Skip to content
Permalink
master
Go to file
 
 
Cannot retrieve contributors at this time
266 lines (229 sloc) 7.24 KB
/*
* Free FFT and convolution (C)
*
* Copyright (c) 2017 Project Nayuki. (MIT License)
* https://www.nayuki.io/page/free-small-fft-in-multiple-languages
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
* - The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* - The Software is provided "as is", without warranty of any kind, express or
* implied, including but not limited to the warranties of merchantability,
* fitness for a particular purpose and noninfringement. In no event shall the
* authors or copyright holders be liable for any claim, damages or other
* liability, whether in an action of contract, tort or otherwise, arising from,
* out of or in connection with the Software or the use or other dealings in the
* Software.
*/
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "fft.h"
// Private function prototypes
static size_t reverse_bits(size_t x, int n);
static void *memdup(const void *src, size_t n);
bool Fft_transform(double real[], double imag[], size_t n) {
if (n == 0)
return true;
else if ((n & (n - 1)) == 0) // Is power of 2
return Fft_transformRadix2(real, imag, n);
else // More complicated algorithm for arbitrary sizes
return Fft_transformBluestein(real, imag, n);
}
bool Fft_inverseTransform(double real[], double imag[], size_t n) {
return Fft_transform(imag, real, n);
}
bool Fft_transformRadix2(double real[], double imag[], size_t n) {
// Length variables
bool status = false;
int levels = 0; // Compute levels = floor(log2(n))
for (size_t temp = n; temp > 1U; temp >>= 1)
levels++;
if ((size_t)1U << levels != n)
return false; // n is not a power of 2
// Trignometric tables
if (SIZE_MAX / sizeof(double) < n / 2)
return false;
size_t size = (n / 2) * sizeof(double);
double *cos_table = malloc(size);
double *sin_table = malloc(size);
if (cos_table == NULL || sin_table == NULL)
goto cleanup;
for (size_t i = 0; i < n / 2; i++) {
cos_table[i] = cos(2 * M_PI * i / n);
sin_table[i] = sin(2 * M_PI * i / n);
}
// Bit-reversed addressing permutation
for (size_t i = 0; i < n; i++) {
size_t j = reverse_bits(i, levels);
if (j > i) {
double temp = real[i];
real[i] = real[j];
real[j] = temp;
temp = imag[i];
imag[i] = imag[j];
imag[j] = temp;
}
}
// Cooley-Tukey decimation-in-time radix-2 FFT
for (size_t size = 2; size <= n; size *= 2) {
size_t halfsize = size / 2;
size_t tablestep = n / size;
for (size_t i = 0; i < n; i += size) {
for (size_t j = i, k = 0; j < i + halfsize; j++, k += tablestep) {
size_t l = j + halfsize;
double tpre = real[l] * cos_table[k] + imag[l] * sin_table[k];
double tpim = -real[l] * sin_table[k] + imag[l] * cos_table[k];
real[l] = real[j] - tpre;
imag[l] = imag[j] - tpim;
real[j] += tpre;
imag[j] += tpim;
}
}
if (size == n) // Prevent overflow in 'size *= 2'
break;
}
status = true;
cleanup:
free(cos_table);
free(sin_table);
return status;
}
bool Fft_transformBluestein(double real[], double imag[], size_t n) {
bool status = false;
// Find a power-of-2 convolution length m such that m >= n * 2 + 1
size_t m = 1;
while (m / 2 <= n) {
if (m > SIZE_MAX / 2)
return false;
m *= 2;
}
// Allocate memory
if (SIZE_MAX / sizeof(double) < n || SIZE_MAX / sizeof(double) < m)
return false;
size_t size_n = n * sizeof(double);
size_t size_m = m * sizeof(double);
double *cos_table = malloc(size_n);
double *sin_table = malloc(size_n);
double *areal = calloc(m, sizeof(double));
double *aimag = calloc(m, sizeof(double));
double *breal = calloc(m, sizeof(double));
double *bimag = calloc(m, sizeof(double));
double *creal = malloc(size_m);
double *cimag = malloc(size_m);
if (cos_table == NULL || sin_table == NULL
|| areal == NULL || aimag == NULL
|| breal == NULL || bimag == NULL
|| creal == NULL || cimag == NULL)
goto cleanup;
// Trignometric tables
for (size_t i = 0; i < n; i++) {
unsigned long long temp = (unsigned long long)i * i;
temp %= (unsigned long long)n * 2;
double angle = M_PI * temp / n;
// Less accurate version if long long is unavailable: double angle = M_PI * i * i / n;
cos_table[i] = cos(angle);
sin_table[i] = sin(angle);
}
// Temporary vectors and preprocessing
for (size_t i = 0; i < n; i++) {
areal[i] = real[i] * cos_table[i] + imag[i] * sin_table[i];
aimag[i] = -real[i] * sin_table[i] + imag[i] * cos_table[i];
}
breal[0] = cos_table[0];
bimag[0] = sin_table[0];
for (size_t i = 1; i < n; i++) {
breal[i] = breal[m - i] = cos_table[i];
bimag[i] = bimag[m - i] = sin_table[i];
}
// Convolution
if (!Fft_convolveComplex(areal, aimag, breal, bimag, creal, cimag, m))
goto cleanup;
// Postprocessing
for (size_t i = 0; i < n; i++) {
real[i] = creal[i] * cos_table[i] + cimag[i] * sin_table[i];
imag[i] = -creal[i] * sin_table[i] + cimag[i] * cos_table[i];
}
status = true;
// Deallocation
cleanup:
free(cimag);
free(creal);
free(bimag);
free(breal);
free(aimag);
free(areal);
free(sin_table);
free(cos_table);
return status;
}
bool Fft_convolveReal(const double x[], const double y[], double out[], size_t n) {
bool status = false;
double *ximag = calloc(n, sizeof(double));
double *yimag = calloc(n, sizeof(double));
double *zimag = calloc(n, sizeof(double));
if (ximag == NULL || yimag == NULL || zimag == NULL)
goto cleanup;
status = Fft_convolveComplex(x, ximag, y, yimag, out, zimag, n);
cleanup:
free(zimag);
free(yimag);
free(ximag);
return status;
}
bool Fft_convolveComplex(
const double xreal[], const double ximag[],
const double yreal[], const double yimag[],
double outreal[], double outimag[], size_t n) {
bool status = false;
if (SIZE_MAX / sizeof(double) < n)
return false;
size_t size = n * sizeof(double);
double *xr = memdup(xreal, size);
double *xi = memdup(ximag, size);
double *yr = memdup(yreal, size);
double *yi = memdup(yimag, size);
if (xr == NULL || xi == NULL || yr == NULL || yi == NULL)
goto cleanup;
if (!Fft_transform(xr, xi, n))
goto cleanup;
if (!Fft_transform(yr, yi, n))
goto cleanup;
for (size_t i = 0; i < n; i++) {
double temp = xr[i] * yr[i] - xi[i] * yi[i];
xi[i] = xi[i] * yr[i] + xr[i] * yi[i];
xr[i] = temp;
}
if (!Fft_inverseTransform(xr, xi, n))
goto cleanup;
for (size_t i = 0; i < n; i++) { // Scaling (because this FFT implementation omits it)
outreal[i] = xr[i] / n;
outimag[i] = xi[i] / n;
}
status = true;
cleanup:
free(yi);
free(yr);
free(xi);
free(xr);
return status;
}
static size_t reverse_bits(size_t x, int n) {
size_t result = 0;
for (int i = 0; i < n; i++, x >>= 1)
result = (result << 1) | (x & 1U);
return result;
}
static void *memdup(const void *src, size_t n) {
void *dest = malloc(n);
if (n > 0 && dest != NULL)
memcpy(dest, src, n);
return dest;
}