
Logical operators and conditional statements

Earlier, you learned that an operator is a symbol that identi�es the type of operation or calculation to be performed in a formula.
In this reading, you’ll learn about the main types of logical operators in R, and how they can be used to create conditional
statements in R code.

Logical operators

Logical operators return a logical data type such as TRUE or FALSE.

There are three primary types of logical operators:
● AND (sometimes represented as & or && in R)
● OR (sometimes represented as | or || in R)
● NOT (!)

1

This table summarizes the logical operators:

AND operator “&” OR operator “|” NOT operator “!”

The AND operator takes two logical The OR operator (|) works in a similar way The NOT operator (!) simply negates the
values. It returns TRUE only if both to the AND operator (&). The main logical value it applies to. In other words,
individual values are TRUE. This means di�erence is that at least one of the !TRUE evaluates to FALSE, and !FALSE
that TRUE & TRUE evaluates to TRUE. values of the OR operation must be TRUE evaluates to TRUE.
However, FALSE & TRUE, TRUE & FALSE, for the entire OR operation to evaluate to
and FALSE & FALSE all evaluate to FALSE. TRUE.

This means that TRUE | TRUE, TRUE |
FALSE, and FALSE | TRUE all evaluate to
TRUE. When both values are FALSE, the
result is FALSE.

If you run the the corresponding code in If you write out the code, you get the When you run the code, you get the
R, you get the following results: following results: following results:

> TRUE & TRUE > TRUE | TRUE > !TRUE
[1] TRUE [1] TRUE [1] FALSE
> TRUE & FALSE > TRUE | FALSE > !FALSE
[1] FALSE [1] TRUE [1] TRUE
> FALSE & TRUE > FALSE | TRUE
[1] FALSE [1] TRUE Just like the OR and AND operators, you
> FALSE & FALSE > FALSE | FALSE can use the NOT operator in combination
[1] FALSE [1] FALSE with logical operators. Zero is considered

FALSE and non-zero numbers are taken

2

You can illustrate this using the results of
our comparisons. Imagine you create a
variable x that is equal to 10.

x <- 10

To check if “x” is greater than 3 but less
than 12, you can use x > 3 and x < 12 as the
values of an “AND” expression.

x > 3 & x < 12

When you run the function, R returns the
result TRUE.

[1] TRUE

The �rst part, x > 3 will evaluate to TRUE
since 10 is greater than 3. The second
part, x < 12 will also evaluate to TRUE
since 10 is less than 12. So, since both
values are TRUE, the result of the AND
expression is TRUE. The number 10 lies
between the numbers 3 and 12.

However, if you make “x” equal to 20, the
expression x > 3 & x < 12 will return a
di�erent result.

For example, suppose you create a
variable y equal to 7. To check if y is less
than 8 or greater than 16, you can use the
following expression:

y <- 7
y < 8 | y > 16

The comparison result is TRUE (7 is less
than 8) | FALSE (7 is not greater than 16).
Since only one value of an OR expression
needs to be TRUE for the entire
expression to be TRUE, R returns a result
of TRUE.

[1] TRUE

Now, suppose y is 12. The expression y < 8
| y > 16 now evaluates to FALSE (12 < 8) |
FALSE (12 > 16). Both comparisons are
FALSE, so the result is FALSE.

y <- 12
y < 8 | y > 16
[1] FALSE

as TRUE. The NOT operator evaluates to
the opposite logical value.

Let's imagine you have a variable "x" that
equals 2:

x <- 2

The NOT operation evaluates to FALSE
because it takes the opposite logical
value of a non-zero number (TRUE).

> !x
[1] FALSE

3

x <- 20
x > 3 & x < 12

[1] FALSE

Although x > 3 is TRUE (20 > 3), x < 12 is
FALSE (20 < 12). If one part of an AND
expression is FALSE, the entire expression
is FALSE (TRUE & FALSE = FALSE). So, R
returns the result FALSE.

Let’s check out an example of how you might use logical operators to analyze data. Imagine you are working with the “airquality”
dataset that is preloaded in RStudio. It contains data on daily air quality measurements in New York from May to September of 1973.

The data frame has six columns: Ozone (the ozone measurement), Solar.R (the solar measurement), Wind (the wind measurement),
Temp (the temperature in Fahrenheit), and the Month and Day of these measurements (each row represents a speci�c month and
day combination).

Let’s go through how the AND, OR, and NOT operators might be helpful in this situation.

4

AND example
Imagine you want to specify rows that are extremely sunny and windy, which you de�ne as having a Solar measurement of over 150
and a Wind measurement of over 10.

In R, you can express this logical statement as Solar.R > 150 & Wind > 10.

Only the rows where both of these conditions are true ful�ll the criteria:

OR example
Next, imagine you want to specify rows where it’s extremely sunny or it’s extremely windy, which you de�ne as having a Solar
measurement of over 150 or a Wind measurement of over 10.

In R, you can express this logical statement as Solar.R > 150 | Wind > 10.

All the rows where either of these conditions are true ful�ll the criteria:

5

NOT example
Now, imagine you just want to focus on the weather measurements for days that are not the �rst day of the month.

In R, you can express this logical statement as Day != 1.

The rows where this condition is true ful�ll the criteria:

Finally, imagine you want to focus on scenarios that are not extremely sunny and not extremely windy, based on your previous
de�nitions of extremely sunny and extremely windy. In other words, the following statement should not be true: either a Solar
measurement greater than 150 or a Wind measurement greater than 10.

Notice that this statement is the opposite of the OR statement used above. To express this statement in R, you can put an
exclamation point (!) in front of the previous OR statement: !(Solar.R > 150 | Wind > 10). R will apply the NOT operator to everything
within the parentheses.

In this case, only one row ful�lls the criteria:

6

Conditional statements
A conditional statement is a declaration that if a certain condition holds, then a certa in event must take place. For example, “If
the temperature is above freezing, then I will go outside for a walk.” If the �rst condition is true (the temperature is above
freezing), then the second condition will occur (I will go for a walk). Conditional statements in R code have a similar logic.

Let’s discuss how to create conditional statements in R using three related statements:
● if()
● else()
● else if()

if statement
The if statement sets a condition, and if the condition evaluates to TRUE, the R code associated with the if statement is executed.

In R, you place the code for the condition inside the parentheses of the if statement. The code that has to be executed if the
condition is TRUE follows in curly braces (“expr”). Note that, in this case, the second curly brace is placed on its own line of code
and identi�es the end of the code that you want to execute.

if (condition) {
expr

}

For example, let’s create a variable “x” equal to 4.

x <- 4

7

Next, let’s create a conditional statement: if x is greater than 0, then R will print out the string “x is a positive number.”

if (x > 0) {
print("x is a positive number")

}

Since x = 4, the condition is true (4 > 0). Therefore, when you run the code, R prints out the string “x is a positive number.”

[1] "x is a positive number"

But if you change x to a negative number, like -4, then the condition will be FALSE (-4 > 0). If you run the code, R will not execute the
print statement. Instead, a blank line will appear as the result.

else statement
The else statement is used in combination with an if statement. This is how the code is structured in R:

if (condition) {
expr1

} else {
expr2

}

The code associated with the else statement gets executed whenever the condition of the if statement is not TRUE. In other words,
if the condition is TRUE, then R will execute the code in the if statement (“expr1”); if the condition is not TRUE, then R will execute the
code in the else statement (“expr2”).

Let’s try an example. First, create a variable “x” equal to 7.

x <- 7

8

Next, let’s set up the following conditions:

● If x is greater than 0, R will print “x is a positive number.”
● If x is less than or equal to 0, R will print “x is either a negative number or zero.”

In our code, the �rst condition (x > 0) will be part of the if statement. The second condition of x less than or equal to 0 is implied
in the else statement. If x > 0, then R will print “x is a positive number.” Otherwise, R will print “x is either a negative number or
zero.”
x <- 7
if (x > 0) {
print("x is a positive number")

} else {
print ("x is either a negative number or zero")

}

Since 7 is greater than 0, the condition of the if statement is true. So, when you run the code, R prints out “x is a positive number.”

[1] "x is a positive number"

But if you make x equal to -7, the condition of the if statement is not true (-7 is not greater than 0). Therefore, R will execute the
code in the else statement. When you run the code, R prints out “x is either a positive number or zero.”

x <- -7
if (x > 0) {
print("x is a positive number")

} else {
print ("x is either a negative number or zero")

}
[1] "x is either a negative number or zero"

9

else if statement
In some cases, you might want to customize your conditional statement even further by adding the else if statement. The else
if statement comes in between the if statement and the else statement.

This is the code structure:

if (condition1) {
expr1

} else if (condition2) {
expr2

} else {
expr3

}

If the if condition (“condition1”) is met, then R executes the code in the �rst expression (“expr1”). If the if condition is not met, and
the else if condition (“condition2”) is met, then R executes the code in the second expression (“expr2”). If neither of the two
conditions are met, R executes the code in the third expression (“expr3”).

In our previous example, using only the if and else statements, R can only print “x is either a negative number or zero” if x equals 0
or x is less than zero. Imagine you want R to print the string “x is zero” if x equals 0. You need to add another condition using the
else if statement.

Let’s try an example. First, create a variable “x” equal to negative 1 (“-1”).

x <- -1

10

Now, you want to set up the following conditions:

● If x is less than 0, print “x is a negative number.”
● If x equals 0, print “x is zero.”
● Otherwise, print “x is a positive number.”

In our code, the �rst condition will be part of the if statement, the second condition will be part of the else if statement, and the
third condition will be part of the else statement. If x < 0, then R will print “x is a positive number.” If x = 0, then R will print “x is
zero.” Otherwise, R will print “x is a positive number.”
x <- -1
if (x < 0) {
print("x is a negative number")

} else if (x == 0) {
print("x is zero")

} else {
print("x is a positive number")

}

Since -1 is less than 0, the condition for the if statement evaluates to TRUE, and R prints “x is a negative number.”

[1] "x is a negative number"

If you make x equal to 0, R will �rst check the if condition (x < 0), and determine that it is FALSE. Then, R will evaluate the else if
condition. This condition, x==0, is TRUE. So, in this case, R prints “x is zero.”

If you make x equal to 1, both the if condition and the else if condition evaluate to FALSE. So, R will execute the else statement and
print “x is a positive number.”

As soon as R discovers a condition that evaluates to TRUE, R executes the corresponding code and ignores the rest.

11

Resources
To learn more about logical operators and conditional statements, check out the tutorial on “Conditionals and Control Flow in R” on
the DataCamp website. DataCamp is a popular resource for people learning about computer programming. The tutorial is �lled
with useful examples of coding applications for logical operators and conditional statements (and relational operators), and o�ers a
helpful overview of each topic and the connections between them.

12

https://www.datacamp.com/community/tutorials/conditionals-and-control-flow-in-r
https://www.datacamp.com/community/tutorials/conditionals-and-control-flow-in-r

