
Vectors and lists

In programming, a data structure is a format for organizing and storing data. Data structures are important to understand
because you will work with them frequently when you use R for data analysis. The most common data structures in the R
programming language include:

● Vectors
● Data frames
● Matrices
● Arrays

Think of a data structure like a house that contains your data.

This reading will focus on vectors. Later on, you’ll learn more about data frames, matrices, and arrays. There are two types of
vectors: atomic vectors and lists. Coming up, you’ll learn about the basic properties of atomic vectors and lists, and how to use
R code to create them.

Atomic vectors
First, we will go through the di�erent types of atomic vectors. Then, you will learn how to use R code to create, identify, and name
the vectors.

Earlier, you learned that a vector is a group of data elements of the same type, stored in a sequence in R. You cannot have a vector
that contains both logicals and numerics.

There are six primary types of atomic vectors: logical, integer, double, character (which contains strings), complex, and raw. The
last two–complex and raw–aren’t as common in data analysis, so we will focus on the first four. Together, integer and double
vectors are known as numeric vectors because they both contain numbers. This table summarizes the four primary types:

Type Description Example

Logical True/False TRUE

Integer Positive and negative whole values 3

Double Decimal values 101.175

Character String/character values “Coding”

This diagram illustrates the hierarchy of relationships among these four main types of vectors:

 Creating vectors
One way to create a vector is by using the c() function (called the “combine” function). The c() function in R combines
multiple values into a vector. In R, this function is just the letter “c” followed by the values you want in your vector inside the
parentheses, separated by a comma: c(x, y, z, …).

For example, you can use the c() function to store numeric data in a vector.

c(2.5, 48.5, 101.5)

To create a vector of integers using the c() function, you must place an L directly after each number.

c(1L, 5L, 15L)

You can also create a vector containing characters or logicals.

c(“Sara” , “Lisa” , “Anna”)

c(TRUE, FALSE, TRUE)

Determining the prope�ies of vectors

Every vector you create will have two key propertes: type and length.

You can determine what type of vector you are working with by using the typeof() function. Place the code for the vector inside
the parentheses of the function. When you run the function, R will tell you the type.

For example:

typeof(c(“a” , “b”))

#> [1] "character"

Notice that the output of the typeof function in this example is the word “character”. Similarly, if you use the typeof function on a
vector with integer values, then the output will include the word “integer” instead:

typeof(c(1L , 3L))

#> [1] "integer"

You can determine the length of an existing vector–meaning the number of elements it contains–by using the length() function. In
this example, we use an assignment operator to assign the vector to the variable x. Then, we apply the length() function to the
variable. When we run the function, R tells us the length is “3”.

x <- c(33.5, 57.75, 120.05)

length(x)

#> [1] 3

You can also check if a vector is a specific type by using an is function: is.logical(), is.double(), is.integer(), is.character(). In
this example, R returns a value of TRUE because the vector contains integers.

x <- c(2L, 5L, 11L)

is.integer(x)

#> [1] TRUE

In this example, R returns a value of FALSE because the vector does not contain characters, rather it contains logicals.

y <- c(TRUE, TRUE, FALSE)

is.character(y)

#> [1] FALSE

Naming vectors

All types of vectors can be named. Names are useful for writing readable code and describing objects in R. You can name the
elements of a vector with the names() function. As an example, let’s assign the variable x to a new vector with three elements.

x <- c(1, 3, 5)

You can use the names() function to assign a di�erent name to each element of the vector.

names(x) <- c("a", "b", "c")

Now, when you run the code, R shows that the first element of the vector is named a, the second b, and the third c.

x

#> a b c

#> 1 3 5

Remember that an atomic vector can only contain elements of the same type. If you want to store elements of di�erent types in the
same data structure, you can use a list.

Creating Lists

Lists are di�erent from atomic vectors because their elements can be of any type—like dates, data frames, vectors, matrices, and
more. Lists can even contain other lists.

You can create a list with the list() function. Similar to the c() function, the list() function is just list followed by the values you want
in your list inside parentheses: list(x, y, z, …). In this example, we create a list that contains four di�erent kinds of elements:
character (“a”), integer (1L), double (1.5), and logical (TRUE).

list("a", 1L, 1.5, TRUE)

Like we already mentioned, lists can contain other lists. If you want, you can even store a list inside a list inside a list—and so on.

list(list(list(1 , 3, 5)))

Determining the structure of lists
If you want to find out what types of elements a list contains, you can use the str() function. To do so, place the code for the
list inside the parentheses of the function. When you run the function, R will display the data structure of the list by describing
its elements and their types.

Let’s apply the str() function to our first example of a list.

str(list("a", 1L, 1.5, TRUE))

We run the function, then R tells us that the list contains four elements, and that the elements consist of four di�erent types:
character (chr), integer (int), number (num), and logical (logi).

#> List of 4

#> $: chr "a"

#> $: int 1

#> $: num 1.5

#> $: logi TRUE

Let’s use the str() function to discover the structure of our second example. First, let’s assign the list to the variable z to make it
easier to input in the str() function.

z <- list(list(list(1 , 3, 5)))

Let’s run the function.

str(z)

#> List of 1

#> $:List of 1

#> ..$:List of 3

#>$: num 1

#>$: num 3

#>$: num 5

The indentation of the $ symbols reflect the nested structure of this list. Here, there are three levels (so there is a list within a
list within a list).

Naming lists

Lists, like vectors, can be named. You can name the elements of a list when you first create it with the list() function:

list("Chicago” = 1, “New York” = 2, “Los Angeles” = 3)

$Chicago

[1] 1

$`New York`

[1] 2

$`Los Angeles`

[1] 3

Additional resource
To learn more about vectors and lists, check out R for Data Science, Chapter 20: Vectors. R for Data Science is a classic resource for
learning how to use R for data science and data analysis. It covers everything from cleaning to visualizing to communicating your
data. If you want to get more details about the topic of vectors and lists, this chapter is a great place to start.

https://r4ds.had.co.nz/vectors.html#vectors

