

Guidance Examples of best practice Examples to avoid

Files

File names should be meaningful
and end in .R. Avoid using
special characters in file

Good
explore_penguins.R
annual_sales.R

Bad
Untitled.r
stuff.r

Keeping Your Code Readable

When writing R code (or any other programming language), it is important to use a clear and consistent style that is free from
errors. This helps make your code easier to read and understand. In this reading, you will learn some best practices to follow when
writing R code. You will also go through some tips for identifying and fixing errors in R code, also known as debugging.

Style
Using a clear and consistent coding style generally makes your code easier for others to read. There’s no official coding style
guide that is mandatory for all R users. But over the years, the wider community of R users has developed a coding style based
on shared conventions and preferences. You can think of these conventions as the unwritten rules of R style.

There are two main reasons for using a consistent coding style:
● If you are working with collaborators or teammates, using a consistent style is important so that everyone can easily

read, share, edit, and work on each other’s code.
● If you are working alone, using a consistent style is important because it makes it much easier and faster to review your

code later on and fix errors or make revisions.

Let’s go over a few of the most widely accepted stylistic conventions for writing R code.

Naming

names—stick with numbers,
letters, dashes, and underscores.

Object names
Variable and function names
should be lowercase. Use an
underscore _ to separate words
within a name. Try to create names
that are clear, concise, and
meaningful.

Generally, variable names should
be nouns.

Good
day_one

Bad
DayOne

Function names should be verbs. # Good
add ()

Bad
addition ()

Syntax

Spacing

Guidance

Most operators (== , + , - , <- ,

etc.) should be surrounded by

spaces.

Always put a space a�er a comma
(never before).

Examples of best practice

- 3 * 2

Good
x == y
a <

Good
y[, 2]

Examples to avoid

Bad
x==y
a<-3*2

Bad
y[,2]
y[,2]

Do not place spaces around code
in parentheses or square brackets
(unless there’s a comma, in which
case see above).

Place a space before left
parentheses, except in a function
call.

Good
if (debug) do(x)
species[“dolphin”,]

Good
sum(1:5)
plot(x, y)

Bad
if (debug) do(x)
species[“dolphin” ,]

Bad
sum (1:5)
plot (x, y)

Curly braces
An opening curly brace should
never go on its own line and should
always be followed by a new line. A
closing curly brace should always
go on its own line (unless it’s
followed by an else statement).
Always indent the code inside
curly braces.

Good
x <- 7
if (x > 0) {
print("x is a positive

number")
} else {
print ("x is either a

negative number or zero")
}

Bad
x <- 7
if (x > 0)
{
print("x is a

positive number")
}
else {
print ("x is either a

negative number or
zero")
}

Indentation
When indenting your code, use
two spaces. Do not use tabs or mix
tabs and spaces.

- -

Line length
Try to limit your code to 80
characters per line. This fits
nicely on a printed page with a
reasonably sized font.

- -

Note that many style guides
mention to never let a line go past
80 (or 120) characters. If you’re
using RStudio, there’s a helpful
setting for this. Go to Tools ->
Global Options -> Code -> Display,
and select the option Show
margin, and set margin column to
80 (or 120).

Assignment
Use <- , not = , for assignment. #

z
Good
<- 4

Bad
Z = 4

Organization

Commenting

Guidance

Entire commented lines should
begin with the comment symbol
and a single space: #.

Examples of best practice

Good
Load data

Examples to avoid

Bad
Loaddata

Resources
● Check out this tidyverse style guide to get a more comprehensive breakdown of the most important stylistic conventions

for writing R code (and working with the tidyverse).

● The styler package is an automatic styling tool that follows the tidyverse formatting rules. Check out the styler webpage
to learn more about the basic features of this tool.

Debugging
Successfully debugging any R code begins with correctly diagnosing the problem. The first step in diagnosing the problem in
your code is to understand what you expected to occur. Then, you can identify what actually occurred, and how it differed from
your expectations.

For example, imagine you want to run the glimpse() function to get a summary view of the penguins dataset. You write the
following code:

Glimpse(penguins)

When you run the function, you get the following result:

Error in Glimpse(penguins) : could not find function "Glimpse"

You were expecting a display of the dataset. Instead, you got an error message. What went wrong? In this case, the problem can be
diagnosed as a stylistic error: you wrote Glimpse with a capital “G,” but the code is case sensitive and requires a lowercase “g.” If
you run the code glimpse(penguins) you’ll get the result you expected.

https://style.tidyverse.org/files.html#names
https://styler.r-lib.org/index.html

When diagnosing the problem, it is more likely that you–and anyone else who might help debug your code–will understand the
problem if you ask the following questions:

● What was your input?
● What were you expecting?
● What did you get?
● How does the result differ from your original expectations?
● Were your expectations correct in the first place?

Some bugs are difficult to discover, and finding the cause of the problem can be challenging. If you come across error messages
or you need help with a bug, start by searching online for information about it. You might discover that it’s actually a common
error with a quick solution.

Resources
● For more information on the technical aspects of debugging R code, check out Debugging with RStudio on the RStudio

Support website. RStudio Support is a great place to find answers to your questions about RStudio. This article will take
you through the R debugging tools built into RStudio, and show you how to use them to help debug R code.

● To learn more about problem-solving strategies for debugging R code, check out the chapter on Debugging in Advanced
R. Advanced R is a great resource if you want to explore the finer details of an R topic and take your knowledge to the
next level.

https://support.rstudio.com/hc/en-us/articles/205612627-Debugging-with-RStudio#stopping-on-a-line
https://adv-r.hadley.nz/debugging.html

