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Abstract

Motivation: Phylogenetic networks are required to model non-treelike evolutionary events. Current,
actively developed approaches for phylogenetic network inference also account for incomplete lineage
sorting (ILS) in their models but can only analyze small datasets due to their high computational complexity.
There is no actively developed Maximum-Likelihood based phylogenetic network inference tool that does
not model ILS.
Results: We present NetRAX, a tool for maximum-likelihood inference of phylogenetic networks via
displayed trees that does not account for incomplete lineage sorting. Our tool leverages state-of-the-
art methods for efficiently computing the phylogenetic likelihood function on trees, and extends them to
phylogenetic networks. NetRAX can infer a maximum-likelihood phylogenetic network from a partitioned
multiple sequence alignment and returns the inferred network in the Extended Newick format.
Availability and Implementation: Our implementation is available under the GNU General Public License
v3.0 at https://github.com/lutteropp/NetRAX.
Contact: sarah.lutteropp@h-its.org
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
We can not always describe evolution via a phylogenetic tree. For example,
hybridization events among plants and bacteria can lead to the acquisition
of genes from bacteria or plants located in a distinct lineage. In such
cases, a phylogenetic network is better suited to explain the evolutionary
relationships.

Initially, methods for inferring maximum-likelihood (ML) based
phylogenetic networks did not account for incomplete lineage sorting
(ILS). For instance, the NEPAL (Jin et al., 2006) tool does not account for
ILS in its network likelihood model. It starts from a phylogenetic tree and
adds reticulations, while keeping the underlying backbone-tree topology
fixed. Unfortunately, the authors of NEPAL have unfortunately lost its
source code (nep, 2021) and the tool segfaults when trying to execute it
for unknown reasons. Cao et al. showed that inferring networks by fixing

the underlying backbone-tree topology and only adding reticulations does
not perform well (Cao et al., 2019).

In the past years, focus shifted towards developing methods for ML
network inference that also account for ILS. These methods infer a network
from a multiple sequence alignment (MSA) and a given set of gene trees.
While models accounting for ILS are expected to yield more accurate
networks as they incorporate more mechanisms that explain non-treelike
evolution, they face substantial computational challenges.

For example, the model originally implemented in PhyloNET (Than
et al., 2008) is can only analyze very small datasets with 10 taxa and
up to 4 reticulations (Solís-Lemus and Ané, 2016). Consequently, faster-
to-compute semi-likelihood models were developed, that still account for
ILS (Solís-Lemus and Ané, 2016). These semi-likelihood models are based
on combining the ILS-aware likelihoods of 4-taxon subnetworks. More
recent versions of PhyloNET also use semi-likelihoods (Wen et al., 2018),
but still face scalability challenges.

© The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1



picture(0,0)(-35,0)(1,0)30 (0,35)(0,-1)30 picture picture(0,0)(35,0)(-1,0)30 (0,35)(0,-1)30 picture

“output” — 2021/7/30 — page 2 — #2

picture(0,0)(-35,0)(1,0)30 (0,-35)(0,1)30 picture picture(0,0)(35,0)(-1,0)30 (0,-35)(0,1)30 picture

2 Lutteropp et al.

The PhyloDAG (Nguyen and Roos, 2015) tool implements
an efficient expectation-maximization algorithm to infer maximum-
likelihood networks using the mixture model of Strimmer and
Moulton (Strimmer and Moulton, 2000). Sarah: I really don’t understand
this model used by PhyloDAG at all. Does it account for ILS or not?
Unfortunately, it only returns networks as a picture and does not use
the Extended Newick Format (Cardona et al., 2008), rendering its results
difficult to use and compare.

Apart from ML network inference tools, there also exist tools
that rely on maximum parsimony (Nakhleh et al., 2005) or bayesian
inference (Zhang et al., 2018).

2 NetRAX Outline
With NetRAX, our goal is to infer a ML phylogenetic network N (see
Section ??) from a partitioned MSA A and to substantially increase
the scalability of network inference tools. This is, we want to find a
phylogenetic network N that maximizes L(N |A). For this, we use
the set of displayed trees T (N) induced by N (see Section ??). We
compute the network likelihood L(N |A) as a function of the displayed
tree partition likelihoods L(T |A)T∈T (N ),A∈A and the probabilities
P (T |N)T∈T (N) that each induced tree is displayed by the network.

In literature, there exists a plethora of different phylogenetic network
definitions. Here, we assume that ILS is not present or negligible. Thus,
we focus on phylogenetic networks as characterize by a set of displayed
trees.

A binary phylogenetic networkN is a single-source, directed, acyclic
graph. We call its source node the root node of N . Apart from the root,
there are three types of nodes in a binary phylogenetic network: (i) Internal
tree nodes with 1 incoming edge and 2 outgoing edges, (ii) reticulation
nodes with 2 incoming edges and 1 outgoing edge, and (iii) leaf nodes
with one incoming edge and no outgoing edges. Further, a phylogenetic
network on a set of n taxa has exactly n leaves.

Each edge in a phylogenetic network has a branch length and
a probability. The incoming edges of a reticulation node (called
hybridization edges) are assigned inheritance probabilities which must
sum to 1.0. The probability of observing a non-hybridization edge e is
P (e) = 1.0.

Figure 2 shows a simple example network.

Fig. 1. A phylogenetic network with two reticulation nodes.

Celine hates my style of drawing a phylogenetic network and offers to
draw nicer pictures.

In our model, we further assume that neither ILS nor recombination
has occurs among the sites of the MSA. We make this assumption because
it reduces the computational complexity, and ILS is not an issue if species
did not diverge only recently (Maddison and Knowles, 2006). Celine: We
can improve this later, let’s wait for the Related Work section

Given these assumptions, we can describe reticulate evolution in a
network via its set of induced displayed trees. We obtain a displayed tree
from a network by choosing one parent per reticulation node (disabling
the incoming edges belonging to non-chosen parents). Figure 2 shows an
induced tree in a phylogenetic network.

We weigh each displayed tree T by the probabilities of the reticulation
edges taken in order to obtain the tree. We say that the selected reticulation
edges display the tree, and refer to them by Er(T ).

The probability P (T |N) of displaying a tree T in a phylogenetic
networkN is the product over the probabilities of the hybridization edges
that display T (see Figure 2).

Fig. 2. A displayed tree in a phylogenetic network. The probability of the highlighted
displayed tree is the product p ∗ q over the respective reticulation probabilities.

3 Phylogenetic Network Likelihood Model
Nowadays, typical phylogenetic analyses are based on a MSA A with
multiple partitions A1, . . . , Ap. A partition consists of a set of sites that
are likely to have evolved together (e.g., sites of a single gene), following
the same evolutionary process.

3.1 Computing the Likelihood on a Tree

Site-based Phylogenetic Tree Loglikelihood Let T = (V,E) be a
phylogenetic tree. LetAbe a partitioned MSA with partitionsA1, . . . , Ap.
Let ϑ = (ϑ1, . . . , ϑp) be the parameter vector, storing per-partition
branch lengths and other likelihood model parameters (e.g., substiution
rates, stationary frequencies, etc.). The likelihood of T givenA is:

L(T |A) =
p∏

i=1

L(T |Ai, ϑi) =

p∏
i=1

∏
s∈Ai

L(T |s, ϑi) (1)

To avoid numerical underflow, one tyupically computes the log
likelihood instead:
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logL(T |A) =
p∑

i=1

logL(T |Ai, ϑi) =

p∑
i=1

∑
s∈Ai

logL(T |s, ϑi). (2)

3.2 Computing the Likelihood on a Network

Probability of a Displayed Tree Let N = (V,E) be a phylogenetic
network and T be a displayed tree of N . Let Er be the set of reticulation
edges that need to be taken in order to obtain/generate T . Let P (e) be the
probability of an edge e. The probability of T in N is then:

P (T |N) =
∏

e∈Er

P (e).

Let N = (V,E) be a phylogenetic network with a set of displayed
trees T (N). LetA be a partitioned MSA with partitionsA1, . . . , Ap. Let
ϑ = (ϑ1, . . . , ϑp) be the parameter vector, storing per-partition network
branch lengths and likelihood model parameters.

We consider each partition as being independent. Thus, we define the
likelihood of a phylogenetic network as the product over the per-partition
likelihoods:

L(N |A, ϑ) =
p∏

i=1

L(N |Ai, ϑi).

To avoid numerical underflow, we take the logarithm:

logL(N |A, ϑ) =
p∑

i=1

logL(N |Ai, ϑi).

We assess and implement two versions for computing the log likelihood
on partitioned networks. They both aggregate over the log likelihood of
the trees displayed by the network:

1. Weighted Average Version:

logL(N |Ai, ϑi) = log

 ∑
T∈T (N)

L(T |Ai, ϑi) ∗ P (T |N)

.
(3)

2. Best Tree Version:

logL(N |Ai, ϑi) = log

(
max

T∈T (N)
L(T |Ai, ϑi) ∗ P (T |N)

)
.

(4)

In the weighted average version, the likelihood of a network for a
given partition is the weighted average over the displayed tree likelihoods.
We use the sum here, because the probability of event A or B to occur
is the sum over the probability of observing A and the probability of
observingB. The weighted average can thus be interpreted as the expected
value, if we treat each displayed tree as a statistical event. To avoid
numerical problems, we use arbitrary-precision arithmetics (using MPFR
C++(Holoborodko, 2021)) to compute L(N |Ai) from the displayed tree
per-partition likelihoods.

We use libpll (lib, 2021b) and pll-modules (pll, 2021) to
compute displayed tree likelihoods via the standard Felsenstein pruning
algorithm (Felsenstein, 1981).

3.3 Branch Length Model

Currently, NetRAX supports two branch length models: Under the linked
branches model, we share the same set of branch lengths among all
partitions. Under the unlinked branches model, each partition has its own
independent set of branch lengths.

In future NetRAX versions, we will also support the scaled branches
model. In the scaled branches model, we share the same set of branch
lengths among all partitions, but each partition scales the branches via its
own scaling factor.

The branch length model choice has an effect on which type of
reticulations we can recover. Figure 3.3 shows an example network with a
reticulation that is impossible to infer under the unlinked branches model.
Thus by default, we use linked branch lengths in NetRAX.

Fig. 3. Two displayed trees in a phylogenetic network. Both displayed trees induce the
same topology after collapsing single-child nodes. They only differ in some branch lengths.

4 Computing the Likelihood of a Phylogenetic
Network

In order to compute the log likelihood (LnL) of a network N using the
formulas from Section 3.2, we first need to compute the per-partition
likelihoods L(T |Ai, ϑi)i∈{1,...,p} and the probabilities P (T |N) of all
trees T ∈ T (N) displayed by N . To avoid numerical underflow, we use
the MPFR C++ wrapper (Holoborodko, 2021) to compute the network
loglikelihood given the displayed tree per-partition loglikelihoods and
displayed tree probabilities.

We use the libpll library to compute logL(T |Ai, ϑi). In order to
compute the per-partition LnLs of a phylogenetic tree, libpll uses an
internal per-node data structure, called the conditional likelihood vector
(CLV) (lib, 2021a). A CLV for a node v stores the per-site likelihoods
for the subtree rooted at v (see Figure 4). Libpll computes the per-
node CLVs via a post-order traversal of the tree, via the Felsenstein
pruning algorithm (Felsenstein, 1981). It computes the CLV of a given
node based on the CLVs of its respective children. Libpll also provides
incremental likelihood computations: it only updates those CLVs affected
by a topological rearrangement move or branch length change and re-uses
unaffected CLVs that are still valid.
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Fig. 4. A conditional likelihood vector (CLV) for a subtree Tv rooted at a node v in a
phylogenetic tree T and a MSA partition A.

In NetRAX, we do not store each displayed tree topology separately,
but use a network data structure that implicitly induces each tree. This
allows us to save some redundant CLV computations: When two displayed
trees share an identical subtree, there is no need to compute the CLVs for
nodes in this subtree more than once (see Section 4.1).

Since libpll operates on a strictly bifurcating phylogenetic tree, it
requires each inner node to have exactly two children. For each reticulation
parent taken in order to display a tree in a network, we mark the reticulation
edge coming from the alternative reticulation parent as inactive. This
temporarily removes a child from the non-chosen reticulation parent.

We apply some adaptations to deploy libpll on networks: We need
to handle single-child nodes (see Section ??), and we need to skip dead
(unused) nodes (see Section ??).

4.1 Sharing CLVs among Displayed Trees

Figure 4.1 shows a network withn := 19nodes and r := 2 reticulations. It
displays 2r = 4 trees. Naïvely, by explicitly iterating over each displayed
tree, one would require n ∗ 2r = 76 CLVs to calculate the likelihood of
this network: one CLV per node and displayed tree.

To alleviate this, for each node v in a rooted phylogenetic network,
we store as many CLVs as there are different displayed subtree topologies
rooted at v. By sharing CLVs among subtrees that are shared by multiple
displayed trees, we reduce the total number of CLVs to compute the LnL
of this network to 32.

Fig. 5. A network and its displayed trees. We encode each displayed tree by a binary
r-bit number. We set the i-th bit to 0 if we take the first reticulation parent for the i-th
reticulation, and to 1 otherwise. On the right side, we see for each node which reticulation
choices require their own, private, non-shared CLV. To reduce visual clutter, we use the
character "-" (don’t care) to denote multiple reticulation choices. For example, we use -1
to represent both displayed trees 01 and 11. Each line next to a node in the right image
represents one required CLV. For example, the lines 10 and {0-, 11} mean that we need to
store one CLV for tree 01 and one CLV for trees 00,01,11.

In order to use our share-CLVs optimization, we need to interleave the
CLV update operations performed by libpll among the displayed trees. We
do this via a bottom up traversal (reversed topological sort) of the nodes in
the phylogenetic network. For each node v we visit, we update the CLVs
for each of the distinct displayed subtree topologies present at v.

Due to the peculiarities of networks additional, predominantly
technical modifications to the network traversal and displayed tree data
structure are required that are described in detail in the supplement.

5 Branch-Length Optimization
We intend to optimize a branch length b in a networkN , with respect to the
LNL of the network. Overall, we aim to find the branch length assignments
b̂1, . . . , b̂p that maximize

logL(N |A, ϑ) =
∑p

i=1 logL(N |Ai, ϑi).
As in standard ML implementations for tree inference, we optimize b

via the Newton-Raphson method. For this, we need the first and second
derivatives of the network LnL with respect to b. We derive formulas
for efficiently computing (logL(N |A, ϑ))′ and (logL(N |A, ϑ))′′ out
of logL(T |Ai, ϑi), (logL(T |Ai, ϑi))

′, and (logL(T |Ai, ϑi))
′′ in the

supplementary text. In the following, we describe the efficient computation
of the per-partition LnL and the per-partition LnL derivatives for all
displayed trees T ∈ T (N).

When optimizing a branch length, we do not need to recompute the
per-partition LnL and its derivatives for trees where b is inactive. A branch
is active in a displayed tree, if neither its source nor its target is a dead node,
and it is not connecting an inactive parent to a reticulation (see Figure 5).

Fig. 6. A displayed tree in a phylogenetic network. The branches b1 , b2 , b3 , and b4 are
inactive in this displayed tree. When optimizing the length of any of the inactive branches,
we do not need to recompute the likelihood of this displayed tree.

5.1 Branch-Length Optimization in Phylogenetic Trees

In order to avoid costly CLV updates when optimizing a branch (u, v) in
a tree, all modern ML tree inference tools re-root the tree at the node u
before optimizing the branch (see Figure 5.1). After re-rooting the tree,
the edge directions in subtrees rooted at nodes that lie on the path between
the old and the new root (both ends included) change. We thus need to
recompute the CLVs for the nodes residing on this path.

When evaluating different values for the branch length (u, v) in the
re-rooted tree, we can reuse the CLVs stored at u and v without having
to recompute them. For this, libpll provides functions that takes the
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CLVs stored at u and v and the current length of (u, v), and return
the per-partition loglikelihoods as well as the per-partition loglikelihood
derivatives of the tree.

Fig. 7. When optimizing the length of a branch (u, v) in a tree, we re-root the tree at the
node u, which is the source of the edge whose length we want to optimize. Some edge
directions may change in this process. Note that, the phylogenetic likelihood is the same
regardless of the root placement under time-reversible models as used by RAxML-NG. After
the re-root operation, we need to once recompute the CLVs that lie on the path between
the old root and the new root u. When changing the length of (u, v) during branch-length
optimization, we can reuse the CLVs stored at u and v.

5.2 Re-rooting Displayed Trees in a Phylogenetic Network

In NetRAX, we leverage an analogous computational saving strategy
during branch length optimization as described in Section 5.1. For this,
before optimizing a branch (u, v), we need to re-root all displayed trees
(where the branch is active) at the source node u.

Recall that we do not explicitly store each displayed tree topology
in order to avoid redundant CLV updates during the network LnL
computation. Instead, we perform a custom bottom-up traversal of the
nodes in the phylogenetic network, updating all unique subtree CLVs
shared among subsets of displayed trees (see Section 4.1). This complicates
the re-rooting operation for the displayed trees.

The difficulty here is that with the original network root, the edge
directions (and thus, the parent-child relationships needed for computing
CLVs) are identical for all displayed trees. But when re-rooting the
displayed trees, the parent-child relationships depend on the specific
displayed tree we are currently considering (see Figure 5.2). These
differing edge directions affect the order in which we need to process
the nodes when recomputing the CLVs.

Fig. 8. Virtually re-rooting the displayed trees at node u before optimizing branch (u, v).
In the re-rooted first displayed tree, the node y is a parent of node x and we need to recompute
the CLVs on path (u,w,y,x). However, in the second re-rooted displayed tree, the node y is
a child of node x and we need to recompute the CLVs on path (u,w,z,x).

For networks, we need to recompute the CLVs (which are shared
among subsets of displayed trees) that lie on any path between the network
root and the new tree root (both ends included). We devised the following
approach for resolving the edge direction problem:

We process the paths between the network root and the new tree root
successively. Before processing the next path, we invalidate the shared
CLVs at all nodes on the path, except for the new tree root node. We
detect, in advance, at which nodes we need to restore the old shared CLVs
(from how they were when using the network root), save, and restore them
accordingly.

After we finished optimizing a branch, we recompute the CLVs with
regard to the original network root. This means, when successively
optimizing k branches, we re-root the displayed trees in the network as
follows: tree_root_1→ network_root→ tree_root_2→ network_root→
…tree_root_k→ network_root.

6 Optimizing Non-Topology Parameters
Apart from optimizing branch lengths, we also need to optimize
other standard likelihood model parameters (e.g., nucleotide substitution
probabilities) and reticulation probabilities. Recall that our goal is to
optimize the overall network LnL. This is, we aim to find optimal
parameters for the parameter vector ϑ, to maximize

logL(N |A, ϑ) =
p∑

i=1

logL(N |Ai, ϑ).

6.1 Likelihood Model Parameter Optimization

We reuse routines from RAxML-NG for these likelihood parameter
optimizations. As these routines do not rely on an explicit tree topology,
we can directly reuse them for networks.

6.2 Optimizing Reticulation Probabilities

For optimizing the first-parent probability p of a reticulation, we also reuse
the Brent single-parameter optimization method of RAxML-NG. Since
the first and second parent probability of a reticulation sum up to 1.0,
the probability for taking the second parent follows from the first parent
probability.

The Brent optimization method requires us to recompute the network
LnL when p changes. Fortunately, the displayed tree per-partition
LnLs do not depend on p. Changing p only affects the probabilities
P (T |N,ϑ)T∈T (N) of displaying the trees. We can thus re-use the old
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per-partition displayed tree LnL when recomputing the network LnL (see
Section 3.2) during the optimization of p.

7 Supported Topology-Rearrangement Moves
NetRAX implements the following rooted network topology rearragement
moves proposed by Gambette et al. (Gambette et al., 2017), as well as
reversal (undo) operations for them: rNNI move (see Figure 9), rSPR move
(see Figure 10), arc insertion move (see Figure 11), and arc removal move
(see Figure 11). When undoing a move, we restore the original topology
and branch lengths. Doing or undoing a move also invalidates some CLVs
which need to be recomputed.

Fig. 9. Generalized visualization of a rNNI move. In a rNNI move, the nodes u and v

exchange their neighbors. The resulting network needs to be acyclic, the edge directions
between u, v, s, t may change after the move.

Fig. 10. Generalized visualization of a rSPR move. The resulting network needs to be
acyclic. The arcs xy, yz are the donor arcs and the arc x′y′ is the recipient arc.

Fig. 11. Arc removal and arc insertion move. An arc removal move removes an arc uv

from a reticulation v. When performing an arc removal move, we remove 1 bifurcation,
remove 1 reticulation, remove 5 arcs, and add 2 new arcs. An arc insertion move chooses
two distinct arcs ab and cd, with cd not being ancestral to ab. When performing an arc
insertion move, we add 1 bifurcation, add 1 reticulation, remove 2 arcs, and add 5 new arcs.
The resulting network needs to be acyclic.

7.1 Comparing Networks of different Complexity

NetRAX supports vertical topology-rearrangement moves that increase
(arc insertion move) or decrease (arc removal move) the number of
reticulations in a network. Because model complexity changes when
adding or removing reticulations from a network, we cannot compare
networks of different complexity directly via their LnL. For this, NetRAX
implements AIC, AICc, and BIC scoring. By default, NetRAX uses the
BIC score to compare different networks. Park and Nakleh (Park and
Nakhleh, 2012) showed that using BIC performs best in network searches.

The BIC score of a network N with r reticulations on a partitioned
MSAA and parameter vector ϑ is:

BIC(N |A, ϑ) = −2∗logL(N |A, ϑ)+# free_parameters∗log(sample_size).

The free parameters are the substitution model parameters, reticulation
first-parent probabilities, and branch lengths. The sample size is the
product of the number of taxa and the number of MSA sites.

8 Network Search
NetRAX uses a greedy hillclimbing approach for improving the network
topology. NetRAX has an outer search loop iterating over different move
types and an inner search loop searching for the best-scoring network using
a single move type. We provide pseudocode for them in the supplementary
text.

In the outer search loop, we search in waves, repeatedly iterating
over move types in the following order: arc removal move, rSPRMove,
rNNIMove, arc insertion move. For each move type, we call the inner
search loop (Section 8.2). The outer search loop ends when all move types
did not yield network with a better BIC score.

TODO: Sarah: I think an overview picture would be really nice here.
Some flowchart diagram.

8.1 Start Networks

NetRAX can start the network inference from either a given start network
(provided in Extended Newick format), or a user-specified number
of random and maximum-parsimony trees (generated with RAxML-
NG (Kozlov et al., 2019)).

So far, NetRAX cannot directly call a RAxML-NG (Kozlov et al.,
2019) tree search in order to initiate the network search from the best tree
found by RAxML-NG. In order to obtain this behavior, the user has to do
the RAxML-NG tree search first and then pass the maximum-likelihood
tree inferred by RAxML-NG to NetRAX. We recommend using NetRAX
with a maximum likelihood tree inferred by a preceding RAxML-NG run.

8.2 Inner Search Loop

In the inner search loop, we search for the best-scoring network using only
move candidates of a single move type.

8.2.1 Assembling the set of Move Candidates
For a given move type, we have a set of candidate move operations (e.g.,
there are multiple resulting networks we can reach by doing a single
move of a given type on the network – each of these possible moves is
a candidate move). Searching and evaluating all move candidates varies
in speed across move types, because for some move types there are more
possible candidates than for others.

When gathering possible move candidates for a given move type,
NetRAX by default uses a search radius of 5. This is, for each node in
the network, we only consider rSPR moves and arc insertion moves within
radius of 5 nodes around the current node. The search radius parameter
does not affect our choice of rNNI or arc removal moves.
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8.2.2 Filtering Move Candidates
In order to determine the most promising move candidate, we perform
a 3-stage filtering process: We filter the candidates using the stages
PREFILTER, RANK, and CHOOSE. These stages differ in the number
of branches we optimize before scoring each candidate:

• PREFILTER – Do not optimize branch lengths. (Exception: For
prefiltering an arc insertion, we need to optimize the length of the
newly introduced branch, because we do not have a usueful initial
guess for it.)

• RANK – Optimize branches directly affected by the move.
• CHOOSE – Optimize all branches in the network.

We use the Elbow Method (see Figure 12) to decide on the number
of candidates to keep after each filtering stage. The most promising move
candidate is the candidate that has the lowest (=best) BIC score after the
CHOOSE filtering stage.

Fig. 12. In the elbow method (Thorndike, 1953), (Perera, 2021), we sort the list of pre-
scored move candidates by increasing BIC score. We need to find the point with the largest
distance to the line from the first to the last candidate; this point corresponds to our chosen
cutoff value. We keep all candidates with BIC score smaller-or-equal than this cutoff score
value. In this example, we keep the first six candidates, candidates 0 to 5.

8.2.3 Accepting a Move and updating the set of Move Candidates
If the most promising move candidate obtained by the CHOOSING stage
leads to a better-scoring network, we accept the move and apply it to the
current network.

When accepting a move, we optimize all branch lengths, reticulation
probabilities, and model parameters in the new best network.

For each move type except for arc insertion move, we continue applying
moves of the given move type until we do not find a better-scoring network
anymore. In order to reduce time spent optimizing a network with too high
reticulation count, we directly continue with the other move types after
accepting an arc insertion move.

If the inner search loop was called with the arc insertion move
type, the inner search loop ends after accepting a move and we return
to the outer search loop. Otherwise, after we accept a move in the
search, we want to reuse other promising candidate moves gathered in
the PREFILTERING phase. Because of index remappings performed by
our move implementation (libpll requires CLV indices to be consecutive),
we need to also update index references stored in these old promising

move candidates. We remove old promising moves that have become
inapplicable after accepting our chosen move, and add new move
candidates to the set, seeded at nodes directly affected by the accepted
move. Only after we did not find a better scoring network by continuing
the search from this reduced set of candidate moves, we again consider
the complete set of move candidates as obtained in Section 8.2.1. If these
also do not lead to a better-scoring network, the inner search loop ends.

9 Implementation
Key ideas:

• Modular software architecture
• MPI parallelization of loglikelihood computation and computation of

loglikelihood derivatives over sites in the MSA

9.1 Modular Architecture

TODO: Picture showing how we split up NetRAX into separate modules

9.2 Parallelization

We parallelized both displayed-tree loglikelihoood and displayed tree
loglikelihood derivatives computation in NetRAX over the MSA sites by
using MPI. For this, we reuse the ParallelContext class and load
balancing solutions provided by RAxML-NG.

In order to avoid redundant computations and making best use of
per-tree MPI parallelization, we first iterate over nodes in a network.
Then, we go over all displayed trees stored in a node. We precompute
data (prob_invar and diagpable in libpll) that remains unchanged
among computations for multiple displayed trees.

10 Simulation of Phylogenetic Networks and
Sequences

TODO: Describe the simulator (I found some old text from Celine and
pasted it here)

The simulator simulates an ultrametric networks and extracts displayed
trees out of the simulated network, one for partition. Then simulates
sequences on the output displayed trees.

Our simulator uses the linked branch lengths model (this is, all
partitions share the same set of branch lengths).
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Fig. 13. Ultrametric trees from the simulator.

We are going to simulate our networks under the birth-hybridization
process of Zhang et al. (Zhang et al., 2018). In this process, we have a
speciation rate l (lambda), a hybridisation rate v (nu) and the time we run
the process t_0.

From their paper: "The simulator starts from the time of origin (t_0)
with one species. A species splits into two (speciation) with rate l, and
two species merge into one (hybridization) with rate v. At the moment of
k branches, the total rate of change is r_tot = k l + choose (k 2) * v. We
generate a waiting time∼ exp(r_tot) and a random variable u∼U(0,1), If
u < kl=r_tot, we randomly select a branch to split; otherwise, we randomly
select two branches to join, and generate an inheritance probability c ∼
U(0,1). The simulator stops at time t_0."

No transfer from now, because NetRAX cannot recover branches with
no length.

Given such generated network, we extract a random tree, using the
inheritance probabilities at the reticulated nodes: for each reticulated node
x, we draw a number y ∼ U(0,1) and we choose the first parent p_x if y
< inheritanceProb of the edge p_x,x. If we do this,we have atree but not
a binary one. Then we clean the tree from the dead nodes and 1-indegree
1-outdegree nodes, as Sarah explained in her document, and we obtain a
binary tree. On this binary tree, we simulate N sequences with Seq-Gen-
1.3.4 (currently under this model -mHKY -t3.0 -f0.3,0.2,0.2,0.3 we can
change this). We do this K times, obtaining an alignment of length K*N
in which each group of N sites has its tree.

In their paper, they use this parameters in the simulations
λ−ν ∼ exp(0.1)with mean 10 τ0 ∼ exp(10)with mean 0.1 ν/λ ∼

Beta distribution with alpha = 1 and beta = 1 (same as uniform distribution
between 0 and 1) γ ∼ Uniform distribution (between 0 and 1)

As I said in a slack message, this process gives Yule-type networks,
that act as the Yule-type trees, see example below for trees.

Once they start having a certain amount of nodes, things get crazy and
they start speciating and hybridising a lot. It is not the focus of our paper
to correctly simulate networks (we are not in a Bayesian framework, we
do not need priors) and this is the best we can for now (for the next paper,
we will do better, working on it). So we can simply throw the networks we
do not like as done in line 143-147 of this simulator, which only simulate
networks and not trees and sequences.

We use seq-gen for simulating sequences on the displayed trees with
the following parameters: TODO

10.1 Excluding Weird/Unrecoverable Networks

Since our simulator simulates ultrametric networks,
TODO: Explain how we exclude weird networks. With number of pairs

and number of equal pairs... This network should have a weirdness of 1.0,
because all its displayed trees induce the same bipartitions.

There is still another problem though... now that I fixed the network
weirdness computation, it turns out that we have a lot of "weird" simulated
networks (meaning, displayed trees inducing the same bipartition sets).
These networks have reticulations which we cannot infer with NetRAX
(or any other tool) because the simulated networks are ultrametric, making
the data indistinguishable from not having the problematic reticulations.

Simply excluding these networks sounds better to me though, since the
BIC stats on the weird networks are obvious ("MSA 100 percent supports
a tree? Well, let’s infer a tree then.")

It still makes sense to have them in the simulator though, since
extinctions etc in biology can lead to such "weird" networks. I just don’t
see a good reason for wasting more compute hours running NetRAX on
them, if their induced MSA is indistinguishable from having a tree...

ignore "undetectable"/"weird" reticulations weird networks (e.g.,
displayed trees having the same bipartitions)

11 Experimental Setup
TODO: Mention indistinguishability problems when evaluating topological
distances (Pardi and Scornavacca, 2015).

We do not include a comparison with other tools here, as we are not
aware of any working tool which uses the same non-ILS likelihood model
as NetRAX and outputs the network in a text file for further analysis. We
decided against comparing NetRAX with PhyloNet, because PhyloNet is
only feasible for small datasets and explicitly models ILS in its likelihood
function. The NEPAL tool did not work, our inference attempts resulted
in a segmentation fault. PhyloDAG only outputs a picture of the inferred
network.

11.1 Simulated Data

We simulated phylogenetic networks using our simulator from Section 10.
Our simulator uses the linked branch lengths model (this is, all partitions
share the same set of branch lengths). For each displayed tree in the
network, we simulated a partition with 1000 MSA sites.

In all experiments on simulated data, we compared our inferred
network with the true simulated network using BIC, AIC, AICc, and the
network topology distances discussed in Section 11.3.1.

We ran experiments A,B on a single in-house cluster compute node
with Intel CPUs (E5-2630v3 with 20 MB cache, running at 2.40GHz).
The node contains 2 CPUs with 8 physical cores each. The node has 64
GB RAM.

We used the same cluster for experiment F, using up to 4 compute
nodes in the first, and up to 8 compute nodes in the second experiment.
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We ran experiments C,D,E on a Lenovo Thinkpad T460p laptop. The
laptop has 16 GB RAM and contains a single Intel CPU (i7-6700HQ with
6 MB cache, running at 2.60 GHz) with 4 physical cores.

For each simulated dataset, we inferred a Maximum-Likelihood tree
with RAxML-NG. We then did the following experiments, using NetRAX
with both LikelihoodModel.AVERAGE and LikelihoodModel.BEST,
under the linked branch lengths model:

11.1.1 A: Standard
In our standard experiment setting, we assessed NetRAX inference quality
with varying number of taxa and number of reticulations. We simulated

• 50 networks with 10 taxa and 1 reticulation,
• 50 networks with 20 taxa and 2 reticulations,
• 50 networks with 30 taxa and 3 reticulations,
• 50 networks with 40 taxa and 1 reticulation,
• 50 networks with 40 taxa and 2 reticulations, and
• 50 networks with 40 taxa and 3 reticulations.

We used probability 0.5 for each reticulation. For each dataset, we
started the NetRAX inference from the RAxML-NG maximum-likelihood
tree. In addition, for the datasets with less than 40 taxa, we also started
another NetRAX inference using 3 random and 3 maximum parsimony
starting trees.

11.1.2 B: Reticulation Probability
In our reticulation probability experiment setting, we simulated a 50

datasets with 20 taxa and 1 reticulation. We varied the first parent
probability of the reticulation to be in {0.1, 0.2, 0.3, 0.4, 0.5}. We started
each NetRAX inference from a RAxML-NG maximum-likelihood tree.

11.1.3 C: Unpartitioned Data
In our unpartitioned data setting, we simulated 50 datasets with 20 taxa
and 1 reticulation. For each dataset, we started the NetRAX inference
from the RAxML-NG maximum-likelihood tree. In addition, we started a
second inference where we merged all simulated partitions into a single
partition before running tree or network inference.

11.1.4 D: Scrambled Partitions
In our scrambled partitions experiment setting, we simulated a single
dataset with 30 taxa and 3 reticulations, using probability 0.5 for each
reticulation. Before running NetRAX inference (using the RAxML-NG
maximum-likelihood tree as starting tree), we randomly scrambled the
partitions such thatp ∈ {0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%}
of the sites from each partition were randomly reassigned to other
partitions.

11.1.5 E: Different Alignment Size
In this experiment setting, we simulated a single network with 30 taxa
and 3 reticulations, using probability 0.5 for each reticulation. We
simulated {100, 500, 1000, 5000, 10000} sites per partition. We started
the NetRAX inferences from the RAxML-NG maximum-likelihood trees.

11.1.6 F: Scalability
In this experiment setting, we simulated a 10 networks with 20 taxa
and 3 reticulations each, using probability 0.5 for each reticulation. We
simulated 80, 000 MSA sites. We started the NetRAX inferences from
the RAxML-NG maximum-likelihood trees, using {1, 2, 4, 8, 16, 32, 64}
MPI processes. For each iteration we measured the total runtime for
the NetRAX network inference under both LikelihoodModel.BEST and
LikelihoodModel.AVERAGE.

In addition, we also simulated 1 network with 20 taxa and
3 reticulations each, using probability 0.5 for each reticulation.
Here, we simulated 800, 000 MSA sites. We started the NetRAX
inferences from the RAxML-NG maximum-likelihood trees, using
{16, 32, 48, 64, 80, 96, 112, 128} MPI processes. we again measured
the total runtime for the NetRAX network inference under both
LikelihoodModel.BEST and LikelihoodModel.AVERAGE.

11.2 Empirical Data

We started a NetRAX inference on an empirical dataset consisting of wheat
genomes (from (Glémin et al., 2019)).

We downloaded the individual gene alignments from https://

bioweb.supagro.inra.fr/WheatRelativeHistory/index.

php?menu=download and merged them into a partitioned MSA. We
treated each gene MSA as one partition.

The merged dataset comprises of 47 individuals over 17 species.
There are 1387815 patterns in the merged MSA, and 8738 partitions.
We also created a subsampled dataset on the 17 species, using the
majority-consensus rule (randomly resolving ties) to obtain the per-species
sequences.

We inferred a maximum-likelihood tree for both the complete and the
subsampled dataset with RAxML-NG using its default GTR+GAMMA
substitution model. We then used the maximum-likelihood trees inferred
by RAxML-NG as starting networks for NetRAX.

Figures 11.2 and 11.2 show the trees inferred by RAxML-NG.

Fig. 14. The maximum likelihood tree inferred by RAxML-NG for the complete empirical
dataset, which we used as start network for NetRAX.

Fig. 15. The maximum likelihood tree inferred by RAxML-NG for the subsampled
empirical dataset, which we used as start network for NetRAX.
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11.3 Evaluation Metrics

We use the following for evaluating quality of results:

• Number of reticulations in the network
• Likelihood-based evaluation metrics

• Loglikelihood of the network
• BIC score of the network
• AIC score of the network
• cAIC score of the network

• Topology-based evaluation metrics

• hardwired network distance
• softwired network distance
• displayed trees network distance
• tripartition network distance
• nested labels network distance
• path multiplicity network distance

11.3.1 Topology-based evaluation metrics
See the book Phylogenetic Networks: Concepts, Algorithms and
Applications

I have just figured out that we can easily plot relative distance versions
(in range [0.0, 1.0]) of all topological network distances. When looking
at the definitions in @celines network book, they all are of the form:
(|symmetric difference between A and B|) divided by 2. -> We just need to
change them to be (|symmetric difference between A and B|) divided by
(|A union B|) and there we go. Then, we will get relative distances. These
will make nicer plots.

So we need to diverge from the distance definitions in Celines network
book: We will explicitly discard the trivial bipartitions/clusters/whatever
in our own distance implementations.

Totally ok for discarding trivial bipartitions and use the denominator
you suggested and not 2

Cluster A cluster in a rooted phylogenetic network is a non-empty proper
subset of the set of taxa present in the network. The cluster induced by an
edge in the network is the set of taxa “below” the edge. This is, the set of
taxa that are descendants of the edge’s target node.

• Two clusters are compatible, if they are disjoint or one cluster contains
the other.

• For obtaining the set of hardwired clusters, we collect the clusters
induced by every edge in the network. Here, we have all reticulation
edges activated at once. With the hardwired interpretation, one edge
induces a single cluster.

• For obtaining the set of softwired clusters, we go through each tree
displayed by the network and add the set of clusters induced by the
displayed tree to the total set. Here, we toggle active and inactive
reticulation edges when going through the displayed trees. With the
softwired interpretation, one edge induces a set of clusters (up to one
per displayed tree).

• A cluster induced by an edge is the set of taxa descending from the
target node of the edge.

• For hardwired clusters, we keep all reticulation edges activated at once,
and each edge induces a single cluster this way.

• For softwired clusters, we go through the displayed trees one-by-one,
switching reticulation edges on and off during the process. Here, each
edge induces a set of clusters (up to one per displayed tree).

Unrooted Softwired Distance For a given network N , T (N) are the
displayed trees ofN andB(N) are the set of all bipartitions of the trees in

T (N). Then, the softwired unrooted distance between two networks N1

and N2 is

|B(N1)4B(N2)|
|B(N1)|+ |B(N2)|

12 Results and Discussion
Detailed experimental results are in the supplementary text.

• Good result: BIC better-or-equal or unrooted softwired distance zero
• Okay result: BIC worse, unrooted softwired distance >0, but correct

number of reticulations
• Bad result: BIC worse, unrooted softwired distance >0, wrong number

of reticulations

12.1 A: Standard, 10 taxa, 1 reticulation

12.2 A: Standard, 20 taxa, 2 reticulations

12.3 A: Standard norandom, 40 taxa, 1 reticulation

12.4 A: Standard norandom, 40 taxa, 2 reticulations

12.5 A: Standard norandom, 40 taxa, 3 reticulations

12.6 A: Standard norandom, 40 taxa, 4 reticulations

12.7 B: Reticulation Probability

12.7.1 Reticulation prob 0.1
12.7.2 Reticulation prob 0.2
12.7.3 Reticulation prob 0.3
12.7.4 Reticulation prob 0.4
12.7.5 Reticulation prob 0.5
12.8 C: Unpartitioned Data

12.9 D: Scrambled Partitions

We use + for better-or-equal BIC/AIC/AICc/loglh, and - for worse
BIC/AIC/AICc/loglh.

We use + for good result, o for okay result, - for bad result.

12.10 E: Different Alignment Size

partition size 100 500 1000 5000 10000

Inferred BIC + - - - -
Inferred AIC - - - - -
Inferred AICc - - - - -
Inferred logl - - - - -
Inferred n_reticulations 2 3 3 3 3
Unrooted softwired distance 0.08 0.14 0 0 0
Result + o + + +
Runtime RAxML 25 89 182 1219 2440
Runtime NetRAX 73 370 529 1988 4884

Table 3. Results for experiment E, LikelihoodType.AVERAGE, starting from
RAxML-NG best tree.
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scrambling factor 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Inferred BIC - - - + + + + + + + +
Inferred AIC - - - + + + + + + + +
Inferred AICc - - - + + + + + + + +
Inferred logl - - - + + + + + + + -
Inferred n_reticulations 3 3 5 3 3 3 3 1 0 0 1
Unrooted softwired distance 0 0 0.09 0.17 0.21 0.21 0.21 0.35 0.38 0.38 0.36
Result + + - + + + + + + + +
Runtime RAxML 120 125 123 123 127 124 125 133 125 128 126
Runtime NetRAX 380 314 2274 313 230 314 448 72 10 8 55

Table 1. Results for experiment D, LikelihoodType.AVERAGE, starting from RAxML-NG best tree.

scrambling factor 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Inferred BIC - - - + + + + + + + +
Inferred AIC - - - + + + + + + + +
Inferred AICc - - - + + + + + + + +
Inferred logl - - - + + + + + + + +
Inferred n_reticulations 3 3 5 3 3 3 2 1 0 0 1
Unrooted softwired distance 0 0 0.09 0.17 0.21 0.23 0.21 0.36 0.38 0.38 0.37
Result + + - + + + + + + + +
Runtime RAxML 120 125 123 123 127 124 125 133 125 128 126
Runtime NetRAX 277 219 2062 216 165 156 134 48 6 5 21

Table 2. Results for experiment D, LikelihoodType.BEST, starting from RAxML-NG best tree.

partition size 100 500 1000 5000 10000

Inferred BIC + - - - -
Inferred AIC - - - - -
Inferred AICc - - - - -
Inferred logl - - - - -
Inferred n_reticulations 2 3 3 3 3
Unrooted softwired distance 0.08 0.14 0.14 0 0
Result + o o + +
Runtime RAxML 25 89 182 1219 2440
Runtime NetRAX 28 243 534 1848 4661

Table 4. Results for experiment E, LikelihoodType.BEST, starting from
RAxML-NG best tree.

12.11 F: Scalability

Fig. 16. Runtime in seconds for LikelihoodModel.AVERAGE, over 10 different datasets.
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Fig. 17. Runtime in seconds for LikelihoodModel.BEST, over 10 different datasets.

Fig. 18. Runtime in seconds for a simulated dataset with 20 taxa and 3 reticulations,
with 189212 MSA patterns in total. The inference with LikelihoodModel.BEST took
RSPRMove: 4, RNNIMove: 6, ArcRemovalMove: 2, ArcInsertionMove: 5. The inference
with LikelihoodModel.AVERAGE took RSPRMove: 4, RNNIMove: 3, ArcRemovalMove:
1, ArcInsertionMove: 4

TODO.
Spoiler: If you look at the unrooted softwired network distance, we are

getting great results starting from only RAxML-NG best tree. Often even
relative distance zero, even with 40 taxa and 4 reticulations!

I also noticed that LikelihoodModel.AVERAGE always performed
better-or-equal (and yes, sometimes slightly better!) than LikelihoodModel.BEST
in our simulated datasets. Which is a surprising result because
LikelihoodModel.BEST should be fine for our simulated data (since we
simulated each partition on a single displayed tree). My explanation
attempt is that the NetRAX network search gets stuck in local optima. Also,
non-surprising as it requires less computations, LikelihoodModel.BEST
was always the faster one.

Some more initial spoiler informations I see from closely looking
at the CSV file (the one I posted above) from the standard experiment
round: The relative unrooted softwired network distance is damn good,
overall There were two cases where that distance was a bit higher: In
Case 1, we found a different network with slightly better BIC score than
the true network In Case 2, there were two near-zero branches in the
simulated network In one of the setting (with 10 taxa and 1 reticulation),
BIC preferred a tree. In all other settings, we always inferred the correct

number of reticulations when using LikelihoodModel.AVERAGE. In
the rare cases where LikelihoodModel.AVERAGE performed better than
LikelihoodModel.BEST, it was because LikelihoodModel.BEST inferred
1 reticulation less than LikelihoodModel.AVERAGE. (edited) 9:25 I
hereby conclude that the slower-to-evaluate LikelihoodModel.AVERAGE
is the better choice regarding quality of inference results. This is because
it seems to perform slightly better when it comes to avoiding local optima
in the search. It is not an inherent advantage of the model per se, but
happens when interacting with the currently implemented network search
algorithm.

now it’s prefiltering for 7 reticulations :exploding_head: ... (the
theoretical maximum we could end up with here is 16, as there are 16
partitions in the dataset) I need to abort this experiment and run it with
way less taxa and reticulations to start with! It already gets very clear that
LikelihoodModel.BEST is garbage if the passed partitions are dirty. Still
interesting to see what will happen with LikelihoodModel.AVERAGE,
that one should work out just fine. (edited) 8:48 I am 99% sure that the
error we will get is an out of memory error. Because now with prefiltering 7
reticulations (meaning we have 14 displayed trees to keep track of, and our
current implementation keeps all CLVs for all displayed trees in memory),
NetRAX already uses 10 out of 16 GB RAM on the PhD laptop.

essentially what is happening here is garbage in, garbage out. Because
when having a partition, we assume all sites belonging to the partition
evolved together. With the scrambling, we are violating this assumption.

Interesting. With 30 taxa 3 reticulations, we did not have the rapid
reticulation growth in the scramble partitions experiment. Instead, both
likelihood models performed equally bad the more messy the partitions
got, LikelhoodModel.AVERAGE was only slightly better, but comparable
to LikelihoodModel.BEST. (edited) 4:05 both LikelihoodModel.BEST
and LikelihoodModel.AVERAGE had the overestimating number of
reticulations issue as soon as 30% of the sites were scrambled among
partitions. They just overestimated the number of reticulations less (by
just 1) than before.

13 Future Work
We describe future work ideas for improving runtime performance,
improving inference result quality, and providing more features in the
supplementary text.

14 Conclusion
TODO (I am waiting for the experiments to finish before writing the
conclusion)
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