
Journal of Computational and Applied Mathematics 265 (2014) 173–186

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

New a posteriori error estimate and quasi-optimal
convergence of the adaptive nonconformingWilson element✩

Jun Hu a,∗, Longlong Jiang a, Zhongci Shi b
a LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, PR China
b LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, PR China

a r t i c l e i n f o

Article history:
Received 2 October 2012
Received in revised form 13 July 2013

Keywords:
Adaptive Wilson element
A posteriori error estimate
Optimal convergence

a b s t r a c t

In this paper we establish the quasi-optimal convergence of the adaptive nonconforming
Wilson element on the rectangular mesh. The main ingredients are a new a posteriori er-
ror estimator and a crucial observation that there is some special orthogonality between
the conforming part and the nonconforming part in the energy inner product, which helps
us to show the quasi-orthogonality and the discrete reliability. Finally we integrate these
components in a usual way to achieve the quasi-optimal convergence.
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1. Introduction

Adaptive finite element methods are a fundamental numerical instrument to approximate partial differential equations.
The adaptive conforming finite elementmethod for secondorder elliptic problemshas been studied formany years following
the pioneering work of Babuška [1], and its theory has in some sense become rather mature. For nonconforming methods,
started with [2,3], where the nonconforming linear element method for the Poisson and Stokes equations is analyzed, the a
posteriori error theory has been studied in the literature [4–7]. However, the convergence and optimality analysis are not
established for most nonconforming methods in the literature.

Themain difficulty for the convergence and optimality analysis of adaptive nonconforming finite elementmethods is the
lack of the Galerkin-orthogonality, which is a key ingredient for the convergence and optimality analysis of adaptive con-
forming methods for second order elliptic problem [8–12]. For the nonconforming linear element of the Poisson equation, a
quasi-orthogonality is obtained in [13,14] by using some special equivalency between the nonconforming linear element and
the lowest order Raviart–Thomas element, which is extended to the nonconforming linear element for the Stokes-like prob-
lem in [15]. For theMorley element of the fourth order elliptic problem, a quasi-orthogonality is established in [16] based on
a crucial local conservative property of theMorley elementmethod, such an idea is generalized to the nonconforming linear
element therein, see also [17,18]. However, these techniques cannot be extended to the nonconforming Wilson element
under consideration, since the gradient of the functions in theWilson element space is not a piecewise constant. Moreover,
there is no local conservative property like the nonconforming linear element and the nonconforming Morley element.

The aim of this paper is to propose a new a posteriori error estimator and achieve the convergence and optimality of
the adaptive Wilson element. The key observation is that the Wilson element space can be decomposed into a conform-
ing part and a nonconforming part and that there is some special orthogonality between the two parts in the energy inner
product. We use this property to prove the reliability and efficiency of the new estimator, and show a quasi-orthogonality,
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Fig. 1. (left) A rectangle K with its four nodes A1, . . . , A4; (right) A hanging node A0 and associated regular nodes A1, A2 , a hanging edge E and its two
children E1 and E2 .

and establish the discrete reliability. We integrate these results to prove the quasi-optimal convergence of the adaptive
nonconforming Wilson element method.

The rest of the paper is organized as follows. In Section 2,we present the second order elliptic equation and the 1-irregular
mesh, and introduce the Wilson element as well as a new a posteriori error estimator. We give a priori analysis of the Wil-
son element on the 1-irregular mesh in Theorem 2.2, and then present a new a posteriori estimator with its reliability and
efficiency proof in Theorem 2.6. In Section 3, we prove the quasi-orthogonality and show the convergence of the adaptive
Wilson elementmethod. To obtain the optimality of the adaptive algorithm, we establish the discrete reliability in Section 4.
Consequently, we show the optimality of the adaptiveWilson elementmethod in Section 5. Finally, we give some numerical
examples in Section 6.

2. Notation and preliminaries

Let Ω be a polygonal domain in R2 with boundary Γ := ∂Ω . We consider the following second order elliptic equation:
−1u = f in Ω,
u = 0 on Γ ,

(1)

where f ∈ L2(Ω).
Now we turn to the weak formulation of the problem (1). For a measurable set G ⊂ Ω , let (·, ·)L2(G) and ∥ · ∥L2(G) denote

the inner product and the norm in L2(G), and if G = Ω , we drop the index L2(Ω) for simplicity. Then the weak formulation
of the problem (1) reads

Find u ∈ H1
0 (Ω), such that

a(u, v) = (f , v) for any v ∈ H1
0 (Ω)

(2)

with a(u, v) :=


Ω
∇u · ∇vdx, where the symbol · is the inner product in the Euclidean space R2.

2.1. The 1-irregular mesh

Given an initial regular rectangular mesh T0 of Ω in the sense of Ciarlet [19], a rectangular mesh T is a set of rectangles
obtained by a finite number L of refinements from T0, i.e., T = TL, where for every l = 1, . . . , L there exists one K ∈ Tl−1
and Tl is just the former partition except that K is refined into four elements K1, . . . , K4 by connecting the midside points of
the edges of K . Then, one says that T is some refinement of T0.

Given some element K of a rectangular mesh Th, hK = |K |
1/2 denotes its size, Nh(K) its vertices, Eh(K) its edges. The

set of nodes of Th reads Nh := ∪K∈Th Nh(K), while the set of edges reads Eh := ∪K∈T E(K). Besides, let Eh(Ω) be the set of
interior edges and Eh(Γ ) be the set of boundary edges.

Let Th be some refinement of T0, some node z ∈ Nh is called a hanging node if some element K ∈ Th satisfies
z ∈ ∂K \ Nh(K)

(i.e., z belongs to its boundary but not a vertex of it). Otherwise the node z ∈ Nh is called regular. In case any edge E ∈ Eh
contains at most k hanging node in its inside, Th is called k-irregular.

A 0-irregular mesh is a conforming mesh. In this paper, we restrict to conforming and 1-irregular meshes which allow
for some local mesh-refinement.

An edge E of an element K is called a hanging edge if its midpoint A is a hanging node. The two edge E1 and E2 with vertex
Awhich belong to the neighbor elements K1 and K2, are called children of E. Fig. 1 illustrates the definition of a hanging edge
E = A1A2 and its two children E1 = A0A2 and E2 = A0A1.

2.2. The Wilson element and its a priori error estimate

Let Th be a rectangular mesh of Ω . We define H1(Th) as
H1(Th) := {v ∈ L2(Ω); ∀K ∈ Th, v|K ∈ H1(K)},
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and for v ∈ H1(Th), we denote by ∇hv the gradient operator defined piecewise with respect to Th, i.e.,

∇hv|K := ∇(v|K ).

Let K be an element of Th, and x0K = (x0,K , y0,K ) be the center of K with the horizontal edge length 2hx,K and vertical edge
length 2hy,K . Define ξ :=

x−x0,K
hx,K

and η :=
y−y0,K
hy,K

, then the rectangle K has another description

K = {x = (x, y)T |x = x0,K + ξhx,K , y = y0,K + ηhy,K , −1 6 ξ, η 6 1}. (3)

For a measurable set G ⊂ Ω , we use Pk(G) to denote the space of all polynomials of degree no more than k and Qk(G) to
denote the space of degree no more than k in each variable on the domain G. For a rectangular mesh, we first recall the
conforming bilinear element space [1,20,21] before introducing the Wilson element space. Define the discontinuous finite
element space on the 1-irregular mesh Th as:

Dh := {v ∈ L2(Ω); v|K ∈ Q1(K), ∀K ∈ Th}, (4)

then the conforming bilinear element space is Qh := Dh ∩ H1
0 (Ω). To keep the continuity of the functions in Qh, we treat

the unknowns corresponding to hanging nodes as spurious degrees of freedom, i.e., their values are fixed to be a suitable
interpolation of the unknowns corresponding to neighboring regular nodes. Let v1 be the nodal variable on the node A1, and
v2 the nodal variable on the node A2, then v0, the nodal variable on the hanging node A0, is determined by

v0 =
v1 + v2

2
. (5)

Define the nonconforming bubble function space

Bh := {v ∈ L2(Ω); v|K ∈ span{1 − ξ 2, 1 − η2
}, ∀K ∈ Th}, (6)

then the finite element space of the nonconforming Wilson element is defined as

Vh := Qh + Bh.

The Wilson element approximation uh ∈ Vh of (2) then satisfies
Ω

∇huh · ∇hvhdx =


Ω

f vhdx, ∀vh ∈ Vh. (7)

Remark 2.1. The Q1 element space has another equivalent definition Qh = {v ∈ H1
0 (Ω); v|K ∈ Q1(K), ∀K ∈ Th}. However,

the former is more convenient for implementation [21].

Let uh be the solution to the discrete problem on the mesh Th, then uh can be written as uh = uc
h + ub

h, where uc
h ∈ Qh and

ub
h ∈ Bh. The index c stands for the conforming part, and b, the bubble function which is the nonconforming part. For any

K ∈ Th,

uc
h|K =

1
4
(1 − ξ)(1 − η)uh(A1) +

1
4
(1 + ξ)(1 − η)uh(A2) +

1
4
(1 − ξ)(1 + η)uh(A3) +

1
4
(1 + ξ)(1 + η)uh(A4),

ub
h|K = cx,K (1 − ξ 2) + cy,K (1 − η2), (8)

where cx,K = −
h2x,K
2|K |


K

∂2uh
∂x2

dxdy, and cy,K = −
h2y,K
2|K |


K

∂2uh
∂y2

dxdy, and uh(Ai) are the values at the four vertices Ai, i = 1, . . . , 4,
of the element K as depicted in Fig. 1. Let bx,K = 1 − ξ 2, by,K = 1 − η2. In (7), we choose

vh =


bx,K x ∈ K ,
0 x ∉ K .

This gives

(∇uh, ∇bx,K )L2(K) = (f , bx,K )L2(K).

We recall that K is a rectangle. On the other hand, uc
h ∈ span{1, ξ , η, ξη}, bx,K ∈ span{1 − ξ 2

}, and by,K ∈ span{1 − η2
}.

A direct calculation leads to the following important orthogonality:

(∇uc
h, ∇bx,K )L2(K) = 0, (∇by,K , ∇bx,K )L2(K) = 0. (9)

This leads to

cx,K (∇bx,K , ∇bx,K )L2(K) = (f , bx,K )L2(K).

Therefore,

cx,K =
3
16

hx,K

hy,K


K
f (1 − ξ 2)dxdy. (10)
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A similar argument shows that

cy,K =
3
16

hy,K

hx,K


K
f (1 − η2)dxdy. (11)

Formulas (10) and (11) will play a crucial role in the analysis of this paper. We shall follow [22] to use the notation . and u.
When we write

A1 . B1, and A2 u B2,

then there exist possible constants C1, c2 and C2 such that

A1 6 C1B1, and c2B2 6 A2 6 C2B2.

Define the canonical interpolation operator ΠK from H2(K) onto PK := Q1(K) + span{x2, y2} as follows:

ΠKv :=
1
4
(1 − ξ)(1 − η)v(A1) +

1
4
(1 + ξ)(1 − η)v(A2)

+
1
4
(1 − ξ)(1 + η)v(A3) +

1
4
(1 + ξ)(1 + η)v(A4)

+ (1 − ξ 2)


−

h2
x,K

2|K |


K

∂2v

∂x2
dxdy


+ (1 − η2)


−

h2
y,K

2|K |


K

∂2v

∂y2
dxdy


,

where v(Ai) are the values at the four vertices Ai, i = 1, . . . , 4, of the element K .We denote byΠh the interpolation operator
defined piecewise with respect to Th, i.e.,

Πhv|K := ΠK (v|K ), ∀K ∈ Th.

The standard error estimate for the approximation of polynomials states

∥∇(v − Πhv)∥ . hTh∥D
2v∥ (12)

for any v ∈ H2(Ω) where D2v is the Hessian of v.

Theorem 2.2 (A Priori Error Estimates). Let u and uh be the solutions to problem (2) and problem (7), respectively. Suppose
u ∈ H2(Ω) ∩ H1

0 (Ω), then it holds

∥∇h(u − uh)∥ . hTh∥D
2u∥, (13)

where hTh := maxK∈Th hK .

Proof. The Strang lemma gives the following estimate [19]

∥∇h(u − uh)∥ . inf
vh∈Vh

∥∇h(u − vh)∥ + sup
0≠wh∈Vh

|(f , wh) − ah(u, wh)|

∥∇hwh∥
, (14)

where ah(v, w) =


K∈Th
a(v|K , w|K ), ∀v, w ∈ H1(Th). Since −1u = f , integrating by parts yields

(f , wh) − ah(u, wh) = −(1u, wh) − ah(u, wh)

= −


K∈Th


∂K

∂u
∂ν

whds,

where ν = (νx, νy) is the unit normal vector of ∂K . By the definition of the space Vh, wh has a decompositionwh = wc
h +wb

h .
Since wc

h ∈ H1
0 (Ω), this implies

(f , wh) − ah(u, wh) = −


K∈Th


∂K

∂u
∂ν

wb
hds

= −


K∈Th


∂K


∂u
∂x

νx +
∂u
∂y

νy


wb

hds.

On the other hand, a direct calculation leads to
∂K

wb
hνxds =


K

∂wb
h

∂x
dxdy = 0,

∂K
wb

hνyds =


K

∂wb
h

∂y
dxdy = 0.
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Let P0
K be the orthogonal projection operator from L2(K) onto P0(K), this gives

|(f , wh) − ah(u, wh)| =


K∈Th


∂K


∂u
∂x

− P0
K
∂u
∂x


(wh − wc

h)νx +


∂u
∂y

− P0
K
∂u
∂y


(wh − wc

h)νy


ds


6

K∈Th

∂u
∂x

− P0
K
∂u
∂x


L2(∂K)

∥wh − wc
h∥L2(∂K) +


K∈Th

∂u
∂y

− P0
K
∂u
∂y


L2(∂K)

∥wh − wc
h∥L2(∂K)

.

K∈Th

h2
K∥D2u∥L2(K)∥D

2wh∥L2(K).

It follows from the inverse inequality and the Schwarz inequality that

|(f , wh) − ah(u, wh)| . hTh∥D
2u∥ · ∥∇hwh∥. (15)

A combination of (12), (14) and (15) completes the proof. �

Remark 2.3. The analysis herein is the extension of that in [23,24] to the mesh with hanging nodes.

2.3. A new a posteriori error estimator and its reliability and efficiency

LetωK denote the union of elementsK ′
∈ Th that share a vertex, or an edge, or a child edge of an edgewithK . Letωe denote

the patch of elements having in common the edge e or one of the child edge of e, or share the hanging node as a vertex. Given
any edge e ∈ Eh(Ω) with the length he we assign one fixed unit normal νe := (νx, νy) and tangential vector τe := (−νy, νx).
Once νe and τe have been fixed on e, in relation to νe one defines the element K− ∈ Th and K+ ∈ Th, with e = K+ ∩K−. Given
e ∈ Eh(Ω) and some Rd-valued function v defined in Ω with d = 1, 2, we denote by [v] := (v|K+

)|e − (v|K−
)|e the jump of

v across e.
Before introducing a new estimator, we first recall the residual-type a posteriori error estimator in the literature, see for

instance [6]

η̂2(uh, Th) :=


K∈Th

h2
K∥f + 1uh∥

2
L2(K)

+


e∈Eh(Ω)

he∥[∇uh]∥
2
L2(e) +


e∈Eh(Γ )

he

∂uh

∂τe

2
L2(e)

.

For this estimator, we have the following reliability and efficiency [6].

Lemma 2.4. Let u be the solution of problem (2), and uh be the solution of problem (7). Then

∥∇h(u − uh)∥
2 . η̂2(uh, Th) . ∥∇h(u − uh)∥

2
+ osc2(f , Th). (16)

For the estimator η̂, we cannot show the convergence of the adaptive algorithm because the unknown uh is involved
in the interior residual f + 1uh. The remedy is to propose a new estimator by dropping the term 1uh. This results in the
following estimator

ηK := hK∥f ∥L2(K) +

 
Eh(Ω)∋e⊂∂K

he∥[∇huh]∥
2
L2(e) +


Eh(Γ )∋e⊂∂K

he

∂uh

∂τe

2
L2(e)

 1
2

, (17)

for any K ∈ Th. For any Sh ⊂ Th, we define the estimator over Sh by

η2(uh, Sh) :=


K∈Sh

η2
K .

In particular, for Sh = Th, we have

η2(uh, Th) :=


K∈Th

η2
K .

We further define the oscillation osc(f , Th) by

osc2(f , Th) :=


K∈Th

h2
K∥f − fK∥

2
L2(K)

,

where fK ∈ P0(K) is the constant projection of f over K .

Lemma 2.5. Let uh be the solution to the discrete problem (7) on the mesh Th. For any K ∈ Th, there exists a positive constant C
such that

∥f ∥L2(K) − C∥f − fK∥L2(K) 6 ∥f + 1uh∥L2(K) 6 ∥f ∥L2(K) + C∥f − fK∥L2(K). (18)
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Proof. Since uh is the solution to the discrete problem (7) on themesh Th, uh has a decomposition uh = uc
h+ub

h with uc
h ∈ Qh

and ub
h ∈ Bh. Since 1uc

h|K = 0,

f + 1uh|K = f + 1ub
h|K

= f + cx,K
∂2bx,K
∂x2

+ cy,K
∂2by,K
∂y2

= f −
2

h2
x,K

cx,K −
2

h2
y,K

cy,K .

Note that cx,K and cy,K have already been computed in (10) and (11). This implies

f + 1uh|K = f −
3
8
hx,K

hy,K

1
h2
x,K


K
f (1 − ξ 2)dxdy −

3
8
hy,K

hx,K

1
h2
y,K


K
f (1 − η2)dxdy

= 2(f − fK ) − f −
3
8

1
hx,Khy,K


K
(f − fK )(1 − ξ 2)dxdy −

3
8

1
hx,Khy,K


K
(f − fK )(1 − η2)dxdy.

Then

∥f + 1uh∥L2(K) =

2(f − fK ) − f −
3
8

1
hx,Khy,K


K
(f − fK )(1 − ξ 2)dxdy −

3
8

1
hx,Khy,K


K
(f − fK )(1 − η2)dxdy


L2(K)

.

An application of the triangle inequality completes the proof. �

By Lemmas 2.4, 2.5 and the fact osc(f , Th) 6 η(uh, Th) we have the following reliability and efficiency of the estimator η.

Theorem 2.6. Let u be the solution of problem (2), and uh be the solution of problem (7). Then

∥∇h(u − uh)∥
2 6 CRelη

2(uh, Th) 6 CEff

∥∇h(u − uh)∥

2
+ osc2(f , Th)


. (19)

3. Convergence

In this section,we shall establish the convergence of our adaptive nonconforming finite elementmethod. Firstwe present
our adaptive nonconforming finite elementmethod. In doing this,we replace the dependence on the actual rectangularmesh
T by the iteration counter k. Correspondingly, we use the notations Qk, Bk, ∇k instead of Qh, Bh, ∇h.

Algorithm 3.1. Given the initial mesh T0 and marking parameter 0 < θ < 1, set k = 0 and iterate
(1) Solve on Tk, to get the solution uk.
(2) Compute the error estimator η = η(uk, Tk).
(3) Mark the minimal element set Mk such that

η2(uk, Mk) > θη2(uk, Tk). (20)
(4) Refine each rectangle K ∈ Mk, and refine any element forwhich any of the sides containsmore than one irregular nodes;

k = k + 1.

Nextwe show the quasi-orthogonality for theWilson element. Quasi-orthogonality is essential for the convergence analysis,
but for most nonconforming finite element methods, whether the quasi-orthogonality holds is not clear. In the known re-
sults, based on some special equivalency between the nonconforming linear element and the lowest order Raviart–Thomas
element, the quasi-orthogonality for the nonconforming linear element of the Poisson equationwas first established in [13].
For the Morley element of the fourth order elliptic problem, the conservative property is used to analyze the quasi-
orthogonality. This is also extended to the nonconforming linear element therein, see also [17,18]. Neither could be used for
the Wilson element under consideration, so we need to find a new way to handle with it. The key ingredient is to use the
orthogonality of (9).

Lemma 3.2 (Quasi-Orthogonality). Let Tk be some refinement of Tk−ℓ. Given any constant δ ∈ (0, 1), there exists a positive
constant C(δ) such that

(1 − δ)∥∇k(u − uk)∥
2 6 ∥∇k−ℓ(u − uk−ℓ)∥

2
− ∥∇k(uk − uk−ℓ)∥

2
+ C(δ)


K∈Tk−ℓ\Tk

h2
K∥f ∥2

L2(K)
. (21)

Proof. We use the decompositions uk = uc
k + ub

k and uk−ℓ = uc
k−ℓ + ub

k−ℓ where uc
i ∈ Qi, ub

i ∈ Bi, i = k − ℓ, k. Since
(∇u − ∇kuk, ∇(uc

k − uc
k−ℓ)) = 0,

(∇u − ∇kuk, ∇kuk − ∇kuk−ℓ) = (∇u − ∇kuk, ∇kub
k − ∇k−ℓub

k−ℓ).
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Notice that the restriction of the nonconforming part ub
i on any element K ∈ Ti, i = k− ℓ, k can be determined only by the

source term f , so we have ∇kub
k|K = ∇k−ℓub

k−ℓ|K for K ∈ Tk−ℓ ∩ Tk. This gives

|(∇u − ∇kuk, ∇kuk − ∇kuk−ℓ)| =

 
K∈Tk−ℓ\Tk

(∇u − ∇kuk, ∇kub
k − ∇k−ℓub

k−ℓ)

 . (22)

For K ∈ Tk−ℓ \ Tk, K is refined into elements K1, . . . , KM , M > 4, a combination of (8), (10) and (11) leads to∂ub
k−ℓ

∂x


L2(K)

=

cx,K ∂bx,K
∂x


L2(K)

=

− 3ξ
8hy,K


K
f (1 − ξ 2)dxdy


L2(K)

.


K
f (1 − ξ 2)dxdy

= ∥f ∥L2(K)∥1 − ξ 2
∥L2(K)

. hK∥f ∥L2(K), (23)

and ∂ub
k

∂x

2
L2(K)

=

M
i=1

∂ub
k

∂x

2
L2(Ki)

.

M
i=1

h2
Ki∥f ∥

2
L2(Ki)

. h2
K∥f ∥2

L2(K)
. (24)

From (22)–(24) we get

|(∇u − ∇kuk, ∇kuk − ∇kuk−ℓ)| 6 CQO


K∈Tk−ℓ\Tk

hK∥∇u − ∇kuk∥L2(K)∥f ∥L2(K) (25)

for some positive constant CQO. The desired result follows from the Young inequality. �

Lemma 3.3 (Corollary 3.4, [8], Lemma 4.5, [21]). Let Tk be some refinement of Tk−1 with the bulk criterion (20), then there exist
ρ > 0 and a positive constant β ∈ (1 − ρθ, 1) such that

η2(uk−1, Tk) 6 βη2(uk−1, Tk−1) + (1 − ρθ − β)η2(uk−1, Tk−1). (26)

Lemma 3.4. Let Tk be some refinement of Tk−ℓ, then there exists ρ > 0 such that
K∈Tk

h2
K∥f ∥2

L2(K)
6


K∈Tk−ℓ

h2
K∥f ∥2

L2(K)
− ρ


K∈Tk−ℓ\Tk

h2
K∥f ∥2

L2(K)
. (27)

Proof. The proof immediately follows from the definition of the mesh size hK . �

Lemma 3.5. Let uk and uk−1 be the solutions to the discrete problem (7) on the meshes Tk and Tk−1, respectively. Given any
positive constant ε, there exists a positive constant β2(ε) dependent on ε such that

η2(uk, Tk) 6 (1 + ε)η2(uk−1, Tk) +
1

β2(ε)
∥∇k(uk − uk−1)∥

2. (28)

Proof. Given any K ∈ Tk, let

ηK (uk) := hK∥f ∥L2(K) +

 
Ek(Ω)∋e⊂∂K

he∥[∇kuk]∥
2
L2(e) +


Ek(Γ )∋e⊂∂K

he

∂uk

∂τe

2
L2(e)

 1
2

. (29)
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It follows from the definitions of ηK (uk) and ηK (uk−1) that

|ηK (uk) − ηK (uk−1)| =


 

Ek(Ω)∋e⊂∂K

hK∥[∇kuk]∥
2
L2(e) +


Ek(Γ )∋e⊂∂K

he

∂uk

∂τe

2
L2(e)

 1
2

−

 
Ek(Ω)∋e⊂∂K

hK∥[∇k−1uk−1]∥
2
L2(e) +


Ek(Γ )∋e⊂∂K

he

∂uk−1

∂τe

2
L2(e)

 1
2


6

 
Ek(Ω)∋e⊂∂K

hK∥[∇k(uk − uk−1)]∥
2
L2(e) +


Ek(Γ )∋e⊂∂K

he

∂(uk − uk−1)

∂τe

2
L2(e)

 1
2

.

Let e = K ∩ K ′. Then we use the trace theorem and inverse inequality to get

∥∇k(uk − uk−1)|K∥L2(e) . h−1/2
K ∥∇k(uk − uk−1)∥L2(K).

The same argument holds for K ′. This gives

∥[∇k(uk − uk−1)]∥L2(e) . h−1/2
K ∥∇k(uk − uk−1)∥L2(ωe)

which leads to

|ηK (uk) − ηK (uk−1)| . ∥∇k(uk − uk−1)∥L2(ωK ).

A summary over all elements in Tk plus the Young inequality complete the proof. �

With aforementioned lemmas, we shall show the convergence of our adaptive method. Generally, the energy error
between two levels are not strictly monotone, so we borrow the concept of total error of [16] which contains the energy
normof the error, the scaled estimator and volume term. By showing reduction of the total error, we obtain the convergence.

Theorem 3.6. Let u be the solution to the problem (2), and uk and uk−1 be the solutions to the discrete problem (7) on the meshes
Tk and Tk−1, respectively. Then there exist positive constants γ , β1 and 0 < α < 1 with

ϵk 6 αϵk−1 (30)

where

ϵk = ∥∇k(u − uk)∥
2
+ γ η2(uk, Tk) + β1


K∈Tk

h2
K∥f ∥2

L2(K)
. (31)

Proof. By Lemmas 3.2–3.5, we have for any positive constant 0 < α < 1

ϵk − αϵk−1 6


1

1 − δ
− α


∥∇k−1(u − uk−1)∥

2
+ γ ((1 + ε)(1 − ρθ − β) + εβ)η2(uk−1, Tk−1)

+ (γ β − αγ )η2(uk−1, Tk−1) +


γ

β2(ε)
−

1
1 − δ


∥∇k(uk − uk−1)∥

2

+ (β1 − αβ1)


K∈Tk−1

h2
K∥f ∥2

L2(K)
+


C(δ)

1 − δ
− ρβ1

 
K∈Tk−1\Tk

h2
K∥f ∥2

L2(K)

where δ, γ , β and β1 are four positive constants to be chosen later. We first set

γ =
β2(ε)

1 − δ
, β1 =

C(δ)

ρ(1 − δ)
, and β = (1 − ρθ)(1 + ε),

which leads to

ϵk − αϵk−1 6


1

1 − δ
− α


∥∇k−1(u − uk−1)∥

2
+ (γ β − αγ )η2(uk−1, Tk−1) + (β1 − αβ1)


K∈Tk−1

h2
K∥f ∥2

L2(K)
.

We choose ε to be small enough such that 0 < β < 1. Sowe obtain the reduction of the total error if the following inequality
holds

β1(1 − α)


K∈Tk−1

h2
K∥f ∥2

L2(K)
+


1

1 − δ
− α


∥∇k−1(u − uk−1)∥

2
+ γ (β − α)η2(uk−1, Tk−1) 6 0.
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By applying the upper bound of Theorem 2.6

∥∇k−1(u − uk−1)∥
2 6 CRelη

2(uk−1, Tk−1)

and the fact that
K∈Tk−1

h2
K∥f ∥2

L2(K)
6 η2(uk−1, Tk−1)

we get

β1(1 − α)


K∈Tk−1

h2
K∥f ∥2

L2(K)
+


1

1 − δ
− α


∥∇k−1(u − uk−1)∥

2
+ γ (β − α)η2(uk−1, Tk−1)

6


1

1 − δ
− α


CRel + γ (β − α) + β1(1 − α)


η2(uk−1, Tk−1),

provided that 0 < δ < 1. This implies that we should choose the error reduction rate α =
β1+γ β+

CRel
1−δ

γ+β1+CRel
> β . The choice of

0 < δ <
γ−γ β

γ−γ β+CRel
assures that α < 1, which completes the proof. �

4. Discrete reliability

In this section we analyze the discrete reliability of the estimator η. Based on the decomposition of the Wilson element
space, we can use the Scott–Zhang interpolation for estimating the conforming part and a similarmethod used in Lemma 3.2
for the nonconforming part.

Lemma 4.1. Let Tk be some refinement of Tk−ℓ, and let uk and uk−ℓ be the solutions to the discrete problem (7) on the meshes
Tk and Tk−ℓ, respectively. Then it holds that

∥∇k(uk − uk−ℓ)∥
2 6 CDrelη

2(uk−ℓ, Tk−ℓ \ Tk). (32)

Proof. We use the decompositions ui = uc
i + ub

i , where uc
i ∈ Qi, ub

i ∈ Bi, i = k − ℓ, k.

∥∇k(uk − uk−ℓ)∥
2

= (∇k(uk − uk−ℓ), ∇k(uc
k − uc

k−ℓ)) + (∇k(uk − uk−ℓ), ∇k(ub
k − ub

k−ℓ))

= (f , vc
k) − (∇kuk−ℓ, ∇vc

k) + (∇k(uk − uk−ℓ), ∇k(ub
k − ub

k−ℓ)) (33)

where vc
k = uc

k − uc
k−ℓ. To estimate the first part, we employ the Scott–Zhang interpolation operator J : Qk → Qk−ℓ,which

can be found in [20,25,21], which has the following properties:

Jvc
k |K = vc

k |K , for any K ∈ Tk ∩ Tk−ℓ, (34)

∥∇Jvc
k∥L2(K) + ∥h−1

K (vc
k − Jvc

k)∥L2(K) . ∥∇vc
k∥L2(ωK ), (35)

∥h−1/2
e (vc

k − Jvc
k)∥L2(e) . ∥∇vc

k∥L2(ωe). (36)

Since Jvc
k ∈ Qk−ℓ ⊂ Vk−ℓ, from (34)–(36) we have

(f , vc
k) − (∇kuk−ℓ, ∇vc

k) = (f , vc
k − Jvc

k) − (∇kuk−1, ∇(vc
k − Jvc

k))

= (f + ∆kuk−ℓ, v
c
k − Jvc

k) −


K∈Tk


∂K

∇kuk−ℓ · ν(vc
k − Jvc

k)ds

6


K∈Tk−ℓ\Tk

∥f + ∆kuk−ℓ∥L2(K)∥v
c
k − Jvc

k∥L2(K)

+


K∈Tk−ℓ\Tk


e

∥[∇k−ℓuk−ℓ] · νe∥L2(e)∥v
c
k − Jvc

k∥L2(e)

. η(uk−ℓ, Tk−ℓ \ Tk)∥∇vc
k∥

. η(uk−ℓ, Tk−ℓ \ Tk)(∥∇kvk∥ + ∥∇kv
b
k∥). (37)

In the second inequality, we use the fact ∥f + ∆kuk−ℓ∥L2(K) . ∥f ∥L2(K). From the proof of Lemma 3.2, we have

∥∇k(ub
k − ub

k−ℓ)∥ . η(uk−ℓ, Tk−ℓ \ Tk). (38)

A summary of (33), (37) and (38) proves the desired result. �

By applying the discrete reliability we find some connection between the energy error and bulk criterion. We omit the
proof here which can be found in [16].
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Lemma 4.2. Let Tk be some refinement of Tk−ℓ such that the following reduction holds

∥∇k(u − uk)∥
2
+ osc2(f , Tk) 6 α′(∥∇k−ℓ(u − uk−ℓ)∥

2
+ osc2(f , Tk−ℓ)), (39)

for some 0 < α′ < 1, then there exists 0 < θ∗ =
(1−α′)2CEff

2(2α′(CQO)2+(1−α′)(CDrel+1))
< 1 such that

θ∗η
2(uk−ℓ, Tk−ℓ) 6 η2(uk−ℓ, Tk−ℓ \ Tk).

5. Optimality

For the analysis of the optimality, we introduce some notation from nonlinear approximation theory. Let TN be the set
of all possible rectangular meshes satisfying one-irregular rule generated from T0 with at most N elements more than T0.
For s > 0 we define the nonlinear approximation class As as

As := {(u, f )||u, f |s := sup
N>0

N sσ(N; u, f ) < +∞}

with
σ(N; u, f ) := inf

T ∈TN
inf

v∈VT

(∥∇T (u − v)∥2
+ R2(u) + osc2(f , T ))

where

R(u) = sup
o≠v∈VT

(∇u, ∇T v) − (f , v)

∥∇T v∥
.

Lemma 5.1. Let Tk be some refinement of Tk−ℓ, u be the solution to the problem (2), and uk and uk−ℓ be the solutions to the
discrete problem (7) on the meshes Tk and Tk−ℓ, respectively. Then there exists a constant C1 > 0 such that

∥∇(u − uk)∥
2
+ osc2(f , Tk) 6 C1


∥∇(u − uk−ℓ)∥

2
+ osc2(f , Tk−ℓ)


. (40)

Proof. In view of inequalities (21) and (27), we get

(1 − δ)∥∇u − ∇kuk∥
2
+ osc2(f , Tk) 6 ∥∇u − ∇k−ℓuk−ℓ∥

2
+ (C(δ) + 1)


K∈Tk−ℓ

h2
K∥f ∥2

L2(K)

6 ∥∇u − ∇k−ℓuk−ℓ∥
2
+ (C(δ) + 1)η2(uk−ℓ, Tk−ℓ).

This and inequality (19) complete the proof. �

Theorem 5.2. Let Mk be a set of marked elements withminimal cardinality from Algorithm 3.1, u the solution of problem (7), and
(Tk, Vk, uk) the sequence of meshes, finite element spaces and discrete solutions produced by the adaptive finite element methods
with 0 < θ <

CEff
4(2(CQO)2+CDrel+1)

. It holds that

#Mk . (α′)−
1
s |u, f |

1
s
s (C1)

1
s (∥∇k(u − uk)∥

2
+ osc2(f , Tk))

−
1
s , (41)

for any α′
∈ (0, 1

2 ).

Proof. We set ε = α′(C1)
−1(∥∇k(u − uk)∥

2
+ osc2(f , Tk)) with 0 < α′ < 1

2 . Since (u, f ) ∈ As, there exists a Tε of the
refinement of T0 and uε ∈ VTε such that

#Tε − #T0 6 |u, f |
1
s
s ε−

1
s ,

∥∇Tε (u − uε)∥
2
+ osc2(f , Tε) < ε. (42)

Let T∗ be the overlay of Tε and Tk, and let u∗ be the discrete solution of problem (7) on T∗. Since T∗ is a refinement of Tε ,
from (40) and (42) we have

∥∇T∗
(u − u∗)∥

2
+ osc2(f , T∗) 6 C1(∥∇Tε (u − uε)∥

2
+ osc2(f , Tε))

6 C1ε = α′(∥∇k(u − uk)∥
2
+ osc2(f , Tk)).

Hence, we deduce from Lemma 4.2 that

θ∗η
2(uk, Tk) 6 η2(uk, Tk \ T∗),

where θ∗ ∈ (0, 1). We note that the step (3) in Algorithm 3.1 with θ 6 θ∗ chooses a subset of Mk ⊂ Tk with minimal
cardinality with the same property. Therefore, from [26, Lemma 4.3] and [27, Lemma 6.7],

#Mk 6 #T∗ − #Tk 6 #Tε − #T0. (43)
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Finally, by combining (43) and the definition of ε, we end up with

#Mk . (α′)−
1
s |u, f |

1
s
s (C1)

1
s (∥∇k(u − uk)∥

2
+ osc2(f , Tk))

−
1
s . �

Theorem 5.3. Let the marking step in Algorithm 3.1 select a set Mk of marked elements with minimal cardinality, u the solution
to problem (2), and (Tk, Vk, uk) the sequence of meshes, finite element spaces and discrete solutions produced by the adaptive
finite element methods with 0 < θ <

CEff
4(2(CQO)2+CDrel+1)

. Then it holds that

∥∇TN (u − uN)∥2
+ osc2(f , TN) . |u, f |s(#TN − #T0)

−s for (u, f ) ∈ As. (44)

Proof. Let µ = (α′)−
1
s |u, f |

1
s
s (C1)

1
s . We use the result that #Tk − #T0 .

k−1
j=0 #Mj from [27, Lemma 6.5] (see also [9] for

meshes without hanging nodes) to obtain that

#TN − #T0 .

N−1
j=0

#Mj . µ

N−1
j=0

(∥∇Tj(u − uj)∥
2
+ osc2(f , Tj))

−
1
s . (45)

The fact that

∥∇j(u − uj)∥
2
+ osc2(f , Tj) u ϵj

gives

ϵj . ∥∇j(u − uj)∥
2
+ osc2(f , Tj). (46)

For any 0 6 j 6 N − 1, we use the convergence result from Theorem 3.6 to derive that

ϵN 6 α(N−j)ϵj. (47)

A summary of (45)–(47) yields

#TN − #T0 . µ(∥∇TN (u − uN)∥2
+ osc2(f , TN))−

1
s

N
j=1

α
j
s .

Since α < 1, the geometric series is bounded by the constant Cθ = α1/s(1 − α1/s)−1. This leads to

∥∇N(u − uN)∥2
+ osc2(f , TN) . |u, f |s(#TN − #T0)

−s

which completes the proof. �

6. Numerical experiments

6.1. Example 1

Consider the domain Ω = [0, 1] × [0, 1] and f = 2π2 sin(πx) sin(πy) with a vanishing Dirichlet boundary condition.
The exact solution is u = sin(πx) sin(πy). We scale the estimator η with the factor θ = 0.5. Fig. 2 displays the grid when
the degrees of freedom (DOFs) are more than 104. Fig. 3 displays experimental convergence rates for the true error and
the estimator η for the adaptive refinement with the corresponding mesh depicted in Fig. 2. The convergence rate of the
adaptive refinement is the optimal one, O(n−1/2), with respect to the number of degrees of freedom.

6.2. Example 2

On the L-shaped domain Ω = [−0.5, 0.5] × [−0.5, 0.5] \ [0, 0.5] × [−0.5, 0], let f = 0 and uD a smooth function such
that in polar coordinates

u(r, θ) = r2/3 sin

2
3
θ


is the exact solution of problem (1). Fig. 4 displays the grid when the degrees of freedom are more than 104. We find that
there is a local higher refinement towards the reentrant corner. Fig. 5 shows the rate of convergence is optimal.

6.3. Example 3

Consider an interesting domain which is Ω = [0, 1] × [0, 1] \ [0.25, 0.75] × [0.5, 0.5] \ [0.5, 0.5] × [0.25, 0.75]. Let
uD = 0 and f = 1. The exact solution is unknown, but we can guess there must be a local higher refinement towards every
reentrant corner. Fig. 6 confirms our guess.
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Fig. 2. Adaptive mesh refinement.

Fig. 3. True error and estimator: the optimal decay is indicated by the line with slope −1/2.

Fig. 4. Adaptive mesh refinement.



J. Hu et al. / Journal of Computational and Applied Mathematics 265 (2014) 173–186 185

Fig. 5. True error and estimator: the optimal decay is indicated by the line with slope −1/2.

Fig. 6. Adaptive mesh refinement.

References

[1] I. Babuška, W.C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978) 736–754.
[2] E. Dari, R. Duran, C. Padra, Error estimators for nonconforming finite-element approximations of the Strokes problem, Math. Comp. 64 (1995)

1017–1033.
[3] E. Dari, R. Duran, C. Padra, V. Vampa, A posteriori error estimators for nonconforming finite-element methods, M2AN Math. Model. Numer. Anal. 30

(1996) 385–400.
[4] C. Carstensen, A unifying theory of a posteriori finite element error control, Numer. Math. 100 (2005) 617–637.
[5] C. Carstensen, S. Bartels, S. Jansche, A posteriori error estimates for nonconforming finite-element methods, Numer. Math. 92 (2002) 233–256.
[6] C. Carstensen, J. Hu, A unifying theory of a posteriori error control for nonconforming finite-element methods, Numer. Math. 107 (2007) 473–502.
[7] C. Carstensen, J. Hu, A. Orlando, Framework for the a posteriori error analysis of nonconforming finite elements, SIAM J. Numer. Anal. 45 (2007) 68–82.
[8] J. Manuel Cascon, C. Kreizer, R.H. Nochetto, K.G. Siebert, Quasi-optimal convergenve rate for an adaptive finite-element method, SIAM J. Numer. Anal.

46 (2008) 2524–2550.
[9] R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007) 245–269.

[10] W. Dorfler, A convergent adaptive algorithm for Possion’s equation, SIAM J. Numer. Anal. 33 (1996) 2169–2189.
[11] P. Morin, R. Nochetto, K. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000) 466–488.
[12] P. Morin, R.H. Nochetto, K.G. Siebert, Convergence of adaptive finite-element methods, SIAM Rev. 44 (2002) 631–658.
[13] C. Carstensen, R.H.W. Hoppe, Convergence analysis of an adaptive nonconforming finite-element method, Numer. Math. 103 (2006) 251–266.
[14] H. Rabus, A natural adaptive nonconforming FEM of quasi-optimal complexity, Comput. Methods Appl. Math. 10 (3) (2010) 315–325.
[15] J. Hu, J.C. Xu, Convergence of adaptive conforming and nonconforming finite element methods for the perturbed Stokes equation, Research Report

73, 2007, School of Mathematical Sciences and Institute of Mathematics, Peking University.
Available at: www.math.pku.edu.cn:8000/var/preprint/7297.pdf.

http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref1
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref2
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref3
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref4
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref5
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref6
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref7
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref8
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref9
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref10
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref11
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref12
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref13
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref14
http://www.math.pku.edu.cn:8000/var/preprint/7297.pdf


186 J. Hu et al. / Journal of Computational and Applied Mathematics 265 (2014) 173–186

[16] J. Hu, Z.C. Shi, J.C. Xu, Convergence and optimality of the adaptive Morley element method, Numer. Math. (2012) http://dx.doi.org/10.1007/s00211-
012-0445-0; see also, J. Hu, Z.C. Shi, J.C. Xu, Convergence and optimality of adaptive nonconforming methods for high-order differential equations,
Research Report 19, 2009, School of Mathematical Sciences and Institute of Mathematics, Peking University.
Available at: www.math.pku.edu.cn:8000/var/preprint/7280.pdf.

[17] R. Becker, S. Mao, Quasi-optimality of adaptive nonconforming finite element methods for the stokes equations, SIAM J. Numer. Anal. 49 (2011)
970–991.

[18] S.P. Mao, X.Y. Zhao, Z.C. Shi, Convergence of a standard adaptive nonconforming finite element method with optimal complexity, Appl. Numer. Math.
60 (2010) 673–688.

[19] P.G. Ciarlet, The Finite ElementMethod for Elliptic Problems, North-Holland, Amsterdam, 1978, reprinted as Classis Appl.Math. 40, SIAM, Philadelphia,
2002.

[20] C. Carstensen, J. Hu, Hanging nodes in the unifying theory of a posteriori finite element error control, J. Comput. Math. 27 (2009) 215–236.
[21] X.Y. Zhao, S.P. Mao, Z.C. Shi, Adaptive quadrilateral and hexahedral finite element methods with hanging nodes and convergence analysis, J. Comput.

Math. 28 (2009) 621–644.
[22] J.C. Xu, Iterative methods by space secomposition and subspace correction, SIAM Rev. 34 (1992) 581–613.
[23] Z.C. Shi, A convergence condition for the quadrilateral Wilson element, Numer. Math. 44 (1984) 349–361.
[24] R.L. Taylor, P.J. Bereford, E.L. Wilson, A nonconforming element for stress analysis, Internat. J. Numer. Methods Engrg. 10 (1976) 1211–1219.
[25] L.R. Scott, S.Y. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990) 483–493.
[26] R.H. Nochetto, K.G. Siebert, A. Vesser, Theory of adaptive finite element methods: an introduction, in: Multiscale, Nonlinear and Adaptive

Approximation, Springer, 2009.
[27] A. Bonito, R. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Garlerkin method, SIAM J. Numer. Anal. 48 (2010) 734–771.

http://dx.doi.org/doi:10.1007/s00211-012-0445-0
http://dx.doi.org/doi:10.1007/s00211-012-0445-0
http://dx.doi.org/doi:10.1007/s00211-012-0445-0
http://www.math.pku.edu.cn:8000/var/preprint/7280.pdf
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref17
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref18
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref19
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref20
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref21
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref22
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref23
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref24
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref25
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref26
http://refhub.elsevier.com/S0377-0427(13)00533-5/sbref27

	New a posteriori error estimate and quasi-optimal convergence of the adaptive nonconforming Wilson element
	Introduction
	Notation and preliminaries
	The 1-irregular mesh
	The Wilson element and its a priori error estimate
	A new a posteriori error estimator and its reliability and efficiency

	Convergence
	Discrete reliability
	Optimality
	Numerical experiments
	Example 1
	Example 2
	Example 3

	References


