Permalink
d1ce59f Jan 25, 2018
1 contributor

Users who have contributed to this file

430 lines (375 sloc) 17.6 KB
/* MPU9250 Basic Example Code
by: Kris Winer
date: April 1, 2014
license: Beerware - Use this code however you'd like. If you
find it useful you can buy me a beer some time.
Modified by Brent Wilkins July 19, 2016
Demonstrate basic MPU-9250 functionality including parameterizing the register
addresses, initializing the sensor, getting properly scaled accelerometer,
gyroscope, and magnetometer data out. Added display functions to allow display
to on breadboard monitor. Addition of 9 DoF sensor fusion using open source
Madgwick and Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini
and the Teensy 3.1.
*/
#include <M5Stack.h>
#include "utility/MPU9250.h"
#include "utility/quaternionFilters.h"
#define processing_out false
#define AHRS true // Set to false for basic data read
#define SerialDebug true // Set to true to get Serial output for debugging
#define LCD
MPU9250 IMU;
// Kalman kalmanX, kalmanY, kalmanZ; // Create the Kalman instances
void setup()
{
M5.begin();
Wire.begin();
#ifdef LCD
// Start device display with ID of sensor
M5.Lcd.fillScreen(BLACK);
M5.Lcd.setTextColor(WHITE ,BLACK); // Set pixel color; 1 on the monochrome screen
M5.Lcd.setTextSize(2);
M5.Lcd.setCursor(0,0); M5.Lcd.print("MPU9250");
M5.Lcd.setTextSize(1);
M5.Lcd.setCursor(0, 20); M5.Lcd.print("9-DOF 16-bit");
M5.Lcd.setCursor(0, 30); M5.Lcd.print("motion sensor");
M5.Lcd.setCursor(20,40); M5.Lcd.print("60 ug LSB");
delay(1000);
// Set up for data display
M5.Lcd.setTextSize(1); // Set text size to normal, 2 is twice normal etc.
M5.Lcd.fillScreen(BLACK); // clears the screen and buffer
#endif // LCD
// Read the WHO_AM_I register, this is a good test of communication
byte c = IMU.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);
Serial.print("MPU9250 "); Serial.print("I AM "); Serial.print(c, HEX);
Serial.print(" I should be "); Serial.println(0x71, HEX);
#ifdef LCD
M5.Lcd.setCursor(20,0); M5.Lcd.print("MPU9250");
M5.Lcd.setCursor(0,10); M5.Lcd.print("I AM");
M5.Lcd.setCursor(0,20); M5.Lcd.print(c, HEX);
M5.Lcd.setCursor(0,30); M5.Lcd.print("I Should Be");
M5.Lcd.setCursor(0,40); M5.Lcd.print(0x71, HEX);
delay(1000);
#endif // LCD
// if (c == 0x71) // WHO_AM_I should always be 0x68
{
Serial.println("MPU9250 is online...");
// Start by performing self test and reporting values
IMU.MPU9250SelfTest(IMU.SelfTest);
Serial.print("x-axis self test: acceleration trim within : ");
Serial.print(IMU.SelfTest[0],1); Serial.println("% of factory value");
Serial.print("y-axis self test: acceleration trim within : ");
Serial.print(IMU.SelfTest[1],1); Serial.println("% of factory value");
Serial.print("z-axis self test: acceleration trim within : ");
Serial.print(IMU.SelfTest[2],1); Serial.println("% of factory value");
Serial.print("x-axis self test: gyration trim within : ");
Serial.print(IMU.SelfTest[3],1); Serial.println("% of factory value");
Serial.print("y-axis self test: gyration trim within : ");
Serial.print(IMU.SelfTest[4],1); Serial.println("% of factory value");
Serial.print("z-axis self test: gyration trim within : ");
Serial.print(IMU.SelfTest[5],1); Serial.println("% of factory value");
// Calibrate gyro and accelerometers, load biases in bias registers
IMU.calibrateMPU9250(IMU.gyroBias, IMU.accelBias);
#ifdef LCD
M5.Lcd.fillScreen(BLACK);
M5.Lcd.setTextSize(1);
M5.Lcd.setCursor(0, 0); M5.Lcd.print("MPU9250 bias");
M5.Lcd.setCursor(0, 16); M5.Lcd.print(" x y z ");
M5.Lcd.setCursor(0, 32); M5.Lcd.print((int)(1000*IMU.accelBias[0]));
M5.Lcd.setCursor(32, 32); M5.Lcd.print((int)(1000*IMU.accelBias[1]));
M5.Lcd.setCursor(64, 32); M5.Lcd.print((int)(1000*IMU.accelBias[2]));
M5.Lcd.setCursor(96, 32); M5.Lcd.print("mg");
M5.Lcd.setCursor(0, 48); M5.Lcd.print(IMU.gyroBias[0], 1);
M5.Lcd.setCursor(32, 48); M5.Lcd.print(IMU.gyroBias[1], 1);
M5.Lcd.setCursor(64, 48); M5.Lcd.print(IMU.gyroBias[2], 1);
M5.Lcd.setCursor(96, 48); M5.Lcd.print("o/s");
delay(1000);
#endif // LCD
IMU.initMPU9250();
// Initialize device for active mode read of acclerometer, gyroscope, and
// temperature
Serial.println("MPU9250 initialized for active data mode....");
// Read the WHO_AM_I register of the magnetometer, this is a good test of
// communication
byte d = IMU.readByte(AK8963_ADDRESS, WHO_AM_I_AK8963);
Serial.print("AK8963 "); Serial.print("I AM "); Serial.print(d, HEX);
Serial.print(" I should be "); Serial.println(0x48, HEX);
#ifdef LCD
M5.Lcd.fillScreen(BLACK);
M5.Lcd.setCursor(20,0); M5.Lcd.print("AK8963");
M5.Lcd.setCursor(0,10); M5.Lcd.print("I AM");
M5.Lcd.setCursor(0,20); M5.Lcd.print(d, HEX);
M5.Lcd.setCursor(0,30); M5.Lcd.print("I Should Be");
M5.Lcd.setCursor(0,40); M5.Lcd.print(0x48, HEX);
delay(1000);
#endif // LCD
// Get magnetometer calibration from AK8963 ROM
IMU.initAK8963(IMU.magCalibration);
// Initialize device for active mode read of magnetometer
Serial.println("AK8963 initialized for active data mode....");
if (Serial)
{
// Serial.println("Calibration values: ");
Serial.print("X-Axis sensitivity adjustment value ");
Serial.println(IMU.magCalibration[0], 2);
Serial.print("Y-Axis sensitivity adjustment value ");
Serial.println(IMU.magCalibration[1], 2);
Serial.print("Z-Axis sensitivity adjustment value ");
Serial.println(IMU.magCalibration[2], 2);
}
#ifdef LCD
M5.Lcd.fillScreen(BLACK);
M5.Lcd.setCursor(20,0); M5.Lcd.print("AK8963");
M5.Lcd.setCursor(0,10); M5.Lcd.print("ASAX "); M5.Lcd.setCursor(50,10);
M5.Lcd.print(IMU.magCalibration[0], 2);
M5.Lcd.setCursor(0,20); M5.Lcd.print("ASAY "); M5.Lcd.setCursor(50,20);
M5.Lcd.print(IMU.magCalibration[1], 2);
M5.Lcd.setCursor(0,30); M5.Lcd.print("ASAZ "); M5.Lcd.setCursor(50,30);
M5.Lcd.print(IMU.magCalibration[2], 2);
delay(1000);
#endif // LCD
} // if (c == 0x71)
// else
// {
// Serial.print("Could not connect to MPU9250: 0x");
// Serial.println(c, HEX);
// while(1) ; // Loop forever if communication doesn't happen
// }
M5.Lcd.setTextSize(1);
M5.Lcd.setTextColor(GREEN ,BLACK);
M5.Lcd.fillScreen(BLACK);
}
void loop()
{
// If intPin goes high, all data registers have new data
// On interrupt, check if data ready interrupt
if (IMU.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01)
{
IMU.readAccelData(IMU.accelCount); // Read the x/y/z adc values
IMU.getAres();
// Now we'll calculate the accleration value into actual g's
// This depends on scale being set
IMU.ax = (float)IMU.accelCount[0]*IMU.aRes; // - accelBias[0];
IMU.ay = (float)IMU.accelCount[1]*IMU.aRes; // - accelBias[1];
IMU.az = (float)IMU.accelCount[2]*IMU.aRes; // - accelBias[2];
IMU.readGyroData(IMU.gyroCount); // Read the x/y/z adc values
IMU.getGres();
// Calculate the gyro value into actual degrees per second
// This depends on scale being set
IMU.gx = (float)IMU.gyroCount[0]*IMU.gRes;
IMU.gy = (float)IMU.gyroCount[1]*IMU.gRes;
IMU.gz = (float)IMU.gyroCount[2]*IMU.gRes;
IMU.readMagData(IMU.magCount); // Read the x/y/z adc values
IMU.getMres();
// User environmental x-axis correction in milliGauss, should be
// automatically calculated
IMU.magbias[0] = +470.;
// User environmental x-axis correction in milliGauss TODO axis??
IMU.magbias[1] = +120.;
// User environmental x-axis correction in milliGauss
IMU.magbias[2] = +125.;
// Calculate the magnetometer values in milliGauss
// Include factory calibration per data sheet and user environmental
// corrections
// Get actual magnetometer value, this depends on scale being set
IMU.mx = (float)IMU.magCount[0]*IMU.mRes*IMU.magCalibration[0] -
IMU.magbias[0];
IMU.my = (float)IMU.magCount[1]*IMU.mRes*IMU.magCalibration[1] -
IMU.magbias[1];
IMU.mz = (float)IMU.magCount[2]*IMU.mRes*IMU.magCalibration[2] -
IMU.magbias[2];
} // if (readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01)
// Must be called before updating quaternions!
IMU.updateTime();
// Sensors x (y)-axis of the accelerometer is aligned with the y (x)-axis of
// the magnetometer; the magnetometer z-axis (+ down) is opposite to z-axis
// (+ up) of accelerometer and gyro! We have to make some allowance for this
// orientationmismatch in feeding the output to the quaternion filter. For the
// MPU-9250, we have chosen a magnetic rotation that keeps the sensor forward
// along the x-axis just like in the LSM9DS0 sensor. This rotation can be
// modified to allow any convenient orientation convention. This is ok by
// aircraft orientation standards! Pass gyro rate as rad/s
// MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
MahonyQuaternionUpdate(IMU.ax, IMU.ay, IMU.az, IMU.gx*DEG_TO_RAD,
IMU.gy*DEG_TO_RAD, IMU.gz*DEG_TO_RAD, IMU.my,
IMU.mx, IMU.mz, IMU.deltat);
if (!AHRS)
{
IMU.delt_t = millis() - IMU.count;
if (IMU.delt_t > 500)
{
if(SerialDebug)
{
// Print acceleration values in milligs!
Serial.print("X-acceleration: "); Serial.print(1000*IMU.ax);
Serial.print(" mg ");
Serial.print("Y-acceleration: "); Serial.print(1000*IMU.ay);
Serial.print(" mg ");
Serial.print("Z-acceleration: "); Serial.print(1000*IMU.az);
Serial.println(" mg ");
// Print gyro values in degree/sec
Serial.print("X-gyro rate: "); Serial.print(IMU.gx, 3);
Serial.print(" degrees/sec ");
Serial.print("Y-gyro rate: "); Serial.print(IMU.gy, 3);
Serial.print(" degrees/sec ");
Serial.print("Z-gyro rate: "); Serial.print(IMU.gz, 3);
Serial.println(" degrees/sec");
// Print mag values in degree/sec
Serial.print("X-mag field: "); Serial.print(IMU.mx);
Serial.print(" mG ");
Serial.print("Y-mag field: "); Serial.print(IMU.my);
Serial.print(" mG ");
Serial.print("Z-mag field: "); Serial.print(IMU.mz);
Serial.println(" mG");
IMU.tempCount = IMU.readTempData(); // Read the adc values
// Temperature in degrees Centigrade
IMU.temperature = ((float) IMU.tempCount) / 333.87 + 21.0;
// Print temperature in degrees Centigrade
Serial.print("Temperature is "); Serial.print(IMU.temperature, 1);
Serial.println(" degrees C");
Serial.println("");
}
#ifdef LCD
M5.Lcd.fillScreen(BLACK);
M5.Lcd.setTextColor(GREEN ,BLACK);
M5.Lcd.setCursor(0, 0); M5.Lcd.print("MPU9250/AK8963");
M5.Lcd.setCursor(0, 32); M5.Lcd.print(" x y z ");
M5.Lcd.setCursor(0, 48); M5.Lcd.print((int)(1000*IMU.ax));
M5.Lcd.setCursor(32, 48); M5.Lcd.print((int)(1000*IMU.ay));
M5.Lcd.setCursor(64, 48); M5.Lcd.print((int)(1000*IMU.az));
M5.Lcd.setCursor(96, 48); M5.Lcd.print("mg");
M5.Lcd.setCursor(0, 64); M5.Lcd.print((int)(IMU.gx));
M5.Lcd.setCursor(32, 64); M5.Lcd.print((int)(IMU.gy));
M5.Lcd.setCursor(64, 64); M5.Lcd.print((int)(IMU.gz));
M5.Lcd.setCursor(96, 64); M5.Lcd.print("o/s");
M5.Lcd.setCursor(0, 96); M5.Lcd.print((int)(IMU.mx));
M5.Lcd.setCursor(32, 96); M5.Lcd.print((int)(IMU.my));
M5.Lcd.setCursor(64, 96); M5.Lcd.print((int)(IMU.mz));
M5.Lcd.setCursor(96, 96); M5.Lcd.print("mG");
M5.Lcd.setCursor(0, 128); M5.Lcd.print("Gyro T ");
M5.Lcd.setCursor(50, 128); M5.Lcd.print(IMU.temperature, 1);
M5.Lcd.print(" C");
#endif // LCD
IMU.count = millis();
// digitalWrite(myLed, !digitalRead(myLed)); // toggle led
} // if (IMU.delt_t > 500)
} // if (!AHRS)
else
{
// Serial print and/or display at 0.5 s rate independent of data rates
IMU.delt_t = millis() - IMU.count;
// update LCD once per half-second independent of read rate
// if (IMU.delt_t > 500)
if (IMU.delt_t > 100)
{
if(SerialDebug)
{
Serial.print("ax = "); Serial.print((int)1000*IMU.ax);
Serial.print(" ay = "); Serial.print((int)1000*IMU.ay);
Serial.print(" az = "); Serial.print((int)1000*IMU.az);
Serial.println(" mg");
Serial.print("gx = "); Serial.print( IMU.gx, 2);
Serial.print(" gy = "); Serial.print( IMU.gy, 2);
Serial.print(" gz = "); Serial.print( IMU.gz, 2);
Serial.println(" deg/s");
Serial.print("mx = "); Serial.print( (int)IMU.mx );
Serial.print(" my = "); Serial.print( (int)IMU.my );
Serial.print(" mz = "); Serial.print( (int)IMU.mz );
Serial.println(" mG");
Serial.print("q0 = "); Serial.print(*getQ());
Serial.print(" qx = "); Serial.print(*(getQ() + 1));
Serial.print(" qy = "); Serial.print(*(getQ() + 2));
Serial.print(" qz = "); Serial.println(*(getQ() + 3));
}
// Define output variables from updated quaternion---these are Tait-Bryan
// angles, commonly used in aircraft orientation. In this coordinate system,
// the positive z-axis is down toward Earth. Yaw is the angle between Sensor
// x-axis and Earth magnetic North (or true North if corrected for local
// declination, looking down on the sensor positive yaw is counterclockwise.
// Pitch is angle between sensor x-axis and Earth ground plane, toward the
// Earth is positive, up toward the sky is negative. Roll is angle between
// sensor y-axis and Earth ground plane, y-axis up is positive roll. These
// arise from the definition of the homogeneous rotation matrix constructed
// from quaternions. Tait-Bryan angles as well as Euler angles are
// non-commutative; that is, the get the correct orientation the rotations
// must be applied in the correct order which for this configuration is yaw,
// pitch, and then roll.
// For more see
// http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
// which has additional links.
IMU.yaw = atan2(2.0f * (*(getQ()+1) * *(getQ()+2) + *getQ() *
*(getQ()+3)), *getQ() * *getQ() + *(getQ()+1) * *(getQ()+1)
- *(getQ()+2) * *(getQ()+2) - *(getQ()+3) * *(getQ()+3));
IMU.pitch = -asin(2.0f * (*(getQ()+1) * *(getQ()+3) - *getQ() *
*(getQ()+2)));
IMU.roll = atan2(2.0f * (*getQ() * *(getQ()+1) + *(getQ()+2) *
*(getQ()+3)), *getQ() * *getQ() - *(getQ()+1) * *(getQ()+1)
- *(getQ()+2) * *(getQ()+2) + *(getQ()+3) * *(getQ()+3));
IMU.pitch *= RAD_TO_DEG;
IMU.yaw *= RAD_TO_DEG;
// Declination of SparkFun Electronics (40°05'26.6"N 105°11'05.9"W) is
// 8° 30' E ± 0° 21' (or 8.5°) on 2016-07-19
// - http://www.ngdc.noaa.gov/geomag-web/#declination
IMU.yaw -= 8.5;
IMU.roll *= RAD_TO_DEG;
if(SerialDebug)
{
Serial.print("Yaw, Pitch, Roll: ");
Serial.print(IMU.yaw, 2);
Serial.print(", ");
Serial.print(IMU.pitch, 2);
Serial.print(", ");
Serial.println(IMU.roll, 2);
Serial.print("rate = ");
Serial.print((float)IMU.sumCount/IMU.sum, 2);
Serial.println(" Hz");
Serial.println("");
}
#ifdef LCD
// M5.Lcd.fillScreen(BLACK);
M5.Lcd.setTextFont(2);
M5.Lcd.setCursor(0, 0); M5.Lcd.print(" x y z ");
M5.Lcd.setCursor(0, 24);
M5.Lcd.printf("% 6d % 6d % 6d mg \r\n", (int)(1000*IMU.ax), (int)(1000*IMU.ay), (int)(1000*IMU.az));
M5.Lcd.setCursor(0, 44);
M5.Lcd.printf("% 6d % 6d % 6d o/s \r\n", (int)(IMU.gx), (int)(IMU.gy), (int)(IMU.gz));
M5.Lcd.setCursor(0, 64);
M5.Lcd.printf("% 6d % 6d % 6d mG \r\n", (int)(IMU.mx), (int)(IMU.my), (int)(IMU.mz));
M5.Lcd.setCursor(0, 100);
M5.Lcd.printf(" yaw: % 5.2f pitch: % 5.2f roll: % 5.2f \r\n",(IMU.yaw), (IMU.pitch), (IMU.roll));
// With these settings the filter is updating at a ~145 Hz rate using the
// Madgwick scheme and >200 Hz using the Mahony scheme even though the
// display refreshes at only 2 Hz. The filter update rate is determined
// mostly by the mathematical steps in the respective algorithms, the
// processor speed (8 MHz for the 3.3V Pro Mini), and the magnetometer ODR:
// an ODR of 10 Hz for the magnetometer produce the above rates, maximum
// magnetometer ODR of 100 Hz produces filter update rates of 36 - 145 and
// ~38 Hz for the Madgwick and Mahony schemes, respectively. This is
// presumably because the magnetometer read takes longer than the gyro or
// accelerometer reads. This filter update rate should be fast enough to
// maintain accurate platform orientation for stabilization control of a
// fast-moving robot or quadcopter. Compare to the update rate of 200 Hz
// produced by the on-board Digital Motion Processor of Invensense's MPU6050
// 6 DoF and MPU9150 9DoF sensors. The 3.3 V 8 MHz Pro Mini is doing pretty
// well!
// M5.Lcd.setCursor(0, 60);
// M5.Lcd.printf("yaw:%6.2f pitch:%6.2f roll:%6.2f ypr \r\n",(IMU.yaw), (IMU.pitch), (IMU.roll));
M5.Lcd.setCursor(12, 144);
M5.Lcd.print("rt: ");
M5.Lcd.print((float) IMU.sumCount / IMU.sum, 2);
M5.Lcd.print(" Hz");
#endif // LCD
IMU.count = millis();
IMU.sumCount = 0;
IMU.sum = 0;
#if(processing_out)
Serial.print(((IMU.yaw))); Serial.print(";");
Serial.print(((IMU.pitch))); Serial.print(";");
Serial.print(((IMU.roll))); Serial.print(";");
Serial.print(26.5); Serial.print(";");
Serial.print(0.01); Serial.print(";");
Serial.print(0.02); Serial.println();
#endif
} // if (IMU.delt_t > 500)
} // if (AHRS)
}