simulation of Phylogenetic Networks and Sequences

TODO: Describe the simulator (I found some old text from Celine and pasted it here)
The simulator simulates an ultrametric networks and extracts displayed trees out of the simu-

lated network, one for partition. Then simulates sequences on the output displayed trees.

Fig. 17: Ultrametric trees from the simulator.

We are going to simulate our networks under the birth-hybridization process of Zhang et al. [15].
In this process, we have a speciation rate l (lambda), a hybridisation rate v (nu) and the time we
run the process t 0.

From their paper: ”The simulator starts from the time of origin (t 0) with one species. A
species splits into two (speciation) with rate l, and two species merge into one (hybridization)
with rate v. At the moment of k branches, the total rate of change is r tot = k l + choose (k 2)
* v. We generate a waiting time ∼ exp(r tot) and a random variable u ∼ U(0,1), If u ¡ kl=r tot,
we randomly select a branch to split; otherwise, we randomly select two branches to join, and
generate an inheritance probability c ∼ U(0,1). The simulator stops at time t 0.”

No transfer from now, because NetRAX cannot recover branches with no length.
Given such generated network, we extract a random tree, using the inheritance probabilities

at the reticulated nodes: for each reticulated node x, we draw a number y ∼ U(0,1) and we choose
the first parent p x if y ¡ inheritanceProb of the edge p x,x. If we do this,we have atree but not
a binary one. Then we clean the tree from the dead nodes and 1-indegree 1-outdegree nodes, as
Sarah explained in her document, and we obtain a binary tree. On this binary tree, we simulate
N sequences with Seq-Gen-1.3.4 (currently under this model -mHKY -t3.0 -f0.3,0.2,0.2,0.3 we can
change this). We do this K times, obtaining an alignment of length K*N in which each group of
N sites has its tree.



In their paper, they use this parameters in the simulations
λ − ν ∼ exp(0.1) with mean 10 τ0 ∼ exp(10) with mean 0.1 ν/λ ∼ Beta distribution with

alpha = 1 and beta = 1 (same as uniform distribution between 0 and 1) γ ∼ Uniform distribution
(between 0 and 1)

As I said in a slack message, this process gives Yule-type networks, that act as the Yule-type
trees, see example below for trees.

Once they start having a certain amount of nodes, things get crazy and they start speciating
and hybridising a lot. It is not the focus of our paper to correctly simulate networks (we are not
in a Bayesian framework, we do not need priors) and this is the best we can for now (for the next
paper, we will do better, working on it). So we can simply throw the networks we do not like as
done in line 143-147 of this simulator, which only simulate networks and not trees and sequences.

We use seq-gen for simulating sequences on the displayed trees with the following parameters:
TODO

13.1 Excluding Weird Networks

Since our simulator simulates ultrametric networks,
TODO: Explain how we exclude weird networks. With number of pairs and number of equal

pairs... This network should have a weirdness of 1.0, because all its displayed trees induce the
same bipartitions.

There is still another problem though... now that I fixed the network weirdness computation, it
turns out that we have a lot of ”weird” simulated networks (meaning, displayed trees inducing the
same bipartition sets). These networks have reticulations which we cannot infer with NetRAX (or
any other tool) because the simulated networks are ultrametric, making the data indistinguishable
from not having the problematic reticulations.

Simply excluding these networks sounds better to me though, since the BIC stats on the weird
networks are obvious (”MSA 100 percent supports a tree? Well, let’s infer a tree then.”)

It still makes sense to have them in the simulator though, since extinctions etc in biology can
lead to such ”weird” networks. I just don’t see a good reason for wasting more compute hours
running NetRAX on them, if their induced MSA is indistinguishable from having a tree...

ignore ”undetectable”/”weird” reticulations weird networks (e.g., displayed trees having the
same bipartitions)



14 Experimental Setup

14.1 Simulated Data

We simulated phylogenetic networks using our simulator from Section 13. Our simulation used the
linked branch lengths model (meaning, all partitions share the same set of branch lengths). We
simulated a partition with 1000 MSA sites for displayed tree in the simulated network.

In all experiments on simulated data, we compared our inferred network with the true simulated
network using BIC and the network topology distances discussed in Section 15.

For each simulated dataset, we inferred a Maximum-Likelihood tree with RAxML-NG. We
then did the following experiments, using NetRAX with both LikelihoodModel.AVERAGE and
LikelihoodModel.BEST:

A: Standard In our standard experiment setting, we assessed NetRAX inference quality with
different number of taxa and number of reticulations. We simulated networks with n taxa =
{10, 15, 20, 25, 30, 35, 40} and n reticulations = {1, 2, 3, 4}, one network for each combination of
number of taxa and reticulation count. We used probability 0.5 for each reticulation. We started
the NetRAX inference from the RAxML-NG maximum-likelihood tree.

B: Reticulation Probability In our reticulation probability experiment setting, we simulated
a single dataset with 20 taxa and one reticulation. We then varied the first parent probability of
the simulated reticulation to be in {0.1, 0.2, 0.3, 0.4, 0.5}. We started the NetRAX inference from
the RAxML-NG maximum-likelihood tree.

C: Brlen Scaler In our brlen scaler experiment setting, we simulated a single network with 40
taxa and 4 reticulations, using probability 0.5 for each reticulation. Before simulating the sequences
for this dataset, we multiplied all branches in the simulated network by s ∈ {1, 2, 4, 8}. We started
the NetRAX inference from the RAxML-NG maximum-likelihood tree.

D: Unpartitioned Data In our unpartitioned data setting, we used the same setting as in
experiment A, but merged all simulated partitions into a single partition before running tree or
network inference.

E: Multiple Starting Trees In our multiple starting trees setting, we used the same setting as
in experiment A, but ran NetRAX inference using 3 random and 3 maximum parsimony starting
trees and compared the network inference result to the one obtained with starting from only the
RAxML-NG maximum-likelihood tree.

F: Scrambled Partitions In our scrambled partitions experiment setting, we simulated a single
dataset with 30 taxa and 3 reticulations. Before running NetRAX inference (using the RAxML-
NG maximum-likelihood tree as starting tree), we randomly scrambled the partitions such that
p ∈ {0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%} of the sites from each partition
were randomly reassigned to other partitions.

G: Fixed number of taxa and reticulations, 100 datasets In this experiment setting, we
simulated 100 networks with 40 taxa and 4 reticulations, using probability 0.5 for each reticulation.
We started the NetRAX inference from the RAxML-NG maximum-likelihood tree.

H: Different Alignment Size In this experiment setting, we simulated a single network with 30
taxa and 3 reticulations, using probability 0.5 for each reticulation. We simulated {100, 500, 1000, 5000, 10000}
sites per partition. We started the NetRAX inferences from the RAxML-NG maximum-likelihood
trees.



14.2 Empirical Data

We want to run NetRAX on this empirical dataset (from https://advances.sciencemag.org/content/5/5/eaav9188)
which is available for download at https://bioweb.supagro.inra.fr/WheatRelativeHistory/index.php?menu=download

We need the IndividualAlignments data, which we merge together into one big MSA (I wrote a
script for it here: https://github.com/lutteropp/NetRAX/blob/master/scripts/merge gene alignments.py)
Each gene is its own partition. The standard RAxML model (GTR+GAMMA) is okay We
have 47 individuals over 17 species in the dataset. There are 1387815 patterns in the merged
MSA, and 8738 partitions In order to create a MSA based on species, we can either use ex-
tended DNA alphabet or, more elegant version: Chapter 5 of Alexeys PhD thesis (https://cme.h-
its.org/exelixis/pubs/dissAlexey.pdf)

That’s the tree inferred by RAxML-NG, which I will use as start network for NetRAX:

Fig. 18: That’s the tree inferred by RAxML-NG, which I will use as start network for NetRAX

RAxML-NG vanilla (with 10 random and 10 parsimony starting trees, site repeats and coarse-
grain load balancing disabled, taking binary MSA file as input, on 20 cluster nodes) on the big em-
pirical dataset needs about 4 hours in total, which is 15 minutes per starting tree. I used the master
branch of RAxML-NG for tree inference, commit 6db1154d64b5b6f65c09dccdc4576a8e5ab87195.

14.3 Evaluation Metrics

We use the following for evaluating quality of results:

– Number of reticulations in the network
– Likelihood-based evaluation metrics
• Loglikelihood of the network
• BIC score of the network
• AIC score of the network
• cAIC score of the network

– Topology-based evaluation metrics
• hardwired network distance
• softwired network distance
• displayed trees network distance
• tripartition network distance
• nested labels network distance
• path multiplicity network distance



15 Topology-based evaluation metrics

See the book Phylogenetic Networks: Concepts, Algorithms and Applications
I have just figured out that we can easily plot relative distance versions (in range [0.0, 1.0]) of

all topological network distances. When looking at the definitions in @celines network book, they
all are of the form: (—symmetric difference between A and B—) divided by 2. -¿ We just need to
change them to be (—symmetric difference between A and B—) divided by (—A union B—) and
there we go. Then, we will get relative distances. These will make nicer plots.

So we need to diverge from the distance definitions in Celines network book: We will explicitly
discard the trivial bipartitions/clusters/whatever in our own distance implementations.

Totally ok for discarding trivial bipartitions and use the denominator you suggested and not 2

Definition 4 (Cluster). A cluster in a rooted phylogenetic network is a non-empty proper subset
of the set of taxa present in the network. The cluster induced by an edge in the network is the set
of taxa “below” the edge. This is, the set of taxa that are descendants of the edge’s target node.

– Two clusters are compatible, if they are disjoint or one cluster contains the other.
– For obtaining the set of hardwired clusters, we collect the clusters induced by every edge

in the network. Here, we have all reticulation edges activated at once. With the hardwired
interpretation, one edge induces a single cluster.

– For obtaining the set of softwired clusters, we go through each tree displayed by the network
and add the set of clusters induced by the displayed tree to the total set. Here, we toggle active
and inactive reticulation edges when going through the displayed trees. With the softwired
interpretation, one edge induces a set of clusters (up to one per displayed tree).

– A cluster induced by an edge is the set of taxa descending from the target node of the edge.
– For hardwired clusters, we keep all reticulation edges activated at once, and each edge induces

a single cluster this way.
– For softwired clusters, we go through the displayed trees one-by-one, switching reticulation

edges on and off during the process. Here, each edge induces a set of clusters (up to one per
displayed tree).

Definition 5 (Unrooted Softwired Distance). For a given network N , T (N) are the displayed
trees of N and B(N) are the set of all bipartitions of the trees in T (N). Then, the softwired unrooted
distance between two networks N1 and N2 is

|B(N1)4B(N2)|
|B(N1)|+ |B(N2)|



16 Results and Discussion

Spoiler: If you look at the unrooted softwired network distance, we are getting great results starting
from only RAxML-NG best tree. Often even relative distance zero, even with 40 taxa and 4
reticulations!

I also noticed that LikelihoodModel.AVERAGE always performed better-or-equal (and yes,
sometimes slightly better!) than LikelihoodModel.BEST in our simulated datasets. Which is a
surprising result because LikelihoodModel.BEST should be fine for our simulated data (since we
simulated each partition on a single displayed tree). My explanation attempt is that the NetRAX
network search gets stuck in local optima. Also, non-surprising as it requires less computations,
LikelihoodModel.BEST was always the faster one.

Some more initial spoiler informations I see from closely looking at the CSV file (the one
I posted above) from the standard experiment round: The relative unrooted softwired network
distance is damn good, overall There were two cases where that distance was a bit higher: In
Case 1, we found a different network with slightly better BIC score than the true network In
Case 2, there were two near-zero branches in the simulated network In one of the setting (with
10 taxa and 1 reticulation), BIC preferred a tree. In all other settings, we always inferred the
correct number of reticulations when using LikelihoodModel.AVERAGE. In the rare cases where
LikelihoodModel.AVERAGE performed better than LikelihoodModel.BEST, it was because Like-
lihoodModel.BEST inferred 1 reticulation less than LikelihoodModel.AVERAGE. (edited) 9:25 I
hereby conclude that the slower-to-evaluate LikelihoodModel.AVERAGE is the better choice re-
garding quality of inference results. This is because it seems to perform slightly better when it
comes to avoiding local optima in the search. It is not an inherent advantage of the model per se,
but happens when interacting with the currently implemented network search algorithm.

now it’s prefiltering for 7 reticulations :exploding head: ... (the theoretical maximum we could
end up with here is 16, as there are 16 partitions in the dataset) I need to abort this experiment
and run it with way less taxa and reticulations to start with! It already gets very clear that
LikelihoodModel.BEST is garbage if the passed partitions are dirty. Still interesting to see what
will happen with LikelihoodModel.AVERAGE, that one should work out just fine. (edited) 8:48 I
am 99% sure that the error we will get is an out of memory error. Because now with prefiltering 7
reticulations (meaning we have 14 displayed trees to keep track of, and our current implementation
keeps all CLVs for all displayed trees in memory), NetRAX already uses 10 out of 16 GB RAM
on the PhD laptop.

essentially what is happening here is garbage in, garbage out. Because when having a partition,
we assume all sites belonging to the partition evolved together. With the scrambling, we are
violating this assumption.

Interesting. With 30 taxa 3 reticulations, we did not have the rapid reticulation growth in
the scramble partitions experiment. Instead, both likelihood models performed equally bad the
more messy the partitions got, LikelhoodModel.AVERAGE was only slightly better, but com-
parable to LikelihoodModel.BEST. (edited) 4:05 both LikelihoodModel.BEST and Likelihood-
Model.AVERAGE had the overestimating number of reticulations issue as soon as 30% of the
sites were scrambled among partitions. They just overestimated the number of reticulations less
(by just 1) than before.

17 Comparison with other Tools (TODO: Which ones?)



18 Future Work

18.1 Runtime Improvements

Improve virtual re-rooting during Branch-Length Optimization Currently, we always
reroot back to original root before going on with the next branch to optimize. A possible alternative
solution would be: Store which nodes were the children used in the DisplayedTreeData. Then, it
makes sense to store multiple DisplayedTreeData’s in a node, with the same reticulation choices
but different set of children. And then one has to make sure to also check for compatible children
setting when looking at a DisplayedTreeData from a child at a current node (it is only compatible
if the current node does not show up in the list of children). To do final tree logl evaluation right,
keep a flag stating whether a tree was newly added or not. And only evaluate using the newly
added trees.

So far, after we finished optimizing a branch, we then re-update the CLVs with regard to the
original network root. This means we have virtual root 1 → network root → virtual root 2 →
network root → virtual root 3 → network root.

Regarding minimizing the total number of CLVs to recompute, the solution proposed here
implements virtual root 1 → virtual root 2 → virtual root 3 → network root.

Speed up Branch-Length and Model Optimization Do model optimization less often –
currently, we do it at the beginning, once at the end, and every time we accept a move. Another
future work thing to try later: Currently, NetRAX optimizes all branch lengths in the choosing
phase. Maybe it’s enough to just optimize the branches within a certain radius. Speedup from
this shouldn’t be super large though, as we typically have less than 10 candidate networks to
score in the choosing phase. But maybe it’s also enough to just optimize branches within a radius
when accepting a move (currently, we do full modelopt, reticulation opt, and full brlen opt when
accepting a move).

While still nowhere used, NetRAX offers functionality to compute loglikelihood on just a subset
of displayed trees. Explore if we can use it in nontopology parameter optimiziation. When doing
minor local optimizations, maybe it suffices to sample likelihood over the most probable displayed
trees?

Faster Candidate Filtering – Pseudolikelihood When scoring potential move candidates in
the filtering phases during the network search algorithm, NetRAX frequently computes Phylo-
genetic Network Loglikelihood. We can speed up the initial candidate filtering by using a faster
likelihood function, such as pseudolikelihood [10], as a proxy for the real network likelihood. One
can also investigate how the wrong NEPAL-likelihood (where blob-optimization works and where
we can define a network CLV) performs if we are in a horizontal move search round.

Alternatively: When enumerating all possible candidates for the given move type, use parsi-
mony scores to decide which candidates to test.

Using Ancestral States Instead of enumerating all candidate networks for a given move type, we
can compute ancestral states for each internal node in the network. Using these ancestral states,
we can make informed predictions about which moves would lead to a higher-scoring network.
We expect the use of ancestral states to be especially promising when pre-identifying promising
arc insertion move candidates. Moreover, when doing branch length optimization, we can use the
genetic distance between ancestral states in the network before applying a move to provide an
initial educated guess for newly inserted or redirected branches.

Pre-identify the most promising move candidates this way, and try them first. If we already
found a highly promising BIC-improving network this way, we may skip scoring the remaining
move candidates.

We can either find a way to define ancestral states in a network directly, or make use of the
ancestral states in its displayed trees. For computing ancestral state genetic distance between two



nodes in a network, we can then use the minimum genetic distance between ancestral states in its
displayed trees, weighted by displayed tree probability.

Hash already encountered networks In order to not revisit the same network more than once,
we suggest keeping all accepted and already encountered network topologies during the search in
a hash set (use a LRU cache?).

Avoid isomorphic Networks – Identifiability Issues

– Discuss identifiability issues: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388854/
– identifiability issue, different networks can have same displayed trees –¿ graph isomorphism

on rooted DAGs for checking network topology
– Skip move candidates that would lead to an indistinguishable network.

identifiability issue, different networks can have same displayed trees –¿ graph isomorphism on
rooted DAGs for checking network topology

Inferring large networks – Divide and Conquer The current NetRAX software is still too
slow to perform network inference on large dataset with a potentially high number of reticulations
directly. The number of candidate moves to evaluate in each filtering step rises with the number
of taxa in the dataset. Thus, we propose the following pipeline:

1. Infer a maximum-likelihood phylogenetic tree on the dataset, using RAxML-NG.
2. Delimit species on this tree by using mPTP.
3. Collapse each delimited species in the tree, replacing each species by its most recent common

ancestor. Use RAxML-NG to compute ancestral state sequences for the species roots, using
them in the reduced MSA.

4. Using NetRAX, infer a phylogenetic network on this reduced dataset.
5. Uncollapse the species in the inferred reduced network, replacing each species root with its

species subtree.
6. Perform a last NetRAX search on the uncollapsed network, in order to refine the final network.

We expect that in the last pipeline step, the network does not change much. Intuitively, we expect
that the placement of reticulations will undergo minor changes. Thus, we propose restricting the
set of candidate moves in the last refinement NetRAX run to moves that relocate a reticulation
parent or child within a small radius. The underlying assumption within our proposed solution is
that reticulations are less likely to have split up species individuals.

An alternative implementation of the above idea is:

1. Infer RAxML-NG best tree on the entire dataset.
2. Run mptp species delimitation on it.
3. Call NetRAX with both RAxML-NG best tree and mptp species delimination output file.
4. In the NetRAX run, do the following:

(a) For each delimited species root, mark all nodes in the subtree rooted at the species root
as FORBIDDEN.

(b) Do a network inference search where we do not allow moves to include any of the FOR-
BIDDEN nodes.

(c) Remove the FORBIDDEN mark from all nodes.
(d) Do a second network inference search run, starting from the best inferred network so far.

Actually collapse simple paths instead of using fake nodes If we want to reduce the
number of CLV update operations and are willing to increase code complexity, we can collapse
simple paths on a per-displayed-tree basis.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4388854/


Improve Dealing with Numerical Issues Avoid using the slow MPFR multiprecision library:
implement Kahan’s summation algorithm (https://en.wikipedia.org/wiki/Kahan_summation_
algorithm), compute faster logarithms.

18.2 Improving Inference Quality, Escaping Local Optima

Avoid local optima Replace the simple greedy network search algorithm by reversible-jump
MCMC or a simulated annealing approach.

Improving Inference Quality – Promising State Queue NetRAX currently does not provide
checkpointing. After adding checkpointing functionality that allows us to restart the search from
any intermediary search state, we propose the following approach to improve our inferency quality:
Keep alternative choices in a PromisingStateQueue. We can implement this PromisingStateQueue
as a priority queue, scoring each alternative promising state by its BIC score. When we have to
choose 1 out of 5 highly promising candidates in the choosing phase, why discard the others? In
order to not revisit the same network more than once, we suggest keeping all accepted and already
encountered network topologies during the search in a hash set (use a LRU cache?). This way,
when restarting the search from another promising state than the one taken in the initial search
phase, we avoid revisiting the same network topology more than once and can stop the redundant
repeated search steps that would follow from such a network. We expect the PromisingStateQueue
approach to help NetRAX avoid getting stuck in local optima, while at the same time leading to
faster total inference time compared to entirely restarting the search from multiple random or
parsimony trees.

Improve Network Root Choice ... Midpoint rooting on start tree?

Scrambling try to escape local optima by scrambling the best found network

Better start networks Start from maximum parsimony networks.

Delay BIC Decision I figured out why NetRAX sometimes infers 1 reticulation less than the
true number of reticulations: It’s a design flaw in the search algorithm! In the current version,
if the best found arc insertion move before the search stops led to a worse BIC than we had
for the network before, the search stops. Even if that arc insertion move led to a slightly better
loglikelihood! Instead, what we should do is performing an additional search run where we take
the arc insertion move that worsened BIC the least, and do a full round of horizontal moves on
it. Only after that we should decide whether to stop the search or not. This change would require
some medium-sized code changes though. Thus I am just adding it to the Future Work section.

18.3 Additional Features

More network likelihood Definitions Support more network likelihood definitions. Keep in
mind that there is work which uses HMMs to model site dependency: https://pdfs.semanticscholar.
org/592f/40608fb1fe5b642d790b054551e1e7ef6135.pdf

Improve Simulation of Phylogenetic Networks Do more simulations 3 simulators (celine,
sarah, empirical datasets)

Support scaled branch lengths model Most of the NetRAX codebase already supports the
scaled branch lengths model (where partitions share branch lengths, but each partition has its own
scaling factors). Only the function that computes displayed tree likelihood derivatives still has a
missing TODO in it.

https://en.wikipedia.org/wiki/Kahan_summation_algorithm
https://en.wikipedia.org/wiki/Kahan_summation_algorithm
https://pdfs.semanticscholar.org/592f/40608fb1fe5b642d790b054551e1e7ef6135.pdf
https://pdfs.semanticscholar.org/592f/40608fb1fe5b642d790b054551e1e7ef6135.pdf


Improve General Software Quality and User-Friendliness

– Implement checkpointing.
– Add CI/CD and some better unit tests for it.
– Improve software quality (more unit tests, check with softwipe, test if it works on a Mac, add

checkpointing)
– Add support for PTHREADS. Currently, only the MPI version works. It’s likely something

with the CMakeLists.txt
– Provide a graphical user interface, showing some BIC progress plots, automatically drawing

the network after each accepted move - maybe even animate the current network, showing
how the moves get performed.

– Write a user manual.
– Improve user friendliness (Write a user manual, make a website for NetRAX, provide a GUI,

offer a webservice, support more data formats, add Python and R bindings, distribute NetRAX
where biologists can find it (Bioconda etc))



19 Conclusion

TODO (I am waiting for the experiments to finish before writing the conclusion)



20 Appendix: Rationale for not doing branch length optimization
on each displayed tree separately and then taking the weighted
average

What we tried, but didn’t work We tried to optimize branch lengths separately for each displayed
tree, and then use the weighted average over the per-displayed-tree optimized branch lengths as
branch length for the network. But on random data the optimal-brlen variance among displayed
trees was too high. Also, we found out that we can not easily map branches close to reticulation
nodes between displayed trees, as in a displayed tree these branches exist only as a sum of multiple
network branches (see Figure below). For the same reason, it is also difficult (if not impossible) to
properly map back branches of displayed trees to the network. Even if we fix the outgoing edge
of a reticulation to have branch length zero, we still have problematic branches (problematic here
means that in some displayed trees, the network branch does not appear exactly, but only as a
sum of multiple network branches on a path).

Fig. 19: Some network branches (e.g., branch d) are not present in any displayed tree of the network
(after collapsing simple paths), but only appear as part of a sum of branches.



21 Appendix: Wrapping and Adapting libpll/pll-modules/RAxML-NG
to work with Networks

supplementIf we put this in the supplement, we need a recall of the libpll and pll-modules/ Oth-
erwise the reader cannot understand this part. In order to understand network likelihood com-
putation in NetRAX, it is crucial to understand how tree likelihood computation in libpll and
pll-modules works. In NetRAX, we extend the approach of libpll and pll-modules to networks. In
particular, the reader must be familiar with the Felsenstein pruning algorithm and the per-node
conditional likelihood vectors (CLVs) used in the algorithm. One also needs to know that libpll
updates CLVs by specifying an operations array. An entry in this operations array is of type
pll operation t and consists (among other things, like scaler indices and pmatrix indices) of the
parent clv index, the clv index of the first child, the clv index of the second child. We must provide
these entries such that they correspond to a post-order traversal of the subtree of interest. A clv
index is the identifier of a node, and a pmatrix index is the identifier of a branch.

A detailed explanation of CLVs and tree likelihood computation is available here: https:

//github.com/xflouris/libpll/wiki/Computing-the-likelihood-of-a-tree

21.1 Fake Treeinfo

All operations in libpll, pll-modules, and RAxML-NG require phylogenetic trees. In order to make
some of them work on networks as well, we implement substantial changes in forked versions of
their repositories. Most functions provided by pll-modules require a gigantic pllmod treeinfo t data
structure. This structure stores, among things useful for us (such as pll partition t information),
a pll utree t tree. For our use with networks, we created a fake treeinfo data structure with an
empty tree, but overrode some of its parameters (like number of nodes in the “tree”). We also
added function pointers to both pll treeinfo t and the TreeInfo class from RAxML-NG. We need
these function pointers to call our own network likelihood function within the branch-length and
model optimization procedures.

https://github.com/xflouris/libpll/wiki/Computing-the-likelihood-of-a-tree
https://github.com/xflouris/libpll/wiki/Computing-the-likelihood-of-a-tree


22 Appendix: Network Data Format

We use a similar data structure as the utree in libpll (https://github.com/xflouris/libpll/
wiki/Tree-structure). In libpll, a tree is a dynamic, unrooted structure, with a pointer to a
“virtual root node”. Instead of storing a network as a rooted, hierarchical structure, we store its
underlying topology in an unrooted version. This simplifies dynamic changes to the network topol-
ogy, as required by the topology rearrangement moves (see Section 10). We keep the information
about which node in this unrooted topology corresponds to the root node in a “virtual root node”
pointer. We further also mantain a vector of pointers to reticulation nodes for easier access. In
an unrooted network topology, reticulation nodes are indistinguishable from normal tree nodes.
Thus, every node also stores a pointer to a ReticulationData object. For normal tree nodes, this
pointer is NULL. The ReticulationData object stores pointers to the first and second parent of a
reticulation node, as well as the probabilities of taking the first or second parent of the reticulation
node.

The equivalent to a post-order traversal in a tree is a (reversed) topological sort in a directed
acyclic graph. We store a vector of pointers to nodes in (reversed) topological traversal order. We
need this for filling the libpll operations array. In the libpll operations array, the operations have to
in bottom-up order. We use the operations array in the Felsenstein pruning algorithm for likelihood
computation (see https://github.com/xflouris/libpll/wiki/Computing-the-likelihood-of-a-tree).

Supported I/O Formats NetRAX reads and writes phylogenetic networks in the Extended Newick
Format [3].

22.1 Network I/O and Data Structure

We support both reading and writing the Extended Newick Format for networks (https://
bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-532). When reading
the input network file, we first parse the network into an intermediate rooted network data struc-
ture (with a top-level trifurcation), and then transform it into our unrooted network data structure
with a virtual root node (see image below). We do fault tolerant parsing, ignoring superfluous extra
braces around the root node in the extended Newick file.

The final network data structure we use is analogous to the tree data structure used in RAxML-
NG (https://doi.org/10.1093/bioinformatics/btz305)/pll-modules(https://github.com/ddarriba/
pll-modules)/libpll (https://github.com/xflouris/libpll-2) and in the genesis toolkit (https:
//doi.org/10.1093/bioinformatics/btaa070). This is, we store the network topology as an un-
rooted and undirected structure, with a pointer to a designated virtual root node. This virtual
root node gives us (most) implicit edge directions. The advantage of this data structure i wanted
to say that the link information about child-parent relationship is already in the figure (the child
link) and it is confusing because it is not introduced yet is that we can change the root location
without explicitly changing the direction of all edges. In contrast to phylogenetic trees, we need to
store some additional information to correctly keep track of the reticulation nodes (see paragraph
after the image).

We initially parse a phylogenetic network into a rooted data structure. In order to convert the
rooted data structure into the unrooted data structure with a virtual root, we merge the root node
with one of its non-reticulation children, which creates a toplevel trifurcation. Note that not both
children of the network root can be reticulations, since a phylogenetic network is a single-source,
directed, acyclic graph.

TODO: Update this part. We switched to always ensuring that we have a toplevel bifurcation
in the network data structure.

https://github.com/xflouris/libpll/wiki/Tree-structure
https://github.com/xflouris/libpll/wiki/Tree-structure
https://github.com/xflouris/libpll/wiki/Computing-the-likelihood-of-a-tree
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-532
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-532
https://doi.org/10.1093/bioinformatics/btz305
https://github.com/ddarriba/pll-modules
https://github.com/ddarriba/pll-modules
https://github.com/xflouris/libpll-2
 https://doi.org/10.1093/bioinformatics/btaa070
 https://doi.org/10.1093/bioinformatics/btaa070


Fig. 20: Converting the phylogenetic network parsed from Extended Newick into the format used
within NetRAX.

Fig. 21: I need to change some parts in NetRAX, decided to implement Emergency Fix 2.

Handling Reticulation Nodes In a rooted network, a reticulation node has two parents (called first
parent and second parent) and one child node. In each displayed tree, exactly one of the parents
of each reticulation node is active and the other parent is passive. Each edge to a parent has a
probability. We only store the probability of taking the first parent, as the probability of taking the
second parent is 1 minus the probability of taking the first parent. We deactivate all edges coming
from passive parents in order to obtain a displayed tree. The virtual root node is not sufficient
to direct the edges incident to a reticulation node. Thus, each node in our implementation has
a NodeType. A node either has the type RETICULATION NODE or the type BASIC NODE.
Each node stores a unique pointer to a ReticulationData data structure (the pointer is null for
non-reticulation nodes). In ReticulationData, we store pointers to both parents of the reticulation
node, a pointer to the child of the reticulation node, as well as the probability of taking the first
parent node and a flag stating which parent node is currently active/taken.



Important Note about the Virtual Root Choice The following image shows why we need to be
cautious about where to place the virtual root, even if we separately store which edges are incoming
edges of a reticulation and thus exclude each other. Depending on where we place the virtual root,
it does affect in perhaps unexpected ways the edge directions in the displayed trees (what we
really don’t want because it would rob us of being able to use a modified Felsenstein approach
for likelihood computation)too colloquial, but you know that. This is just another reason why we
cannot do the branch length optimization on a network the same way as RAxML-NG is doing
it on a tree (it re-roots the tree at the branch whose length we want to optimize). Finding all
possible placements for the virtual root pointer where the edge directions in the induced displayed
trees remain the same is straightforward: We only need to exclude all nodes that reside in the
subnetworks ”below” reticulation nodes (in their ”child” subnetworks).

Fig. 22: Virtual root placement affects edge directions. Storing a pointer to a virtual root node
and keeping a set of mutually exclusive pairs of edges (the incoming edges of each reticulation)
suffices to induce all edge directions.But if we place the virtual root “below” any reticulations, the
edge directions in the displayed trees differ. This is bad for reusing CLVs when computing network
likelihood.

Overview Overall, we have nodes, links, and edges.

– A node can either be a leaf, an internal tree node, or a reticulation node. A leaf has one link. An
internal tree node has 3 links. A reticulation node has 3 links and a non-null unique pointer to
a ReticulationData structure, which stores a pointer to the child, a pointer to the first parent,
a pointer to the second parent, and a value first parent prob (storing the probability of taking
the first parent of a reticulation) in the range [0, ..., 1]. Each node also has a label. The id of
a node is its clv index.

– A link belongs to a node. It has a pointer to the node it belongs to, to the edge it connects
with, and to the outer link. The outer link is in the other node incident to the link’s edge. The
id of a link is its link index. do we need this level of detail? supplement?

– An edge has two links. An edge also has a value for its length. The id of an edge is its
pmatrix index.

Restrictions inherited by RAxML-NG/pll-modules/libpll If the network has n tips, then the clv indices
0..n−1 belong to tip nodes, and the pmatrix indices 0...n−1 belong to edges incident to tip nodes.



23 Appendix: Debugging

23.1 Annotated Graphical Debug Output

that would go to the supplement Whenever a bug arose, it turned out that we wasted most of the
development time by drawing the network as well as changes done to it step by step by hand on
paper. Unfortunately, already existing tools such as Dendroscope do not support displaying the
data needed during debugging. Moreover, in case of a high number of reticulations, the resulting
image obtained from Dendroscope was visually too cluttered to be of use for debugging. Thus, we
now have a custom visual debug output. We export rhe network as well as all currently needed
data into the GML format, which is a widely used data format in the graph drawing community.
We can use the freely available yED Graph Editor (https://www.yworks.com/products/yed) to
open the generated GML file and use its ”hierarchical layout” function to obtain a helpful readable
image for debugging. Unfortunately, we cannot fully automate this step, as this is not allowed in
the free version of yEd.

Fig. 23: Example of Dendroscope output vs.õur graphical debug output.

https://www.yworks.com/products/yed


Fig. 24: Example showing the usefulness of our graphical debug output.

Further, NetRAX provides extensive debug output. Not only can we convert the displayed
trees of a network into pll utree t objects, we can also print each of them in NEWICK format. In
addition to this standard output, NetRAX can also print detailed graphical debug information by
exporting a phylogenetic network into the GML format.

23.2 Automatically Finding Smaller Datasets

I wrote a script for reducing debugging pain for programs that take a partitioned MSA as input.
The problem it aims to solve is:

Given A partitioned MSA where your program crashes

Wanted A sub-sampled smaller MSA (less taxa, less sites) where your program already crashes
In its current version, it specializes on NetRAX, only parses MSA in Phylip format, and does

some dumb grid search instead of a 2D binary search. But it works. The script discovered a 8 taxa
160 sites dataset where I am already encountering a program crash. This is much more comfortable
to debug than the 40 taxa 16000 sites dataset I started from.
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