

ESTUDIOS DE INGENIERÍA EN INFORMÁTICA

DESIGN, IMPLEMENTATION AND VALIDATION OF A MOBILE FRAMEWORK FOR

AGILE DEVELOPMENT OF MHEALTH APPLICATIONS

REALIZADO POR:

RAFAEL GARCÍA FERNÁNDEZ

DIRIGIDO POR:

ORESTI BAÑOS LEGRÁN E IGNACIO ROJAS RUÍZ

DEPARTAMENTO:

ARQUITECTURA Y TECNOLOGÍA DE COMPUTADORES

 Granada, 14 de Diciembre de 2013

Design, implementation and validation of a mobile framework for

agile development of mHealth applications

por

Rafael García Fernández

PALABRAS CLAVE: Framework, Android, Dispositivos portables biomedicos, Dispositivos

móviles, Sensores cinemáticos, Sensores fisiologicos, Electrocardiograma, Bluetooth,

Reconocimiento de actividades, Inferencia de conocimiento, Extracción de características,

Selección de características, Clasificación.

RESUMEN: la esperanza de vida se ha visto drásticamente aumentada en el último siglo, lo que

ha provocado un fenomeno de envejecimiento de la población mundial y un crecimiento en la

aparición de enfermedades crónicas. Esto, unido a la falta de recursos médicos de calidad en los

lugares más desfavorecidos del mundo obliga a buscar alternativas para paliar estos problemas.

La tecnología móvil aparece en este contexto debido a las numerosas ventajas que ofrecen las

aplicaciones biomedicas. Para facilitar su desarrollo, en este trabajo se ha desarrollado un

framework sobre la plataforma Android, con el que se pueden desarrollar aplicaciones biomédicas

de calidad de manera rápida Las principales funcionalidades que el framework provee son

comunicación a dispositivos biomédicos portables, almacenamiento local y remoto de la

información recogida, visualización online y offline, inferencia de conocimiento de carácter

biomédico y guidelines. Para probar las funcionalidades del framework se ha desarrollado una

app y se ha realizado un estudio con un conjunto de inviduos para construir un modelo de

reconocimiento de actividades físicas.

KEYWORDS: Framework, Android, Portable biomedical devices, Wearable biomedical devices,

Portable mobiles, Kinematics sensors, Physiological sensors, Electrocardiogram, Activity

recognition, Knowledge inference, Feature extraction, Feature selection, Classification.

ABSTRACT: the human population life expectancy has drastically risen in the last century,

translating into a larger elder population with increased appearance of chronic deseases. This,

along with the lack of quality health facilities in developing countries, makes essential the seek

of alternatives to solve these problems. Mobile technology demonstrates as the key to encounter

this challenges due to many adventages that biomedical applications offer. In order to facilitate

its development, a framework for the agile and flexible development of biomedical applications

is here provided. The main functionalities provide for this framework are communication with

portable biomedical devices, local and remote data storing, data visualization either online or

offline, medical knowledge inference and guidelines support. To validate the framework

functionalities an app has been developed and a study has been conducted to collect a dataset used

to build a model for activity recognition.

D. Oresti Baños Legrán y D. Ignacio Rojas Ruiz,

Profesores del departamento de Arquitectura y Tecnología de Computadores de la Universidad

de Granada, como directores del Proyecto Fin de Carrera de D. Rafael García Fernández

Informan:

que el presente trabajo, titulado:

Design, implementation and validation of a mobile framework for agile

development of mHealth applications

Ha sido realizado y redactado por el mencionado alumno bajo nuestra dirección, y con esta fecha

autorizamos a su presentación.

Granada, a 14 de Diciembre de 2013

Fdo. ____________________________

Los abajo firmantes autorizan a que la presente copia de Proyecto Fin de Carrera se ubique en la

Biblioteca del Centro y/o departamento para ser libremente consultada por las personas que lo

deseen.

Granada, a 14 de Diciembre de 2013

Oresti Baños Legrán (cotutor) DNI: Firma:

Ignacio Rojas Ruíz (cotutor) DNI: Firma:

Rafael García Fernández (autor) DNI: Firma:

A mi padre, mi madre, Iga Rzeszewska y mis amigos.

Acknowledgements

Me gustaria agredecer a la gente que me ha ayudado en el desarrollo de este

proyecto. A Ignacio Rojas por animarme y permitirme realizarlo. A Oresti

Baños por toda su ayuda, un ejemplo como tutor y persona. A todos mis

amigos, en especial a aquellos que pusieron su granito de arena participando

en los experimentos. A mi padre por ser un padre ejemplar y por siempre

estar ahi. Por ultimo, a Iga Rzeszewska por todo su apoyo y paciencia.

Contents

List of Figures v

List of Tables ix

1 Introduction 1

1.1 Motivation and Context . 1

1.2 Objectives . 5

1.3 Contributions . 6

1.4 Thesis and Structure . 6

2 State of the Art 9

2.1 Biomedical Applications . 9

2.2 Portable Biomedical Devices . 11

2.3 Biomedical Software . 13

2.4 Biomedical Methods . 14

3 eHealthDroid 17

3.1 Overview . 17

3.2 Android . 20

3.2.1 Operating System . 20

3.2.2 Advantages/Drawbacks . 23

3.2.2.1 Advantages . 23

3.2.2.2 Drawbacks . 24

3.2.3 Why Android? . 24

3.3 Managers . 25

3.3.1 Communication Manager . 25

iii

CONTENTS

3.3.1.1 Description . 25

3.3.1.2 How to use it . 35

3.3.1.3 Difficulties and solutions applied 37

3.3.2 Remote Storage Manager . 48

3.3.2.1 Description . 48

3.3.2.2 How to use it . 59

3.3.2.3 Uploading test . 61

3.3.3 Visualization Manager . 63

3.3.3.1 Description . 63

3.3.3.2 How to use it . 67

3.3.3.3 Difficulties and solutions applied 71

3.3.4 System Manager . 74

3.3.4.1 Description . 74

3.3.4.2 How to use it . 80

3.3.5 Data Processing Manager . 84

3.3.5.1 Description . 84

3.3.5.2 How to use it . 105

4 APP 111

4.1 App usage . 111

4.1.1 Connectivity . 111

4.1.2 Visualization . 115

4.1.3 Activity Recognition . 118

4.1.4 Notifications . 123

4.1.5 YouTube Guidelines . 125

4.1.6 Remote Storage . 127

4.2 Activity Recognizer: Experimental Dataset 127

4.3 Performance evaluation . 131

5 Conclusions 133

5.1 Achievements achieved . 133

5.2 Future work . 134

References 137

iv

List of Figures

1.1 Life expectancy over the world in 2011. Figure obtained from (1) 2

1.2 Population pyramids for four stages of the demographic transition model.

Figure obtained from (2) . 3

2.1 AirStrip Cardiology and AirStrip Patient Monitoring Apps. Picture from

(3) . 10

2.2 Pam+ app. Picture from (3) . 10

2.3 Wearable devices using non-contact electrodes.Picture from (4) 12

2.4 Mobisante ultrasound package. Picture from (5) 13

2.5 EarlySense Mattress device. Picture from (6) 14

2.6 Classical data flow in biomedical data analysis. Picture from (7) 15

3.1 Framework’s diagram . 20

3.2 Android logotype. Picture from Google Inc. 21

3.3 Android Architecture Diagram . 22

3.4 Graph showing how the Communication Manager works 26

3.5 Data flow diagram from the devices to the framework. 27

3.6 Patterns for the drivers. 28

3.7 Class diagram of the framework data structure 32

3.8 Example of an ObjecData and Metadata object. 33

3.9 Design of the database. 34

3.10 Different rows with same timestamp value. 38

3.11 Rows with same timestamp values combined. 39

3.12 Database’s design A. 42

3.13 Example of the table from the design A. 42

v

LIST OF FIGURES

3.14 Bobby Tables/SQL injection comic. Consequences of allowing malicious

code into form fields. Picture from (8) 55

3.15 Passing message from the Communication Manager to the different graphs. 67

3.16 Simple grah with one series. 68

3.17 Two graphs in the same view. The first one with two series and legend.

The second one with customized labels. 68

3.18 Online visualization of the 3D accelerometer signals. 69

3.19 Media Player Android API State Diagram. Figure from (9) 79

3.20 Example of an ObjectProcessing filled. 86

3.21 Graph showing the process to make the knowledge inference. 88

4.1 Connectivity tab. 112

4.2 Steps to add a device. 113

4.3 Error messages during insertion. 114

4.4 Different type of devices in different status. Green: Connected. Orange:

Streaming. Red: Disconnected . 114

4.5 Menus for the mobile device. 115

4.6 Menus for the Shimmer device. 116

4.7 Window to enable the different sensor devices 116

4.8 Window to configure the different types of devices 117

4.9 Visualization tab. 117

4.10 Menu of the visualization’s configuration 118

4.11 Devices and its sensors available for the visualization. 119

4.12 Error message when the visualization is not possible 120

4.13 Visualization performance of three different sensors. 120

4.14 Activity recognition tab. 121

4.15 Setting up the activity recognition before to start. 121

4.16 Error message when the activity recognition is not possible 122

4.17 Activity recognition performance. In the figure, the Sitting activity is

recognized. 122

4.18 Notifications. General view . 123

4.19 Notifications. Sound to be reproduced 124

4.20 Notifications. Setting date and time . 124

vi

LIST OF FIGURES

4.21 Notifications. Saving notification and notification launched 125

4.22 YouTube Guidelines. General view . 125

4.23 Youtube Guidelines. Selecting and extending a playlist 126

4.24 Youtube Guidelines. Reproducing videos 127

4.25 Remote Storage. Setting the uploading 128

4.26 Remote Storage. Starting and finishing uploading 128

4.27 Positioning of the portable wearable devices 129

4.28 Positioning of the four electrodes. Picture from (10) 130

4.29 Electrodes in subject for ECG acquisition 130

vii

LIST OF FIGURES

viii

List of Tables

3.1 Database experiment with HTC Sensation Z710e. Android 4.0.3 (SD

card type 4) . 46

3.2 Database experiment with HTC Sensation Z710e. Android 4.0.3 (SD

card type 10) . 47

ix

LIST OF TABLES

x

1

Introduction

1.1 Motivation and Context

The human population life expectancy is constantly increasing since centuries. This

increase has been specially noteworthy in twentieth century, which according to a study

of Max Planck Institute for Demographic Research in Rostock, life expectancy has risen

faster than it did in the previous 200.000 years (11). Since 1840, the life expectancy

of a newborn baby in a western industrialized nation has risen by approximately 3

months per year. This trend continues today and is surprisingly constant, which means

that it has not achieved its upper limit (Figure 1.1). This is due to advanced medical

knowledge in developed countries, better health habits and infectious disease control.

According to Kevin G. Kinsella (12), in the middle of twentieth century countries

belonging to Western Europe had the longest life expectancy, standing out Norway, The

Netherlands and Sweden with 71-73 years old (average male-female). Closely follow,

Canada and Australia with a 70-71 years old of expectancy. Regions such as Southern

and Eastern Europe barely reached 65 years old, whereas United States of America had

a life expectancy of 69 years old. In 2011 according to the World Health Organization

(WHO) (13), a significant enhancement took place over the world, reaching the longest

life expectancy with 83 old in Japan, San Marino and Switzerland. Countries like

Spain, France or Italy with 82 years old experimented an enhancement of 15 years.

The rise of the life expectancy in Japan is worth to mention, since it was around 61 in

the fifties, meaning an increase of more than 20 years.

However, most of developing countries in Africa and Asia have kept lifespans shorter

1

1. INTRODUCTION

Figure 1.1: Life expectancy over the world in 2011. Figure obtained from (1)

than developed countries, except for some countries of Asia as India where a huge

increase has been observed. This is consequence of several factors, such as lack of

laboratory equipments -that leads to poor diagnostics- or pandemics diseases. For

example, in some sub-Saharan countries severely affected by the HIV/AIDS pandemic,

life expectancy has decreased in the past two decades due to increases in premature

death (14). An interesting measure tool is the Service Availability and Readiness

Assessment (SARA) developed by the WHO that was conducted in many developing

countries to asses and monitor service readiness, capacity and health facility levels.

The results of the assessments indicates that although the basic equipment score tends

to be high, the laboratory diagnostic score is usually the lowest, as can be seen in

examples in Sierra Leona SARA 2011 report (15) and Zambia SARA 2010 report (16).

The WHO reveals that a 66 % of Africa population not have access to health quality

services, whereas in some areas of Asia this percentage is 57 %. Therefore, the provision

of health facilities within the acceptable range of access remains a challenge.

While in developing countries the main problem stays the lack of quality health

facilities, in western countries a good health service has lead to a drop of mortality in

several aspects, such as chronic diseases and hazards to human health. In its report

of 2009, the WHO estimates that the leading global risks for mortality in the world

are high blood pressure (responsible for 13% of deaths globally), tobacco use (9%),

high blood glucose (6%), overweight and obesity (5%). These risks are responsible for

2

1.1 Motivation and Context

Figure 1.2: Population pyramids for four stages of the demographic transition model.

Figure obtained from (2)

raising the probability of chronic diseases such as heart disease, diabetes and cancer.

They affect countries across all income groups: high, middle and low.

By contrast, the increase of the life expectancy has meant a phenomenon in world

population. The so-called population pyramid is a graphical illustration showing the

distribution of various age groups in a population, which forms the shape of a pyramid

when the population is growing. In the Figure 1.2 are shown the different stages that

the global population is going through. The first stage is similar to the population

pyramid found at the beginning of the twentieth century, with a high birth rate, rapid

fall in each upward age group due to high death rates and by last short life expectancy.

Second stage shows an slightly improvement in the life expectancy and a fall in death

rate, living more people in middle age (around 1950). The third stage shows declining

birth rate, low death rate and more people living to old age (expected for twenty-first

century, the current population pyramid is changing into this shape). Lastly, stage

four shows the pyramid contracting, representing low birth and low death rate, higher

dependency ratio and longer life expectancy (around 2100) (2).

These statistics bring a fact: nowadays humans live longer, but not in a healthy

way. With the current life expectancy, short-term diseases have turned into chronic

ones and people with degenerative diseases live longer, however suffering severe health

conditions. Patients, specially elder people, should pay special attention to their health

if they suffer from one condition, due to their poor health, they can be more prone to

suffer others related ones. For example, patients with diabetes or obesity conditions

usually tend to have heart problems. This is why healthy habits are important not

only to fight against one condition but also to prevent patients from related diseases.

A healthy diet is always important to fight against diabetes or obesity conditions.

Moreover, walking and running not only help keep fit, but also avoid heart problems.

3

1. INTRODUCTION

Unfortunately, quality health resources are still far from having a complete cover-

age, due to the lack of resources and the existence of financial boundaries. According

to the 2010 WHO report (17) , no country has yet been able to guarantee everyone

immediate access to all the services that might maintain or improve their health. They

all face resource constraints of one type or another, although these are most critical

in low-income countries. However, WHO also claims that every country could raise

additional domestic funds for health or diversify their funding sources if they wished

to. Some of these options include governments giving higher priority to health in their

budget allocations, collecting taxes or insurance contributions more efficiently and rais-

ing additional funds through various types of innovative financing. Adding taxes on

harmful products such as tobacco and alcohol are a good example, since this would

reduce consumption, improve health and increase the resources governments can spend

on health.

As consequence, different alternatives have been carried through because of the need

of quality healthcare. Home Care, (also referred to as domiciliary care, social care, or

in-home care) is supportive care provided in home. This may be offered by licensed

healthcare professionals who provide medical care needs or by professional caregivers

who help to maintain daily activities. Home care is not only about supervision and as-

sistance, but also a philosophy of independence and dignity for the patient. Nowadays,

work of home care providers can be supported or even partially replaced by modern

technologies. Portable biomedical devices offer new alternatives for patients to receive

assistance without leaving home or need assistance. Thus, they play an important role

in this field, due to the many advantages they offer.

Portable biomedical devices provides us with a new concept of monitoring that

goes beyond occasional doctor visits or periodical medical check ups. More accurate

and timely diagnosis may be obtained through the continuous monitoring of patients.

In some cases patients do not need to stay in hospitals in order to be under medical

control, so this way they can stay at home living normal life and if some problem is

detected, an ambulance can transport them to the hospital as soon as possible. It is

important to realize that this is not only more comfortable for the patient, but also an

enormous save of money for hospitals.

Portable biomedical devices also remove geography and time barriers, thus allowing

care providers to diagnose and treat illnesses remotely. This takes a special impor-

4

1.2 Objectives

tance in developing countries, where a lack of care providers and medical tools exists

(according to the WHO statistics previously described). However, also in some highly

developed countries exists rural areas, where this advantage of portable biomedical

devices offers many new possibilities.

1.2 Objectives

The objective of this thesis is the design and development of a framework which allows

for the rapid and easy development of health applications in Android. One of the key

aims of eHealthDroid is to abstract the user from low level programming details and

to support any kind of biomedical monitoring technology. Functionalities implemented

through the eHealthDroid should include receiving data from biomedical device, stor-

ing data in a local database or/and a remote server, data visualization in real time,

knowledge inference and guidelines, since these are normally required in general health

applications.

The specific objectives of the framework are:

• Rapid development of medical, health and wellbeing applications.

• Communication between portable biomedical devices and portable mobile devices.

For this version of the framework, Shimmer devices (18) and mobiles phones with

its own sensors are available to be used as biomedical devices, but any device

could be easily incorporated.

• Define mechanisms to work efficiently with the data sent by the portable biomed-

ical devices.

• Define storage procedures to locally or remotely store health and physiological

data.

• Visualization tools to show the received data from the portable biomedical device.

• Medical knowledge inference mainly procured through machine learning and sta-

tistical models that can be used for triggering alerts, recommend healthier lifestyles

or activity recognition.

5

1. INTRODUCTION

• Other features as guidelines (YouTube, Audio, and Video), mobile device setup

(Brightness, Wi-Fi, and Bluetooth), services (calls, messages, and schedule noti-

fications), user login, etc.

1.3 Contributions

The framework has been developed in order to facilitate the development of biomedical

applications. Moreover, to show its possibilities, a biomedical application has been

designed and implemented. This exemplar app makes use of some functionalities of the

framework, such as inference knowledge to perform activity recognition, visualization

of data received from portable biomedical devices, data uploading to a remote storage,

manage notifications or YouTube guidelines.

1.4 Thesis and Structure

This thesis is divided into the following chapters:

• Chapter 1. Introduction. It is the current chapter which is composed by four

sections. The first section titled Motivation and context describes the importance

and need that urges in modern world to develop biomedical frameworks, that is

the subject of this thesis. The second section, Objectives, contains an overall sum-

mary of the proposal objectives at the beginning of the thesis. The third section,

Contributions and describes the contributions made in this work. Finally, the

last section is Thesis and Structure and presents the structure and composition

of the thesis.

• Chapter 2. State of the Art. This chapter presents a review of four fields related to

biomedical engineering: Biomedical Applications, Portable Biomedical Devices,

Biomedical Software and Biomedical Methods.

• Chapter 3. eHealthDroid. This chapter, composed by three sections, describes

the developed framework. The first sections shows an overview of the framework.

While, the second section comprise an explanation of Android OS and the reasons

why it was chosen. The last section deeply describes the modules and components

of the developed framework.

6

1.4 Thesis and Structure

• Chapter 4. APP. This chapter describes the application developed to demonstrate

the framework capabilities and its use.

• Chapter 5. Conclusion and future work. This chapter contains the conclusions

reached in this thesis and proposal of future work.

7

1. INTRODUCTION

8

2

State of the Art

The portable medical devices industry is a fast growing market. With the advent of

mobile technology this medical field has become one of the most interesting with the

promise of great potential for future healthcare. With the appearance of modern smart

phones, several biomedical applications focused on users’ health have been developed.

They vary from presenting different measures like blood pressure and heart rate to much

more specific helping patients suffering from degenerative diseases so common in our

aging population. Some applications use distinct devices that are demanded to collect

data. Biomedical methods are used to inference medical knowledge from the collected

data, for example to inform patients about their state or alert them immediately in

case if some anomaly is detected. Biomedical software remains an important field, not

only to create medical software to be used in computer but also to provide tools to

develop biomedical applications easily, such as frameworks or libraries.

2.1 Biomedical Applications

One of the main objectives of biomedical applications is called Patient Monitoring

(19), which means collecting and evaluating (remotely in some cases) physical and

physiological variables from mobile or fixed devices around the patient. In case that

health problem is detected, the user can be warned. Other objective is known as

Patient Education (20), applications which allow the user to monitor his own health

and educate him how to keep good health habits. Another important objective is

achieved by applications that provide medical quality services, which are especially

9

2. STATE OF THE ART

Figure 2.1: AirStrip Cardiology and AirStrip Patient Monitoring Apps. Picture from (3)

Figure 2.2: Pam+ app. Picture from (3)

important in places where those are not easily available (21). A few examples of each

group are presented.

Airstrip Cardiology (22) and AirStrip Patient Monitoring (23) are two applications

worth mentioning (Figure 2.1). These apps are able to digitalize ECGs and visualize

in real time this information in a portable device, enabling health providers to monitor

their patients in a remote way.

PAM+ app (Figure 2.2) works in conjunction with an external device which obtain

blood pressure information and is designed to encourage patients to become active

health-care participants. Patients adjust their medications depending on the obtained

information to maintain a correct blood pressure (3).

Mobisante Company developed a complete phone-and-ultrasound package (Fig-

10

2.2 Portable Biomedical Devices

ure 2.4) that offers low cost, facility in use and portability. This app could make a

real difference in rural settings and developing countries where medical equipment,

including imaging machines, is usually beyond reach (24).

Another interesting biomedical application is able to do online detection of freezing

of gait for people with advanced Parkinsons disease (25). This application uses mobiles

accelerometers to recognize a freezing of gait and stimulates the patient via rhythmic

auditory cuing or vibrotactile feedback to resume walking.

2.2 Portable Biomedical Devices

The majority of applications presented in the previous section requires an external

device to work with. In the last years, due to the hardware improvements along with

the smart phone boom, the portable medical devices industry is constantly growing

(26).

An exciting and crucial concept to understand portable biomedical devices is the

Smartclothing (27) (28). It consists of embedding biomedical devices into normal

clothes. These devices are able to perform different functionality like body kinematics

or physiological signals acquisition while they are being worn in a practical way. The

tendency will be to use them in a close future without even realizing that are being

worn. Different measures that portable biomedical devices are capable of monitor are

described below:

• ECG: Zhou et al (29) present a portable wireless ECG monitoring system com-

posed of fabric electrodes and a monitoring terminal, which essential to continuous

ECG monitoring. The ECG signal acquired could be processed and stored in the

monitoring terminal. This system is able to obtain the heart rate signal and

transmit it to any device through Bluetooth protocol.

• EMG: Walters et al (30) describe a low-cost (around 100 $) portable EMG de-

vice specially developed to assess muscle activity during free-living situations,

which has been used to investigate work-related pain, advancing age, and clinical

disorder. It has been made using specialized concentric bipolar electrodes.

• EEG: there exists a powerful wearable device described by Chi et al (4) that

unlike most of the smart clothes devices, is not in direct contact with the human

11

2. STATE OF THE ART

(a) EEG Headband (b) ECG Vest

Figure 2.3: Wearable devices using non-contact electrodes.Picture from (4)

body through contact sensors (wet or dry) cause it uses non-contact electrodes

(Figure 2.3). It is able to capture cerebral (EEG) and cardiac activity (ECG) .

• Oxygen in blood: Cleven et al (31) introduce an implantable wireless sensor

system for monitoring hypertension patients. This sensor system is intended for

long-term monitoring of hypertension patients, designed for implantation into the

femoral artery with computed tomography angiography. It consists of a pressure

sensor and a telemetric unit, which is wirelessly connected to an extracorporeal

readout station for energy supply and data recording. The system delivered stable

measurement in initial animal trials like sheep.

• Kinematic information: many devices are able to obtain kinematic information,

such as SHIMMER (18), the device used for this work. SHIMMER (Sensing

Health with Intelligence, Modularity, Mobility and Experimental Reusability) is

a platform for measurement of biomechanical and physiological variables related

to functional movement. Some of its features are integrated peripherals, open

software, modular expansion, specific power management hardware and a library

of applications supported with platform validation.

• Ultrasound: Mertz (3) and Wojtczak et al (24) describe a device used for the

Mobisante Company App commented in the previous section. This portable

device is able to acquire not only fetal monitoring but also other clinically useful

images (3) .

Other kind of sensors used to empower the patient health is the exosensor, typically

associated to smarthomes (32). These devices are not attached to the body, but local-

12

2.3 Biomedical Software

Figure 2.4: Mobisante ultrasound package. Picture from (5)

ized in human environment, such as cars, houses or beds. A disadvantage to consider

is that they can only be applied to one person in the place. Two interesting examples

are the following:

• Breathing: mobile interrupter module, described by Jablonski et al (33), is ded-

icated to the enhanced interrupter measurement of respiratory mechanism in a

home environment and capable of cooperation with a telemedical system. It is

characterized by noninvasiveness and minimal requirement regarding patient co-

operation and is specially suitable for newborns, preschool children and patients

suffering from respiratory muscle impairment.

• Sleeping: Air Cushion or EarlySense Mattress (34) (Figure 2.5), although not

exactly portable devices but worth mentioning, are the ones positioned on the

top of the bed and under the mattress respectively. They record various measures

like respiration rate, snoring, body movement, coughing, etc. .

2.3 Biomedical Software

The biomedical software field is not only composed by computer programs but also

frameworks (35).

Frameworks development have a great potential for the biomedical general field.

Frameworks facilitate creating biomedical applications (for computers or portable de-

vices), even for people who are not really familiar with the field.

Although applications for desktop or traditional computers could seem a bit pushed

into the background due to the appearance of portable devices, they still have a big

13

2. STATE OF THE ART

Figure 2.5: EarlySense Mattress device. Picture from (6)

importance. Computers capacity is greater, which makes them faster to evaluate big

amounts of data. Even with the exceptional increase in the last years of portables

devices capacity, approaching to the one provided for computers, the emergence of the

Cloud Computing is a key role to play for computers. Cloud Computing is a compelling

paradigm for managing and delivering services over the internet and is rapidly changing

the landscape of information technology (36) .

There exists a wide variety of biomedical software. TheraGnosos is an interactive

blended learning, simulation and training system, useful for students of biomedical

engineering university courses (37). BioSig is an open source framework for biomedical

signal processing (38). DtiStudio is a software to perform fiber tracking (39), while

ScanImage manipulates laser scanning microscope (40). Finally, there is a framework

called HaploView that provide tools to work with human genome structures (41).

2.4 Biomedical Methods

Biomedical devices consist of sensors capturing signals, which are transformed by a

module A/D and are sent to a receiver. This signals are not only used for monitoring

purpose, but also for biomedical knowledge inference that allows to classify signals.

Figure 3.5 represents the different phases to perform biomedical knowledge inference

and how data flows through them. Once the data has been acquired, often a prepro-

cessing phase is needed to remove existing noise in the signal, which makes it clean and

ready to be processed. To achieve this, a denoising technique or filtering is applied over

14

2.4 Biomedical Methods

ARC Fusion: Feature Fusion

1

[-
0

.1
4

, 3
.4

1,
 4

,2
1

, …
 ,

6
.1

1
]

[-
0

.8
4

, 3
.2

1,
 4

.2
1

, …
 ,

6
.1

1
]

[-
0

.8
1

, 5
.7

1,
 4

.2
1

, …
 ,

6
.2

2
]

[-
0

.1
4

, 3
.9

2,
 4

.2
3

, …
 ,

7
.8

2
]

S1

S2

SM

u1 p1 s11,s12,…,s1k fℝ(s11,s12,…,s1k)

c
u2 p2 s21,s22,…,s2k fℝ(s21,s22,…,s2k)

uM pM sM1,sM2,…,sMk fℝ(sM1,sM2,…,sMk)

fℝ(s11,s12,…,s1k,

s21,s22,…,s2k,…,

sM1,sM2,…,sMk)

Figure 2.6: Classical data flow in biomedical data analysis. Picture from (7)

the signal, such as the wavelet transform (42). A segmentation phase is usually also

applied to divide the signal into smaller time segments by applying windowing tech-

niques. Then, these segments of data are characterized through different kind features.

These range from general statistical and mathematical features such as mean, variance,

median, standard deviation or domain specific features. Examples of the latter are,

the RR interval has an enormous utility to inference the nervous cardiac level using

ECG (43). Some famous feature extraction methods are MILCA or PCA (44). The

last phase in the inference knowledge process is classification, where the previously ob-

tained features are classified using models based on different techniques. Some of the

most used classification techniques are Support Vector Machine (45), Fuzzy logic (46),

Neural Networks (47), Decision Trees (48) or more recently Extreme Learning Machine

(49).

15

2. STATE OF THE ART

16

3

eHealthDroid

3.1 Overview

eHealhDroid is a framework designed to develop applications in an easy and rapid way,

under the Android operating system and to be used along with portable biomedical

devices. This framework has been developed independently from the device type or

communication protocol. Owing to that, it is necessary to create an intermediate driver

for every portable biomedical device to be used which will work between the device and

the framework. The drivers are included in the framework and remain unnoticed to the

user. Thanks to this approach, an application can run simultaneously with different

kinds of devices, providing a great flexibility.

The framework offers a wide range of functionalities. The most important ones are

the following:

– Connection management and data streaming from the portable biomedical device

(or portable mobile itself).

– Storage of the received data and other kind of data into a database.

– Functions to consult and to retrieve data from the database.

– Data uploading to a remote server.

– Online and offline data visualization.

17

3. EHEALTHDROID

– Data processing and knowledge inference: signal pre-processing, signal segmen-

tation, feature extraction and data classification. It could be done either online

or offline.

– Reproduce diverse media guidelines (embedded videos, audios, or online resources

such as Youtube playlists).

– Make calls and send text messages particularly intended for emergency events.

– Send and scheduled notifications.

– Manage Wi-Fi, Bluetooth and other mobile device functionalities.

This framework is used through the managers that composed it, all of them singleton

classes:

1. Communication Manager

This is one of the most important managers. It is responsible for, among other

things, the communication management with the biomedical devices, the data

streaming and the broadcast of the received data to the rest of the framework. It

is composed by three modules:

(a) Data receiver: includes the drivers needed to use a specific portable biomed-

ical device or the mobile itself with the framework.

(b) Data structure: defines the proprietary data structure used by the frame-

work.

(c) Storage: contains classes for the database management.

2. Server Manager

It is responsible for the data uploading to a remote server. The manager access

to the local database, retrieving the data required by the user and uploading it to

a server. The manager works for all kind of Internet connection (Wifi, 3G, etc).

3. Visualization Manager

It is in charge of the data visualization. It is possible to perform an online

visualization of the data streaming, as well as an offline visualization of the data

18

3.1 Overview

retrieved from the storage unit. It also allows to build graphics with different

purposes such as to show the usage of a portable biomedical device in the last

month.

4. Data Processing Manager

This is probably the most powerful manager of the framework. It is responsible

for processing the received data and applying medical knowledge inference. It is

possible to use it either online or offline. It is composed by five modules:

(a) Acquisition: defines methods to acquire data in a suitable way to be pro-

cessed later. This is only necessary for the offline inference mode. For the

online mode, the data is obtained directly from the Communication Man-

ager.

(b) Pre-processing: defines methods to carry out what is called the signal pre-

processing. That is, to perform a downsampling or an upsampling.

(c) Segmentation: defines methods to achieve the segmentation of a signal. In

other words, to establish windows. This module should be used only in the

offline mode.

(d) Features extraction: defines methods to perform features extraction and

features arrays for classification.

(e) Classification: defines method to build, train, test or load classifiers, among

other classification functionalities.

All modules can be used independently, but using them one after the other, they

form the sequence shown in Figure 3.5

5. System Manager

This is a miscellaneous manager that offers methods to do different kind of tasks

through the Android operating system. It is composed by three modules:

(a) Services: defines methods to execute a call, send a text message or scheduled

a notification.

(b) Setup: defines methods to manage the Wi-Fi connection, Bluetooth and the

screen brightness.

19

3. EHEALTHDROID

(c) Guidelines: module to play videos, audios and Youtube videos or playlists.

It is composed by three sub modules:

i. Audio

ii. Video

iii. Youtube

In figure 3.1 the “big picture” the framework is presented, with all the existing

managers and how they interact with each other.

COMMUNICATION MANAGER

Data
Receiver

Storage

SYSTEM MANAGER

Setup

DATA PROCESSING MANAGER

Feature
Extraction

Pre-
Processing

Acquisition

VISUALIZATION
MANAGER

Youtube Segmentation

REMOTE STORAGE
MANAGER

Data
Structure

Classification

Audio Video

Services Guidelines

 Wearable
Health
Devices

Figure 3.1: Framework’s diagram

3.2 Android

3.2.1 Operating System

Android is an operating system based on the Linux Kernel, specially designed for

touchscreen mobile devices such as smart-phones and tablets computers. It was initially

developed by Android Inc., which was backed financially by Google and later bought in

2005. Google announced Android in 2007 along with the founding of the Open Handset

Alliance (50). The first Android-powered phone was sold in October 2008.

20

3.2 Android

Figure 3.2: Android logotype. Picture from Google Inc.

The user interface of Android consist in using touch input corresponding to real-

world actions such as swiping, tapping or pinching to manipulate screen objects. An-

droid allows users to customize their home screens with shortcuts to their applications

or widget, which offers users to display live content. Applications can send notifica-

tions to the users to inform them of something relevant, such new messages, alarms or

appointments. Most Android-powered devices own built-in sensors which are used by

applications to provide different functionality to the user, such as measuring motion,

orientation or environmental conditions. These sensors are capable of providing raw

data with high precision and accuracy.

One of the strongest features of Android is the fact that it is an open source and its

code is released under the Apache License (51). This allows the software to be freely

modified and distributed by device manufactures or enthusiast developers. Android has

a large community of developers writing applications (apps), that provides Android

devices with almost boundless possibilities. In November 2013, there were almost

900.000 apps available for Android (878632 exactly, with a 22 % of low quality apps)

(52), and the estimated number of apps downloaded from Google Play (Androids app

store) was 25 billion (53). A survey conducted in April-May 2013 revealed that Android

is the most popular platform for developers, used by 71% of the mobile developer

population (54).

Android powers hundreds of millions of mobile devices in more than 190 countries

around the world. It is the largest installed base of any mobile platform and growing

fastevery day another million users power up their Android devices for the first time

and start looking for apps, games, and other digital content (55)

21

3. EHEALTHDROID

The Android architecture is formed by the following layers:

Figure 3.3: Android Architecture Diagram

1. Applications. Android applications are not exactly a part of the Android op-

erating system and lies on the top of the three layers that form the Android

Software Architecture. Android devices are delivered with a set of applications

capable to provide basic services, such as web browsing, sending SMS or making

phone calls. This is accomplished and managed by the underlying layers like the

Applications framework one, just under this application layer. Android applica-

tions are written in Java and executed in Dalvik (DVM), a specific Java runtime

engine.

2. Application Framework. The upper layer of the diagram. Provides framework

services and libraries to interact with the application layer. These are written

mostly in Java. Some examples are the Activity Manager, Location Manager,

Notification Manager or View System.

22

3.2 Android

3. Libraries. Special libraries written in C or C++. These libraries offer services to

applications like SQLite for Databases, OpenGL or WebKit for accessing website.

4. Android Runtime. Consisting of two components, the DVM and core libraries

responsible for process management. The DVM is a Java runtime engine which

processes are isolated from the environment. It executes program written in Java

by using a DX tool to convert it into bytecode that is readable by the DVM.

5. Linux Kernel. Is the lowest layer of Android Architecture and is the abstraction

layer between software stack and hardware. It includes drivers for hardware, net-

working, security, energy consumption file, system access, processes and memory

management.

3.2.2 Advantages/Drawbacks

Some advantages and drawbacks of Android Operating System are presented to show

what Android may provide to an user and Android weaknesses:

3.2.2.1 Advantages

• Providing the code to everyone by making it open and free source makes it easy

for developers to implement their own libraries.

• Populist Operating System. Android Phones, opposite to iOS which are limited

to the IPhone from Apple, have many and potential manufacturers such as Sony

or Samsung. That is the reason why there exists a wide variety in phones (style

and capacities), suiting user budget.

• Easy access to the Android App Market (Google Play), where Android users can

download thousands of free apps.

• Multitasking, which means that many applications may be running at the same

time.

• Frequent OS updates, for improving performance.

• Installing ROM modification. There are many custom ROM installable on An-

droid phones, guarantying they will not harm the Android device.

23

3. EHEALTHDROID

• USB full facilities, which means user may replace battery, mass storage, disk

driver or USB tethering.

• Support all Google Services.

• And many other like easy in terms of notifications, widgets, router functionality...

3.2.2.2 Drawbacks

• In order to provide full functionalities it needs an active Internet connection.

• Some phones become slow after installing many apps. However, new Android

versions and mobiles devices which offer better capacities deal better with this

problem.

• Many applications contain malware, even if they are available in the Google

Play Market users need to be careful. Besides, advertising is usually presents

in applications.

• Wasteful battery. Android is said to be more wasteful than any other mobile

operating system, due to constant processing in the background that lead to

quickly drains batteries.

• Sometimes applications, external devices or just protocols as Blue-tooth presents

strange behaviors depending on the mobile device where are being used, due

to the wide variety of mobile devices existing (manufacturers are free to insert

modifications in Android).

3.2.3 Why Android?

It is aim of this work to provide an open tool for developing biomedical applications

at the reach of as many people as possible. Having this in mind, Android seems to

be the mobile operating system which is the most appropriate, owing to the amount

of users and mobiles devices Android powered. The fact that is free and open source

converts this into a software platform for mobile development rather than just a mobile

operating system.

24

3.3 Managers

3.3 Managers

3.3.1 Communication Manager

This manager, like the rest of the managers, is a singleton class and is responsible

for the communication between the devices and the Android application. Its main

function is to manage the data received by the devices, and deliver them to the rest of

the framework’s package/managers that need them. It is also in charge of the storage

in the local database. The manager is composed by 3 modules: Data Structure, Data

Receiver, and Storage.

3.3.1.1 Description

In order to do its work properly, the manager should run in background. Therefore it

is defined as a Service (56). The data acquisition is handled by the drivers. They also

create the framework’s data structure along with them, so it is necessary to design some

kind of mechanism for sending the data structure to the manager. After a deep study

of all the possibilities, it was decided that the drivers would send the data structure by

Message (57) through a Handler (58) (both tools are provided by the Android API).

It was also decided that the manager would not do all the work. Independent threads

would be created instead. It was done like this to take advantage of the benefits of the

approach “divide and conquer”. Having said that, it is clear that a thread will be in

charge of just its own device. Thus, there will be as many threads as devices connected.

The threads are defined within the manager, namely CommunicationThread. They only

have the Handler, as mentioned before, and a Looper (59), which is a class used to run

a message loop for a thread. Threads receive the message with the framework’s data

structure and work accordingly: store data, send data to the rest of the framework, or

check whether the communication has failed. But there were other details that needed

to be controlled, such as linking the thread with its device. To do this, the ObjectCom-

munication object was created. This object is an inner class within the manager and is

formed by some flags, an array with the graph’s name (this will be explained in 3.3.3),

a CommunicationThread and a Device (the driver previously mentioned).

The manager has, among other things, a Hashtable of String and ObjectCommuni-

cation. This Hashtable stores the devices. The device name is the key (so it has to be

unique) and the ObjectCommunication, which make all the work described previously,

25

3. EHEALTHDROID

is the object. To add a device to this hashtable the manager provides a pattern func-

tion: AddDeviceSomething. In particular, the manager provides AddDeviceShimmer

and AddDeviceMobile.

Communication Manager

ObjectCommunication ObjectCommunication

Device 1

Device 2

Hashtable

Communication
thread

Device

Handler

Looper Handler

Buffer

Communication
thread

Handler

Looper Handler

Device

Buffer

Figure 3.4: Graph showing how the Communication Manager works

When the appropriate flags are activated, this manager also sends the data to the

Storage package for storing them into the local database (which will be explained later),

to the Visualization Manager for the data representation or to the Data Processing

Manager for processing and knowledge inference. Since the data can be stored into a

database, the API demanded a buffer to store them temporally. To do this, different

kind of buffers were considered. After evaluating their advantages and disadvantages,

the circular buffer was considered for implementation.

The two most important functions in the manager are startStreaming and stop-

Streaming.

startStreming checks whether the device is connected or not. If so, the database

tables are created, and the CommunicationThread is started. Then, and just in the first

session, a database consistency check is performed in case the application stopped owing

26

3.3 Managers

to any exception. Finally, the startStreaming function defining in the device driver is

called (a device driver is needed in order to use the framework, but this will be explained

later). The Communication thread runs in background receiving the messages sent by

the device driver. When the first sample is received, the session metadata are stored in

the database. In case the proper flags are activated, the thread also stores the samples

into the database and sends them either to the Visualization Manager or to the Data

Processing Manager. If the connection is lost, the thread stores the rest of the session

metadata, and in case the Store flag is activated the last block of samples is stored.

stopStreaming calls the device driver stopStreaming function. Then, it calls to the

storeLastInstance function, which kills the CommunicationThread and, in case the Store

flag is activated, stores into the database the last block of samples . Finally, the session

metadata is updated.

Device
Mobile

Device
Shimmer

Device
Shimmer

Device
Shimmer

 Object
Communi-

cation

Object
Communi-

cation

Object
Communi-

cation

Object
Communi-

cation

Communication
Manager

Visualization
Manager

Data
processing
Manager

Storage

Framework Devices Drivers

Figure 3.5: Data flow diagram from the devices to the framework.

The manager also provides other functionalities such as to set whether to store or

not the data, to set the sensors enabled of a specific device, to set a label (this will be

explained later), to set and get the device sample rate and to get among others.

This manager contains three packages: Data receiver, Data structure and Storage.

27

3. EHEALTHDROID

Data receiver
The Data receiver package contains the “drivers” for the devices that will be con-

nected with the Android application. The aim of these drivers is to manage the con-

nection with the device and fill the framework data structure with the sample received.

Other kinds of functionalities offered by the device are also managed.

The package is composed by 1 interface and 2 classes:

Device (interface)

This interface is the pattern for creating the drivers, so obviously they must inherit

from Device. Some of the most important functions in the interface are connect/dis-

connect which define the connection between the device and the Android application.

Start/stop streaming are also very important since they define the beginning and end-

ing of the data streaming. There are also other functions defining this pattern. It is

possible to change the sample rate with the function setRate or consult it with getRate.

In the same way, it is possible to change and consult the enabled sensors with writeEn-

abledSensors and getEnabledSensors. Since each device has its own buffer, there are

other functions to set and get the number of samples to be stored. Something similar

happens with the metadata, so that there are functions that get and set the session

metadata of the device. Sensor device drivers are required for their use within the

framework.

Device

Device Mobile Device Shimmer ... Device X

Figure 3.6: Patterns for the drivers.

DeviceShimmer

This is the driver developed for the Shimmer device. Its aim is to manage the

connection between the Shimmer device and the Android OS, to receive the data sent

by the device and to create the framework data structures.

28

3.3 Managers

The company which provides the Shimmer devices also provides a driver. As our

manager, it is defined as a Service so that it can work in background. It is responsible

for managing the connection with the Shimmer device. To do this, first create and

start the ConnectThread. Once the connection has succeeded, the ConnectedThread is

created and started. This thread manages all the incoming and outgoing transmissions.

It receives the raw samples from the device. Then, the Shimmer driver converts them

to calibrated and uncalibrated values. A hashtable is created with these values and

sent in a message. It also comprises a wide range of functions for controlling all the

device’s features. From now on, this driver will be referenced as either Shimmer driver

or intermediate driver. Thus, the driver defined for us, and explained in this section,

will be referenced just as driver.

The driver is composed, among other things, by a BluetoothAdapater object, a

BluetoothDevice object, a circular buffer, an instance of the Shimmer driver, and a

handler. The BluetoohAdapter and BluetoothDevice objects (both provides by the

Android API) are responsible for the management of the Bluetooth connection. The

circular buffer is defined as an ArrayList. Its size is four times the number of samples

to store. Thus, the buffer stores four blocks of samples. The number of samples to

stored can be set in order to make the buffer more suitable for each situation. The

handler is in charge of to receive and handler the messages sent by the Shimmer driver.

Depending on the message received, the handler will make a different task. When the

handler receives a message with a sample, first it is checked to see if it is the first one. If

so, an offset timestamp and the beginning of the session are set to this moment. Then,

the framework data structure (which is stored in the buffer), is filled with the sample

values. Finally, a data structure reference is sent to the handler of the Communication

Manager.

The most important functions in this class are connect/disconnect and start/stop

streaming. connect and disconnect are not complex functions since the hard work is

done by the Android OS and the intermediate driver.

StartStreaming is a function that requires more work since it is necessary to initialize

the buffer. To do this, first the enabled sensors are consulted, then the appropriate

data structure is created and the buffer fills with that data structure. Finally, the

intermediate driver’s startStreaming function is called and session’s metadata are set.

StopStreaming function calls to the intermediate device’s stopStreaming function

and updates sessions metadata.

The driver also has to implement the other functions of the interface Device men-

tioned previously. Other features, that are specific of the device, are controlled by

29

3. EHEALTHDROID

other functions such as getFormat. This function sets whether the data received by the

device must be calibrated or uncalibrated.

DeviceMobile

This is the driver class for mobile devices. Most Android devices have built-in

sensors that measure motion, orientation, and environmental conditions, depending

on the mobile device and the available sensors. Since the biomedical device used in

this case is the mobile itself, there is no need to establish a Bluetooth connection or

other similar connection. To acquire raw sensor data, the Android Sensor Framework

is used. The components used are similar to the DeviceShimmer class, but in this case,

there is only one Handler (the manager handler) and there is not Bluetooth variables.

A SensorManager object is necessary. This is a class which provides functionality

to manage sensors such as listening/accessing them, registering/unregistering sensor

event listener, and sensor constants that are used to report sensor accuracy, set data

acquisition rates, or calibrate sensors. Also, an array list of Sensor is used in order to

manage each sensor. In this class, connect and disconnect methods are empty since

there is no connection to be done. Start/stop streaming methods behavior changes with

respect to the DeviceShimmer class. After initializing the buffer (checking the enabled

sensors and filling the buffer with the appropriate structure in a similar way than for

the Device Shimmer), a listener for every sensor is registered. This is done using the

function registerListener belonging to the SensorManager class, which needs a Sensor

object (the sensor to register) and an acquisition data rate. Four SensorManager

constants exists to set the acquisition data rate to be used with all sensors. These

constants rates are the following:

• SENSOR DELAY FASTER. Rate: 100 Hz

• SENSOR DELAY GAME. Rate: 50 Hz

• SENSOR DELAY UI. Rate: 16.7 Hz

• SENSOR DELAY NORMAL. Rate: 5 Hz

These rates are approximated due that all of them depend on the mobile device

where the app is used. Once the listeners are registered, the methodonSensorChanged

which receives as parameter a SensorEvent object, is called every time a sensor reports

a new value. In other words, it sends a new sample (inside the SensorEvent object). In

order to not block this listener, like is recommended in the Android Sensor Framework,

all the work to be done with the new sample is done in an external method called

30

3.3 Managers

gatherData. Each sensorEvent object has a raw sensor data (the type of sensor which

generates the event), the accuracy of the data and, the timestamp of the event. The

GatherData method aims at receiving this sensorEvent and convert the data to the

framework data structure. Once this is done, the method puts this into the class buffer

and sends a message to the manager handler with the reference of the new ObjectData.

The work done in this method is problematic because the Android Sensor Framework

does not send raw data synchronously. It only does so when a sensor changes its

value, resulting in ObjectData containing only information about one sensor. Thus, the

framework data structure would lose sense hence the hashtable would be almost empty.

The solution chosen to solve this problem is shown in 3.3.1.3.

The last thing done in the startStreaming method concerns metadata sessions. The

starting session time and device rate attributes belonging to ObjectMetadata reset with

the current time, and the device current acquisition data rate. Then, the method set-

Metadata is called. This method is aimed to fill the ObjectMetadata hashtable with

metadata (sensors units) of every registered sensor. The stopStreaming function simply

unregisters every listener registered and updates ObjectMetadata ending session time

attribute.

Data structure
Here is defined the framework’s data structure. This topic also was deeply studied,

taking into account that it had to be very flexible because of the wide range of devices

that exitsexists and the variety of sensors. It also had to be scalable because in the

future other devices with new features or sensors can be released.

The data structure is composed of four objects (classes) and one enumeration:

• Data: It is composed by a double. It represents the value return by the sensor.

• ObjectData: This class stores the device name and a Hashtable where the type

of sensor is the key and Data is the object. It represents a complete sample sent

by the device. It means that if the sample rate is 50Hz, 50 ObjectData will be

generated in 1 second.

• Metadata: This class is composed by a String. It represents the units of measure

used by the devices.

31

3. EHEALTHDROID

• ObjectMetadata: This class is composed by a Hashtable where SensorType is

the key, and Metadata is the object. It also contains two Time variables, two

Int variables, and one Double variable. The Hashtable is filled with the enabled

sensors of the device and their units of measure. The two Time variables represent

when the device starts to stream and when it finishes. The two Int variables

represent the first index of the database table which belongs to this device during

a session, and the last index of this session. The period of time that goes from

when the device starts to stream until the streaming is stopped is called session.

Finally, the Double variable represents the devices sample rate (measured in Hz)

during a determinate session.

• SensorType: This is not a class, but an enumeration. It represents the type of

sensor.

Data Metadata

ObjectData
ObjectMetadata

- data: double

- name: String
- hashData:
Hashtable<Sensor
Type, Data>

- units: String

- hashMetadata:
Hashtable<SensorType
, Metadata>
- start:Time
- finish: Time
- firstIndex: Int
- lastIndex: Int
- rate: Double

<<enumeration>>
SensorType

- Accelerometer_X
- Accelerometer_Y
- Accelerometer_Z
- Gyroscope_X
- Gyroscope_Y
- Gyroscope_Z
- Heart_Rate

...

Figure 3.7: Class diagram of the framework data structure

Storage
This module offers all the functionalities to manage everything related with the

database.

To generate the most appropriate database environment, various experiments were

performed, which are explained in 3.3.1.3, and test which design was better. Tak-

ing into account the results, it was desgined a database composed by 4 tables: Ta-

ble MacAddress, Metadata MacAddress,

32

3.3 Managers

Name: Device 1
HashData:

Start: 2013/8/24 T 19:17:50
Finish: 2013/8/24 T 19:22:47
FirstIndex: 33589
SecondIndex: 34273
Rate: 50
HashMetaData:

Key Value

SensorType.
AccelerometerX

SensorType.
AccelerometerY

SensorType.
AccelerometerZ

ObjecData MetaData

SensorType.
TimeStamp

Data

Data

Data

Data

data: 1348547

data: 0.89726

data: -1.07852

data: 9.58742

Key Value

SensorType.
TimeStamp

SensorType.
Accelerometer

SensorType.
ECG

MetaData

MetaData

MetaData

units: ms

units: m/(sec^2)

Units: mV

Figure 3.8: Example of an ObjecData and Metadata object.

TypeDevice Units and User Profile. When Table MacAddress and Metadata MacAddress

tables are created, the part “MacAddrses” is replaced by the device’s MAC address to

make the table name unique, easy to identify and relate this with its corresponding

device. When the Units tables are created, the part “TypeDevice” is replaced by the

type of device, either Mobile or Shimmer so far.

• Table MacAddress: In these tables are stored the samples sent by the devices. Id

field is an auto increment integer and the primary key. SensorTypeX fields are

all the sensors available in the device. Since different devices may have different

sensors, the tables definitions can be different for different kinds of devices. Label

field is the labeling given to that streaming data. For instance, if storing the

activity of the person who is wearing the device is wanted, the Label could take

values such as “walk”, “run”or “stand”. The Time stamp field stores the time,

by hour and date, when the sample is received. It is expressed in milliseconds

starting from January 1, 1970 UTC.

• Metadata MacAddress: These tables store the session metadata. Id field is an

auto increment integer and the primary key. SensorTypeX fields are all the

sensors available in the device. These fields will be either 1 if the sensor is enabled

or 0 if not. Format field denotes whether data is calibrated or uncalibrated.

Start/Finish fields indicate when the data streaming started/finished . First/Last

Index fields represent the first/last index of the table’s row where the samples of

33

3. EHEALTHDROID

this session are stored. Rate field stores the sample rate of the session.

• TypeDevice Units: These tables store the sensors units of measure for each kind

of device. Sensors field indicates the type of sensor. Calibrated/Uncalibrated

fields represent the calibrated/uncalibrated units of measure.

• User Profile: This table stores a profile of each user. Login field is the login for

the user. It is the primary key so it must be unique. Password field stores the

password of the user. Sex, Age, Height, Weight and Email fields are, like their

names indicate, the sex, age, height, weight and email of the user.

TABLE_
MACADDRESS

- Id (integer) (PK)
- SensorType1
(integer)
- SensorType2
(integer)
- ...
- Label (text)
- Time_Stamp
(float)

METADATA_
MACADDRESS

- Id (integer) (PK)
- SensorType1
(integer)
- SensorType2
(integer)
- ...
- Format (text)
- Start (text)
- Finish (text)
- FirstIndex (integer)
- LastIndex (integer)
- Rate (float)

TYPEDEVICE_
UNITS

- Sensors
- Calibrated
- Uncalibrated

USER_PROFILE

- Login (text) (PK)
- Password (text)
- Sex (text)
- Age (integer)
- Height (float)
- Weight (float)
- Email (text)

Figure 3.9: Design of the database.

The module is composed by 3 classes:

DataBaseHelper

This is a class specifically created for helping carry out the management role such

as create, open, close or update the database.

DBAdapter

All the queries needed are made in this class. All of the functions used to cre-

ate the databases tables include the following: createShimmerTable, createShimmer-

MetadataTable, createShimmerTableUnits, createMobileTable, createDeviceMetadataT-

able, createMobileTableUnits, createUserProfileTable In order to insert all the data

storage in these tables the following are used: insertShimmerSignal, insertShimmer-

34

3.3 Managers

Metadata, insertMobileSignal, insertMobileMetadata, fillMetadataRow, fillTableShim-

merUnits, fillTableMobileUnits, insertUserProfile. In addition, there are a wide range

of functions to retrieve any kind of data from database such as retrieveInformationById,

getMaxIndex, getColumnsName, getShimmerUnitsTable, getSessionsIds, getPassword,

etc.

To evaluate the consistency of the metadata tables the consistencyTestMetadata

function was created. It consists in retrieving the last metadata row and checking

whether the LastIndex field is not set to 0. If the LastIndex field is set to zero, it

means the application was forced to close due to a bug. To fix this, LastIndex is set to

the index of the last row of the data table.

Storage

This class could be defined as the upper layer of this module. Thus, it is an inter-

mediate class between low level database definition and the manager. For some tasks,

functions just get the input values and call to the DBAdapter functions (getMobileU-

nitsTable, getShimmerSignalsTable, consistencyTestMetadata, etc). However for other

tasks, functions get the input values, adapt them, and then call to the DBAdapter func-

tions (insertShimmer, insertShimmerMetada, insertMobile, insertMobileMetadata).

3.3.1.2 How to use it

As it was said before, this class is a singleton. It means that first, it is necessary to get

its instance like this:

CommunicationManager cm = CommunicationManager.getInstance();

Then, if one wants to storage data into the database, the variable storage must be

initialized this way:

cm.CreateStorage(getApplicationContext());

To add devices to the manager, one just needs to call the appropriate functions:

cm.AddDeviceShimmer(getApplicationContext(), "Device Shimmer", true);

cm.AddDeviceMobile(getApplicationContext(), "Mobile Device");

Since the mobile device uses the device’s sensor, it is not necessary to connect it. But

for the Shimmer devices, once they have been added, they need to be connected. This

work is done by the function Connect, giving as parameter the mac address:

cm.connect("Device Shimmer", address);

35

3. EHEALTHDROID

Before the device starts to stream, the enabled sensors of the devices can be set:

ArrayList<SensorType> sensors = newArrayList<SensorType>();

sensors.add(SensorType.ACCELEROMETER);

sensors.add(SensorType.MAGNETOMETER);

sensors.add(SensorType.GYROSCOPE);

cm.writeEnabledSensors("Mobile Device", sensors);

cm.writeEnabledSensors("Device Shimmer", sensors);

The number of samples to be stored in the buffer can be chosen too:

cm.setNumberOfSampleToStorage(100);

After all these things are done, it is the suitable moment to start (and stop whenever

is wanted) to stream:

cm.startStreaming("Mobile Device");

cm.startStreaming("Device Shimmer");

cm.stopStreaming("Mobile Device");

cm.stopStreaming("Device Shimmer");

There are a couple of features that can be set either before or during the data streaming

such as to select what device is going to store its data (by default, it is set to true) or

to set a label.

cm.setStoreData("Mobile Device", false);

cm.setStoreData("device Shimmer", true);

cm.setLabel("walking");

There is a way to get the device in case it is wanted to access to its specific function-

alities:

DeviceShimmerdS = (DeviceShimmer) cm.getDevice("Device Shimmer");

DeviceMobiledM = (DeviceMobile) cm.getDevice("Mobile Device");

To insert a new users profile there are a couple of things to consider. The database

must be open and the table created. It is also possible to check whether the login

already exists in order to avoid a SQL exception. Then the database should be closed.

All of this is possible by doing:

cm.openDatabase();

cm.createUsersTable();

if(!cm.existsLogin(login))

36

3.3 Managers

cm.addUserProfile(login, password, age, sex, weight, height, email);

else

Toast.makeText(getApplicationContext(), "this login already exist",

Toast.LENGTH_SHORT).show();

cm.closeDatabase();

In case there are devices streaming, it is advisable to check whether any of them store

data before closing the database. It should be done in order to avoid a SQL exception.

To do that, it is only necessary to call the function of the Communication Manager

named isStoring():

if(!cm.isStoring())

cm.closeDatabase();

What has been explained is the main use of this manager. For further information, the

reader is referred to the manager implementation.

3.3.1.3 Difficulties and solutions applied

Buffer

In the first version of this manager, the buffer was defined as part of it. The Shim-

mer driver received objects with the data captured by the device. For every sample

received, a new object with the framework data structure was created. After several

tests were made, a problem was identified: too many objects were created since it did

not send a reference to the object. A new object was created and its reference sent

instead. The adopted solution was to define the buffer in the driver and fill it with

empty ObjectData. Then, before the streaming begins, the objects are given the ap-

propriate structure taking into account the enabled sensors. Thus, always an object

reference is sent from the driver to the Communication Manager as well as from the

Communication Manager to the rest of the framework.

Asynchronous raw data transmission from Android Framework Sen-

sor (Mobile Device driver)

As was briefly commented in the mobile driver class chapter, the Android Sensor

Framework does not send raw data synchronously. Only does it when a sensor changes

its value. This emerged from a bad utilization of the framework data structure, since

every ObjectData had information about only one sensor instead of information of

multiple sensors. Also, this problem ended up storing a disproportionate number of

rows for any streaming session. The whole problem can be visualized in the next image

37

3. EHEALTHDROID

where there are different rows with the same timestamp value. So, the desired objective

Figure 3.10: Different rows with same timestamp value.

was to send ObjectData to the manager with information about multiple sensors, as

many as sensors sent information in the same timestamp value. In order to do this, the

GatherData method is used to receive information from the Android Sensor Framework

and process it. The method receives a sensorEvent, a class which contains fields for

event accuracy, the Sensor which generates the event, a timestamp and a values array

(which length and contents depends on which sensor type is being monitored).

GatherData creates a new objectData in every execution, filling the objectData

using the sensorEvent received. In order to put together into an objectData all the

sensorEvent with a same timestamp, every time a new sensorEvent is received, it is

necessary to check if some sensorEvent with the same timestamp has already been

received. If so, a fusion of both objectData is done. Otherwise, the objectData is stored

for a while, expecting that maybe some other sensorEvent will have its same timestamp

value. To do this, an auxiliary Arraylist of ObjectData is used, called bufferSignals. The

first ObjectData (in other words the first sensorEvent) goes directly into bufferSignals.

The following ones are processed in a different way. When they are received, the

bufferSignals Arraylist is checked for the existence of some ObjectData with the same

timestamp value. If this exists, the sensor information in the new ObjectData is inserted

into the Hashtable of the other ObjectData (fusion is done). By contrast, if there is not

38

3.3 Managers

any ObjectData inside the bufferSignals that has the same timestamp value, the new

ObjectData is also inserted in the bufferSignals.

The bufferSignals is circular in order to avoid making it too big, which would slow

down the search for an ObjectData with same timestamp value. When bufferSignals

has five elements, and another ObjectData wants to be inserted, the oldest one is in-

serted in the main buffer class and removed from bufferSignals (which shift the rest

of the elements to the left), inserting the new ObjectData at the end of the bufferSig-

nals Arraylist. The size of five elements for the Arraylist is large enough, due that

sensorEvents with the same timestamp than the first ObjectData in the Arraylist will

not be received after receiving five different sensorEvent timestamp values. Finally,

the reference to the ObjectData inserted in the main class buffer (also circular) is sent

using a message to the manager.

Figure 3.11: Rows with same timestamp values combined.

Mobile timestamp format

Another problem faced was the format to be used for the timestamp values. In

mobile devices, the timestamp value can be given in two different formats: epoch time

given in milliseconds, or the called Uptime time, which is the milliseconds passed since

the operating system was loaded. The format given for every device depends on the

mobile manufacture.

39

3. EHEALTHDROID

In order to have the same format regardless of the mobile device manufacturer, when

every ObjectData is going to be introduced in the main driver buffer, its timestamp is

set to the system current time, using the system method System.currentTimeToMillis().

Shimmer timestamp

The timestamp of the Shimmer devices is not given as the timestamp of a mobile

phone. That is, the timestamp is not the milliseconds since January 1, 1970 UTC. It

was discovered that the timestamp of a sample was the milliseconds since the device

started to stream. A solution must be found in order to store a legible timestamp.

The solution was to create an initial timestamp. It was set with the function Sys-

tem.currentTimeToMilis() in the moment when the device start to stream. Thus,

when the framework’s data structure is been filled with the sample received, the final

timestamp is calculated making the addition of the initial timestamp and the times-

tamp of the sample. Unfortunately this led us to another problem. A set of activities

were captured by the devices; but, when the data received was graphically represented,

an unusual out-of-time was noticed. Eventually, it was discovered that the problem was

that the device took a few seconds between the call to the StartStreaming function and

the sending of the first sample. Owing to that, the initial timestamp was wrong. To

fix this, it was decided to calculate the final timestamp in a different way. When the

first sample is received by the handler of our driver, the variables offsetSessionTimeS-

tamp and offsetShimmerTimeStamp are set. The first one is set with the function

System.currentTimeToMillis() and the second one is set to the value of the timestamp

gets from the first Shimmer’s sample. Then, to calculate the timestamp to stored, the

following equation is applied:

timeToStore = SessionTimeStamp + (timestampLastSample - timestampFirstSample).

Timestamp values

When Data object was first created, its variable data was defined as a float try-

ing to optimize the framework since float is a single-precision 32-bit data type. It

was thought that this would be enough. When the manager was tested and database

checked, Timestamp column had wrong values. After a deep search, the problem was

found. Function System.currentTimeMillis() is used to get the sample’s timestamp.

This function returns a long value, which is 64-bit signed two’s complement integer

data type. Unlike what we thought, conversion from long to float was not working

well. Therefore, it was necessary to change the variable data from float to double, a

40

3.3 Managers

double-precision 64-bit data type.

Consistency of the database

When a device starts to stream, the session metadata is stored, but only those which

are known until this moment (start, first index and sensors enabled). The rest of them

(finish and last index) are stored when the device stops streaming. To set the first

index, the last index of the datas table is retrieved, and this number is incremented one

value. The problem appears when the Android application fails while streaming data

since the last index of the session remains to zero. To fix this, consistencyTestMetada

function was made. An explanation of how this works can be found in the DBAdapter’s

description.

Closing the database

Several devices can be streaming at the same time. When their buffers are filled,

they store the data. To do this, CommunicationThread opens the database, writes the

data, and closes the database. This is done by separate threads in a concurrent mode.

The database may be closed by a thread while the other is still writing which would

produce an exception. To avoid this, it was necessary to create some mechanism. After

studying different possibilities, it was decided to create the flag isStoring. This flag is

inside of each ObjectCommunication. Before a thread starts to write in the database,

the flag is set to True, and when it is done, the flag is set to False. Then, a function

checks whether any thread is writing in the database. If the function returns True, it

means someone else is writing, and therefore the database is not closed. Thus, it will

only be the last thread that will close the database.

Database experiment

Due to the need to store the data received by the device into a database (SQLite),

it is highly important to do it as fast and efficient as possible. In order to choose the

best option, an experiment was done by testing its design, how to store the data, and

where to save the database.

1. Database’s design

• Design A

For the experiment only the Signals table was implemented. In this design,

every Signal table’s row keeps the value returns of a particular sensor and

device.

41

3. EHEALTHDROID

SIGNALS

-Id (integer)
-Type_Signal (text)
-DeviceName (text)
- Data (double)
-Unit (text)
-Format (text)
-Time_Stap (float)

DEVICE_USAGE

- Id (integer)
- Connection_time (integer)
- Disconnection_time(integer)

KNOWLEDGE

- Id (integer)
-Data (float)
-DataRawStart (integer)
(FK)
-DataRawEnd(integer)
(FK)

PREPOCESSING

- Id (integer)
-Data (float)
-DataRawStart (integer)
(FK)
-DataRawEnd(integer)
(FK)

FEATURE

- Id (integer)
-Data (float)
-DataRawStart (integer)
(FK)
-DataRawEnd(integer)
(FK)

Figure 3.12: Database’s design A.

Figure 3.13: Example of the table from the design A.

Advantages

- Scalability: If a new device with new sensors is added to the API, only a

few changes would be necessary in the Storage class.

- Completeness: With this design, it is ensured that rows are completed and

there will not be Null values.

Disadvantages

42

3.3 Managers

- Time and size: Since each row stores just one value, it takes a lot of time

and needs more space.

• Design B

This was the database picked, so its design and structure is explained above.

Advantages

- Time and size: Fewer rows are inserted so that less time and space is

required. For instance, if the data is received from 4 different sensors, this

design would insert 4 times less rows.

- Completeness: With this design it is ensured that rows are completed and

there will not be Null values.

Disadvantages

- Scalability: Creating a specific table for each kind of device is required,

which implies a bigger programming effort.

2. Data insertion

• Mode 1

Insertion in this mode is made one by one.

- Code for design A:

ContentValues initialValues = new ContentValues();

initialValues.put(ID, index);

initialValues.put(TYPE_SIGNAL, signal);

initialValues.put(NAME_DEVICE, nameDevice);

initialValues.put(DATA, data);

initialValues.put(UNIT, unit);

initialValues.put(FORMAT, format);

initialValues.put(TIME_STAMP, timeStamp);

db.insert(TABLE_SIGNALS, null, initialValues);

- Code for design B:

ContentValues initialValues = new ContentValues();

initialValues.put(ACCELEROMETER_X, array[0]);

initialValues.put(ACCELEROMETER_Y, array[1]);

initialValues.put(ACCELEROMETER_Z, array[2]);

initialValues.put(MAGNOMETER_X, array[3]);

initialValues.put(MAGNOMETER_Y,array[4]);

initialValues.put(MAGNOMETER_Z, array[5]);

initialValues.put(GYROSCOPE_X, array[6]);

43

3. EHEALTHDROID

initialValues.put(GYROSCOPE_Y, array[7]);

initialValues.put(GYROSCOPE_Z, array[8]);

initialValues.put(GSR, array[9]);

initialValues.put(ECG_RALL, array[10]);

initialValues.put(ECG_LALL, array[11]);

initialValues.put(EMG, array[12]);

initialValues.put(STRAIN_GAUGE_HIGH, array[13]);

initialValues.put(STRAIN_GAUGE_LOW, array[14]);

initialValues.put(HEART_RATE, array[15]);

initialValues.put(EXP_BOARDA0, array[16]);

initialValues.put(EXP_BOARDA7, array[17]);

initialValues.put(TIME_STAMP, array[18]);

initialValues.put(NAME_DEVICE, nameDevice);

initialValues.put(FORMAT, format);

db.insert(TABLE_SIGNALS, null, initialValues);

• Mode 2

Insertion is done using transactions.

- Code for design A:

String sql = "INSERT INTO "+TABLE_SIGNALS+" ("+ID+",

"+TYPE_SIGNAL+", "+NAME_DEVICE +", "+DATA+", "+UNIT+",

"+FORMAT+" , "+TIME_STAMP+") VALUES (?, ?, ?, ?, ?, ?, ?)";

db.beginTransaction();

SQLiteStatementstmt = db.compileStatement(sql);

for(inti=0; i<200; ++i){

stmt.bindLong(1, id);

stmt.bindString(2, type);

stmt.bindString(3, name);

stmt.bindDouble(4, data);

stmt.bindString(5, unit);

stmt.bindString(6, format);

stmt.bindDouble(7, time);

stmt.executeInsert();

stmt.clearBindings();

}

db.setTransactionSuccessful();

db.endTransaction();

44

3.3 Managers

- Code for design B:

String sql = "INSERT INTO "+ nameTable+ " (" + ACCELEROMETER_X

+ ", " +ACCELEROMETER_Y + ", " + ACCELEROMETER_Z + ", " +

MAGNOMETER_X + ", " +MAGNOMETER_Y + ", "+ MAGNOMETER_Z +

", " + GYROSCOPE_X+ ", " + GYROSCOPE_Y + ", "+

GYROSCOPE_Z+ ", " + GSR + ", "+ ECG_RALL + ", " + ECG_LALL

+ ", " + EMG + ", "+ STRAIN_GAUGE_HIGH + ", " +

STRAIN_GAUGE_LOW + ", " + HEART_RATE + ", "+EXP_BOARDA0 +

", " + EXP_BOARDA7 + ", " + TIME_STAMP + ", "+ LABEL+ ")

VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?,

?, ?, ?)";

db.beginTransaction();

SQLiteStatementstmt = db.compileStatement(sql);

for (inti = 0; i<array.length; i++) {

stmt.bindDouble(1, array[i][0]);

stmt.bindDouble(2, array[i][1]);

stmt.bindDouble(3, array[i][2]);

stmt.bindDouble(4, array[i][3]);

stmt.bindDouble(5, array[i][4]);

stmt.bindDouble(6, array[i][5]);

stmt.bindDouble(7, array[i][6]);

stmt.bindDouble(8, array[i][7]);

stmt.bindDouble(9, array[i][8]);

stmt.bindDouble(10, array[i][8]);

stmt.bindDouble(11, array[i][10]);

stmt.bindDouble(12, array[i][11]);

stmt.bindDouble(13, array[i][12]);

stmt.bindDouble(14, array[i][13]);

stmt.bindDouble(15, array[i][14]);

stmt.bindDouble(16, array[i][15]);

stmt.bindDouble(17, array[i][16]);

stmt.bindDouble(18, array[i][17]);

stmt.bindDouble(19, array[i][18]);

stmt.bindDouble(20, array[i][19]);

stmt.executeInsert();

stmt.clearBindings();

}

45

3. EHEALTHDROID

db.setTransactionSuccessful();

db.endTransaction();

3. Data storage

- Internal memory: It is usually faster but has less capacity. It is difficult to

get the database file.

- External memory: It is usually slower but has more capacity. It is easy to get

the database file.

Experiment

It is supposed that the following signals are received: Accelerometer X, Accelerome-

ter Y, Accelerometer Z, Magnometer X, Magnometer Y, Magnometer Z, Gyroscope X,

Gyroscope Y, Gyroscope Z, TimeStamp, ECGRall and ECGLall. 12 signals in total.

Taking into account the storage, two experiments were done. The first was done with

SD card type 4 (4 MB/s), and the second one with SD card type 10 (10MB/s).

Table 3.1: Database experiment with HTC Sensation Z710e. Android 4.0.3 (SD card

type 4)

Insertion Design Storage Time(s)

*N=50

Time(s)

N=100

Time(s)

N=200

Time(s)

N=500

Time(s)

N=1000

Mode 1 A
Internal 17.45 34.63 67.94 172.15 339.07

External 77.84 156.17 329.63 776.12 1642.57

B
Internal 1.76 3.14 6.63 15.04 32.98

External 6.80 16.07 31.19 78.86 154.62

Mode 2 A
Internal 0.31 0.43 0.83 1.83 3.72

External 0.97 1.35 1.71 3.52 4.56

B
Internal 0.15 0.25 0.35 0.75 1.45

External 0.89 1.07 1.11 1.64 2.24

*N = number of sample received. Design A would be: 50 samples * 12 signals = 600 rows whereas

design B would be: 50 samples = 50 rows.

At the end of the first experiment, database 1 had 156600 rows and 7940KB.

At the end of the first experiment, database 2 had 13450 rows and 655KB.

46

3.3 Managers

Table 3.2: Database experiment with HTC Sensation Z710e. Android 4.0.3 (SD card

type 10)

Insertion Design Storage Time(s)

N=50

Time(s)

N=100

Time(s)

N=200

Time(s)

N=500

Time(s)

N=1000

Mode 1 A
Internal 17.77 34.53 69.87 170.30 350.71

External 18.65 39.24 77.25 172.41 385.25

B
Internal 1.78 3.22 6.91 16.20 34.58

External 1.65 3.99 6.86 16.93 35.12

Mode 2 A
Internal 0.29 0.46 0.82 1.85 4.19

External 0.26 0.44 0.77 1.90 4.48

B
Internal 0.12 0.19 0.24 0.52 1.10

External 0.12 0.22 0.31 0.53 1.18

Taking into account that the sample rate was 50Hz:

655 KB / 13450 rows = 0.048 kb/row

T(1s) = 0.048 kb/row * 50 rows = 2.41 kb (50 rows)

T(3600s) = 0.048kb/row * 50 rows * 3600 seconds = 8640 kb = 8.4375 MB

T(86400s) = 0.048kb/row * 50 rows * 86400 seconds = 202.5 MB (a whole day)

Conclusions of the experiment

It is quite obvious that mode 2 of data insertion (transaction) is much faster than

mode 1 (one by one). Regarding the database’s design, it may seem that design B

is faster than design A, mainly because design A does 12 times more insertions than

design B. Thus, with N=500, design A inserts 6000 rows (12 signals * 500 samples)

whereas design B just inserts 500 rows. In addition, the experiments show that the SD

card type 10 is as fast as the internal memory, so using this kind of SD card gets all of

the advantages and none of the disadvantages.

In conclusion, the best combination is to use design B: inserting rows with mode

2 and storing the database file into external memory. In the end, it was decided to

implement this combination in order to make the framework the most efficient possible.

47

3. EHEALTHDROID

3.3.2 Remote Storage Manager

The Remote Storage Manager provides remote storage and uploading functionalities

for the information stored in the mobile local database.

3.3.2.1 Description

For the sake of simplicity we build this section upon the two remote communication el-

ements (i.e., client and server). Specifically, on the client side the eHealthDroid library

functions and classes defined for the data uploading and retrieval are presented while

some customized PHP templates are provided for the server side.

Client side

There are three main functions in the RemoteStorageManager class: uploadUnit-

sTable, uploadSignalsTable and uploadMetadataTable. These functions are used to up-

load Units, Signals and Metadata database tables (3.3.1.1). For this purpose, acquisi-

tion and dispatch of the desired data table to the thread used to transmit the data to

the remote storing is done.

These functions receive as parameter the ID of the device from which the data

is wished to upload. This ID is used to identify the corresponding database and ta-

bles. Once this is achieved, it is necessary to retrieve all the data (table rows) con-

tained in the table. To that end, some of the functions defined for the Local Storage

Manager are used. These are: getMobileSignalsTable, getShimmerSignalsTable, get-

MobileMetadataTable, getShimmerMetadataTable, getMobileUnitsTable and getShim-

merUnitsTable. These functions call to functions of the DBAdapter class, here used to

proceed with the database queries for obtaining the data.

To show the procedure to extract the data from a table is described the func-

tion getMobileSignalsTable of DBAdapter class, used to retrieve the signal table of a

portable mobile. The data are returned using the structure Hashtable<SensorType,

ArrayList<Double>>. The hash key is a signal type used within the table (columns),

whereas the ArrayList<Double> comprises all the data values belonging to that signal.

Using a SQL query, all the information is obtained and then, using a cursor an array

list for every SensorType is filled with the data.

For the rest of the functions the process is similar, just extracting different columns

depending on the device and the table selected (in some cases also different data struc-

tures). The functions to obtain the signal units are slightly different, since the tables

used for the mobile data are different to the ones used for the external sensors.

48

3.3 Managers

Back to the RemoteStorageManager class, now that the data have been acquired

is time to send them to the remote storage. A new thread is needed to avoid blocking

the main one during the process of uploading, and this thread needs a Message Queue

which is implemented by a Looper. A Looper is a message handling loop which reads

and processes items from a MessageQueue, where messages are posted using a Handler.

After the uploading process is important not to leave this thread running to avoid

the waste of resources. Due to killing or stopping threads in Android is unsafe, the

function finishProcess uses the interrupt Thread function, which tells the system to

stop the thread when system needs to kill some threads. It also quits the threads

looper. The data are sent to the thread inside messages by:

Message messageToSend = thread.myHandler.obtainMessage(3);

messageToSend.obj = data;

messageToSend.arg1 = MOBILE_DEVICE;

thread.myHandler.sendMessage(messageToSend);

The parameter thread is a RemoteStorageManager class variable of RemoteStor-

ageThread type, class which extends of Thread and is responsible of the upload pro-

cessing. This thread starts when the RemoteStorageManager class variable is created.

The obtainMessage argument is just an ID (message.what) used to recognize what the

thread must do with the received data. Data is the information that will be uploaded

to the remote storage and arg1 a number to recognize if the data belongs to a mobile

device or a biomedical sensor (e.g., Shimmer device). This changes the PHP scripts to

be executed in the server side.

Once the message with the data is sent, the thread needs to receive the created

message using a Handler and depending on the ID code proceed in consequence. This

is done by a switch-case, where the cases are the following:

• Case message.what = 0 → To upload mobile units table

• Case message.what = 1 → To upload shimmer units table

• Case message.what = 2 → To upload mobile/shimmer signals table

• Case message.what = 3 → To upload mobile/shimmer metadata table

Once inside a case, the data sent in the message need to be placed into a structure.

As an example, it looks like this for the case that upload signals tables:

Hashtable<SensorType, ArrayList<Double>> data2 = (Hashtable<SensorType,

ArrayList<Double>>) msg.obj;

49

3. EHEALTHDROID

Http Post requests are necessary to be executed on the server. The POST request

method is designed to ask a web server for accepting the data enclosed in the request

messages body for storage and is often used to upload files or submitting web forms.

Thus, it is necessary an instance of an Http Client and Http Post.

DefaultHttpClient httpClient = new DefaultHttpClient();

HttpPost httpPost = new HttpPost(url);

The url parameter of the HttpPost constructor is really important. The url varies

depending on the case being executed, for example:

url = serverIP + "/" + shimmerUnitsPath;

The ServerIP is the IP address where the remote storage is hosted. This attribute

is a class attribute set through the function setServerIP. The rest of the url is formed

by a url that contains the name of the script file that will be executed.

An Http Post is performed for every case. The data themselves are given to the

web server using the Android object NameValuePair and BasicNameValuePair, which

both together are used to encapsulate an attribute/value pair. In order to speed up the

data uploading time, JSON (60) has been used as tool to pass the data to the server.

A JSON Object is filled with all the information to be uploaded and once this is done,

this is sent through a NameValuePair object by a post execution. For example, in case

1 corresponding to uploading the units table of the device Shimmer the code looks this

way:

List<NameValuePair> nameValuePairs = new ArrayList<NameValuePair>(2);

nameValuePairs.add(new BasicNameValuePair("TableName",

tableNameShimmerUnits));

JSONObject json = new JSONObject();

JSONArray sensors = new JSONArray();

JSONArray calibrated = new JSONArray();

JSONArray uncalibrated = new JSONArray();

for (int i = 0; i < data1.size(); i++) {

ArrayList<String> aux = data1.get(i);

sensors.put(aux.get(0));

calibrated.put(aux.get(1));

uncalibrated.put(aux.get(2));

}

50

3.3 Managers

In this case, the data (data1) are encoded into an ArrayList<ArrayList<String>>

structure. The table Shimmer Units contains three attributes: Sensors, Calibrated

format and Uncalibrated format. This is the reason why three JSONArray are created

and filled within the loop. These JSON arrays needs to be placed into the JSONObject

which will be parsed in the server side after doing the post execution.

json.put("Sensors", sensors);

json.put("Calibrated", calibrated);

json.put("Uncalibrated", uncalibrated);

String jsonString = json.toString();

nameValuePairs.add(new BasicNameValuePair("Json", jsonString));

httpPost.setEntity(new UrlEncodedFormEntity(nameValuePairs));

HttpResponse httpResponse = httpClient.execute(httpPost);

Uploading signals tables from Shimmer and portable mobiles is slightly different.

The data are enclosed into a Hashtable<SensorType, ArrayList<Double>> structure.

That is why it is necessary to loop the hashtable as many times as different SensorType

contains and creating a JSONArray with all the data belonging to a sensor. Once this

is done, every JSONArray is inserted into the JSONObject that will be sent to the

server and the process starts again with other sensor. As some values can be NaN, is

necessary to check whether this happens and, if so, insert a null value instead. The

code looks like follows:

List<NameValuePair> nameValuePairs = new

ArrayList<NameValuePair>(2);nameValuePairs.add(new

BasicNameValuePair("TableName", tableNameSignals));

JSONObject json2 = new JSONObject();

Set<SensorType> signals = data2.keySet();

for(SensorType s: signals){

JSONArray aux = new JSONArray();

for(int i = lastID; i < data2.get(s).size(); i++){

if(data2.get(s).get(i).isNaN())

aux.put(null);

else

aux.put(data2.get(s).get(i));

}

51

3. EHEALTHDROID

json2.put(s.getAbbreviature(), aux);

}

String jsonString = json2.toString();

nameValuePairs.add(new BasicNameValuePair("Json", jsonString));

httpPost2.setEntity(new UrlEncodedFormEntity(nameValuePairs));

HttpResponse httpResponse2 = httpClient.execute(httpPost2);

The reason why the loop goes from lastID to the end of the data structure will be

explained later. In short, this is the way of preventing that information already stored

in the server will not be uploaded twice.

The framework allows for the logging of the execution results using the function

logStatusAndJson, which creates a JSONObject with information received by the server

side and contains three tags to check if everything is done correctly: Success, Message

and Rows (number of rows uploaded)

Difficulties and solutions applied. Client side

Partial table uploading

One of the faced problems was to avoid uploading information already available on

the server. The employed solution differs depending on the data table that is being

uploaded.

• Mobile&Shimmer Units table. The data to be upload are always the same,

since the sensors formats do not change. Therefore, there is no need to upload

this table more than once. To achieve this, the field ID (a string with the sensor

name) is set as Primary Key (besides of not null), so there will not exist repeated

keys.

• Mobile&Shimmer Signals table. To avoid uploading data which is already on

the server, a PHP script called GetLastID is used to get the last ID of a specific

table in the server. The loop where the JSON arrays are filled goes from the last

ID to the size of the data acquired.

• Mobile&Shimmer Metadata table. It solves the problem in the same way as

for the signals table.

52

3.3 Managers

Data transmission to server

As will be presented in section 3.3.2.3, the selection of JSON to do the data trans-

mission to the web server provides a great performance. However, this was not the first

implementation done. At the beginning, to upload every single row of a table, an Http

Post execution was done, with as many BasicNameValuePair inside the nameVal-

uePairs list as attributes were necessaries. For example, uploading Shimmer Units

database tables looked like this:

List<NameValuePair> nameValuePairs = new ArrayList<NameValuePair>(4);

for (int i = 0; i < data1.size(); i++) {

ArrayList<String> aux = data1.get(i);

nameValuePairs.add(new BasicNameValuePair("TableName",

tableNameShimmerUnits));

nameValuePairs.add(newBasicNameValuePair("Sensors", aux.get(0)));

nameValuePairs.add(new BasicNameValuePair("Calibrated", aux.get(1)));

nameValuePairs.add(new BasicNameValuePair("Uncalibrated", aux.get(2)));

httpPost.setEntity(new UrlEncodedFormEntity(nameValuePairs));

HttpResponse httpResponse = httpClient.execute(httpPost);

}

The performance is really poor in comparison with the one using JSON, due to the

amount of Http Post requests performed in this implementation.

Server Side

The server side development is not part of the framework. However, it is provided a

possible implementation that may be used or not, depending on the user requirements.

For this work XAMPP has been used (61). XAMPP is a free and open source cross

platform web server solution stack package, consisting of the Apache HTTP Server,

MySQL database and interpreters for scripts written in PHP and Perl programming

languages. Since it is essential to interact with the server in order to create tables or

insert data into them, the server-side scripting language PHP (62) is used. Every PHP

file is stored in a subfolder of XAMPP called htdocs, providing a functionality of the

following ones:

• DB config.php. Set variables as user, password, database and server address to

53

3. EHEALTHDROID

be used for other scripts to connect with the database.

• insert mobile signals.php. Provides functionality to create (if necessary) a mobile

signals table and insert new rows.

• insert mobile metadata.php. Provides functionality to create (if necessary) a mo-

bile metadata table and insert new rows.

• insert mobile units.php. Provides functionality to create (if necessary) a mobile

units table and insert new rows.

• insert shimmer signals.php. Provides functionality to create (if necessary) a mo-

bile metadata table and insert new rows.

• insert shimmer metadata.php. Provides functionality to create (if necessary) a

shimmer metadata table and insert new rows.

• insert shimmer units.php. Provides functionality to create (if necessary) a shim-

mer units table and insert new rows.

• getLastId.php. Provides functionality to get the last ID of a table.

These scripts are written using the PHP API MySQLi (63). Details of the imple-

mentation are described further ahead in the text.

Difficulties and solutions found. Server side

SQL Injection and Bobby tables. From MySQL to MySQLi API

At the beginning, the original PHP API mySQL (64) was used to write PHP scripts.

This API has security problems allowing hacking techniques as SQL injection to be

really easy.

Bobby tables (Figure 3.14) or its formally name SQL injection is a real-world ex-

ploit that is used by hackers and malicious users on daily basis (65). SQL injections

work by inserting additional queries or code into your application. It does this by

putting malicious code into form fields. The application receives the form field filled

and executes the query, ignoring that actually may be executing more than one query.

When someone is able to execute code this way in an application, it takes control over

it, which allows him to do all kind of exploits like hosting fake paypal sites or child

pornography. Here it is encountered of worth necessity to have control of the data. The

54

3.3 Managers

Figure 3.14: Bobby Tables/SQL injection comic. Consequences of allowing malicious

code into form fields. Picture from (8)

importance of patients or users data makes absolutely necessary to guarantee privacy

and security procedures to avoid any kind of disclosure.

It is important to point out how crucial is the prevention of servers from SQL

injection, since SQL syntax is pretty much the same across different brands of databases,

so the same exploit could run successfully against Oracle, MySQL, PostgreSQL, etc.

A simple example of a potencial SQL statement which could turn into SQL injection

follows:

Select * FROM users WHERE user_name = $_POST[’user’];

In this case, if the user variable passed to the PHP script is ‘Juan’, everything

works fine and there is no problem. However, problems appears when the script input

starts being malign. If the input is "’Juan’ OR ’a’ = ’a’" the SQL query looks like

follows:

Select * FROM users WHERE user_name = "’Juan’ OR ’a’ = ’a’";

This would obtain all the information inside the users table due to the evaluation

of ’a’ = ’a’ is always true. But what happens when the input relinquished to the

application is actually malicious?

Select * FROM users WHERE user_name = "’Juan’ ; DROP TABLE

users";

Once the query is submitted, the whole table users is dropped. This is the basic

idea of SQL Injection.

At the beginning, the fraemework PHP scripts had this dangerous issue, looking

SQL queries like follows:

55

3. EHEALTHDROID

$id = $_POST[’ID’]; $accX = $_POST[’AccX’]; $accY =

$_POST[’AccY’]; $accZ = $_POST[’AccZ’]; $magX =

$_POST[’MagX’]; $magY = $_POST[’MagY’]; $magZ =

$_POST[’MagZ’]; $gyrX = $_POST[’GyrX’]; $gyrY =

$_POST[’GyrY’]; $gyrZ = $_POST[’GyrZ’]; $light =

$_POST[’Light’]; $pressure = $_POST[’Pressure ’];

$proximity = $_POST[’Proximity ’]; $gravX =

$_POST[’GravX’]; $gravY = $_POST[’GravY’]; $gravZ =

$_POST[’GravZ’]; $linAccX = $_POST[’LinAccX ’]; $linAccY =

$_POST[’LinAccY ’]; $linAccZ = $_POST[’LinAccZ ’]; $rotVecX

= $_POST[’RotVecX ’]; $rotVecY = $_POST[’RotVecY ’];

$rotVecZ = $_POST[’RotVecZ ’]; $humidity =

$_POST[’Humidity ’]; $temperature = $_POST[’Temperature ’];

$timeStamp = $_POST[’TimeStamp ’];

$sql2 = "INSERT INTO mobile_signals(ID, AccX , AccY , AccZ , MagX ,

MagY , MagZ , GyrX , GyrY , GyrZ , Light , Pressure , Proximity ,

GravX , GravY , GravZ , LinAccX , LinAccY , LinAccZ , RotVecX ,

RotVecY , RotVecZ , Humidity , Temperature , TimeStamp) VALUES

($id , $accX , $accY , $accZ , $magX , $magY , $magZ , $gyrX , $gyrY ,

$gyrZ , $light , $pressure , $gravX , $gravY , $gravZ , $proximity ,

$linAccX , $linAccY , $linAccZ , $rotVecX , $rotVecY , $rotVecZ ,

$humidity , $temperature , $timeStamp);";

$result2 = mysql_query($sql2);

How SQL injection can be solved? It is important to ensure that the input data are

actually what are supposed to be. In other words, never trust the network. In practice

it is just a matter of checking the appropriate data types of the statement, rejecting

or cleaning strange characters that can be found, as back ticks, semicolons or words as

DROP, SELECT or UPDATE. Thus, to avoid SQL injection problems has been used

the PHP API MySQLi, that is able to execute what is called Prepared Statements.

Mysqli API, Prepared Statements and Transactions

Prepared Statements (66) tend to increase security by separating the SQL logic

from the data supplied to the application. In the previous example the data was placed

into the SQL logic by building the query as a string on the fly.

On another note, transactions is a sequential group of database manipulation oper-

ations, which is performed as if it were one single work unit. This means a transaction

will never be complete unless each individual operation within the group is executed

56

3.3 Managers

successfully. If any operation belonging to the transaction fails, the transaction will fail

and the database will not change its status.

To show the entire process of uploading a table using prepared statements and

transactions by means of MySQLi API, the script to upload a shimmer signals table

has been illustrated.

First of all, it is necessary to obtain a MySQLi object with all the information

needed, such as user, password, database and server address. Once this is done, con-

nection and creation of the table (if necessary) where data will be upload is done. In

order to unable the automatic modifications of the database (to be able to use trans-

actions), the function autocommit with parameter false is used.

require_once __DIR__ . ’/db_config.php’;

$mysqli = new mysqli(DB_SERVER , DB_USER , DB_PASSWORD ,

DB_DATABASE);

if ($mysqli ->connect_errno)

die(’Connection Error (’ . $mysqli ->connect_errno . ’) ’ .

$mysqli ->connect_error);

$mysqli ->autocommit(FALSE);

$tableName = $_POST[’TableName ’];

$sql1 = "CREATE TABLE IF NOT EXISTS" . "$tableName" . "(ID INT

NOT NULL PRIMARY KEY AUTO_INCREMENT , Acc INT , Mag INT , Gyr

INT , GSR INT , ECG INT , EMG INT , SG INT , HeartRate INT , ExpBA0

INT , ExpBA7 INT , Format varchar (50), Start varchar (50),

Finish varchar (50), First INT , Last INT , SampleRate INT);";

$result1 = $mysqli ->query($sql1);

Once all this is done and if $result1 is true (meaning was not any problem check-

ing/creating the table) it is moment to set the transaction using prepared statements,

having in mind that all the data is contained in the JSON object sent from the client

side. For this, a loop is used and in every iteration a new insert SQL operation is added

to the transaction. The most relevant code looks like follows:

$data = $_POST[’Json’];

$json = json_decode($data , true);

$continue = true;

for($i = 0; $i < sizeof($json[’AccX’]) && $continue; $i++){

$sql2 = "INSERT INTO " . "$tableName" . "(Acc , Mag , Gyr , GSR ,

57

3. EHEALTHDROID

ECG , EMG , SG , HeartRate , ExpBA0 , ExpBA7 , Format , Start ,

Finish , First , Last , SampleRate) VALUES

(?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?);";

$stmt = $mysqli ->prepare($sql2);

$stmt ->bind_param(’iiiiiiiiiisssiii ’, $json[’Acc’][$i],

$json[’Mag’][$i], $json[’Gyr’][$i], $json[’Gsr’][$i],

$grav[’Ecg’][$i], $json[’Emg’][$i],

$json[’SG’][$i],$json[’HeartRate ’][$i],

$json[’ExpBA0 ’][$i], json[’ExpBA7 ’][$i],

$json[’Format ’][$i], $json[’Start ’][$i],

$json[’Finish ’][$i], $json[’First ’][$i],

$json[’Last’][$i], $json[’Sample_Rate ’][$i]);

$continue = $stmt ->execute ();

$stmt ->close ();

}

As can be noticed, now the data have not been supplied to the query as it was

done before. Every character of the first parameter of bind param function denote

the variable type which will be introduced. To finish, the variable $continue informs

if any trouble occurs during the execution of operations. If this happens, a rollback

($mysqli->rollback()) must be done to cancel the whole transactions. Else, it pro-

ceeds to commit the transaction ($mysqli->commit()) and to send a JSON object

containing information about the uploading process to the client side.

Logging JSON

As was commented in the client-side chapter, there exists the functionality to log

the process of uploading information. Thus, a JSON is created at the beginning of the

script and is being filled depending on the server responses after requesting executions.

For instance, when the process goes well, the array is filled by doing this:

if($continue){

$mysqli ->commit ();

$mysqli ->close();

$response["Success"] = 1;

$response["Message"] = "Data was upload successfully!";

$response["Rows"] = "Rows uploaded: " . $i;

echo json_encode($response);

}

58

3.3 Managers

By contrast, if a problem occurs, for example creating the transaction or creating

the table, the JSON is filled like this:

else{

$mysqli ->rollback ();

$response["Success"] = 0;

$response["Message"] = "Oops! Couldnt upload data! (Shimmer

Signals)";

$response["PhpError"] = mysql_error ();

echo json_encode($response);

}

3.3.2.2 How to use it

The way to use this module is quite simple. RemoteStorageManager is a singleton class

(class instantiation restricted to one object), so to obtain a RemoteStorageManager

instance is necessary to proceed as follows:

ServerManager sm = ServerManager.getInstance();

It is also necessary to initialize the Storage variable belonging to the RemoteStor-

ageManager class called storage. This is done by:

sm.CreateStorage(getApplicationContext());

Then the server IP address is set by means of the function setServerIP. Also, it

is compulsory to set the name and path (if necessary) of the scripts that will be exe-

cuted in the server side. These scripts must be accessible from the server IP address.

For example, using XAMPP like in this example the scripts inside the Htdocs can be

accessible by the address http://serverIP/scriptName.

sm.setServerIP("http://192.168.1.11");

sm.setMobileMetadataPath("insert_mobile_metadata.php");

sm.setMobileSignalsPath("insert_mobile_signals.php");

sm.setMobileUnitsPath("insert_mobile_units.php");

sm.setShimmerMetadataPath("insert_shimmer_metadata.php");

sm.setShimmerSignalsPath("insert_shimmer_signals.php");

sm.setShimmerUnitsPath("insert_shimmer_units.php");

sm.setLastIDPath("get_last_ID.php");

59

3. EHEALTHDROID

If Wi-Fi connection is used, Wi-Fi must be enabled. The user can turn it on through

the setWifiEnabled function defined on the System Manager.

sysm.setWifiEnabled(true, getApplicationContext());

There are three functions for uploading, one for each database table: data, metadata

or units. For example, the uploading of the the database tables for the mobile device

(“Mobile device”) and the ones for a given wearable monitoring device (“device 1”) is

defined as follows:

// To upload shimmer tables

sm.uploadUnitsTable("device 1");

sm.uploadMetadataTable("device 1");

sm.uploadSignalsTable("device 1");

// To upload mobile tables

sm.uploadUnitsTable("Mobile Device");

sm.uploadMetadataTable("Mobile Device");

sm.uploadSignalsTable("Mobile Device");

To know when the data are upload, it is needed to run within a thread the function

isProcessFinished(). An example of how to do this follows:

Handler mHandler = new Handler();

mHandler.post(isFinished);

Runnable isFinished = new Runnable(){

@Override

public void run() {

if(rsm.isProcessFinished()){

Toast.makeText(getActivity(), "Uploading completed",

Toast.LENGTH_LONG).show();

}

else

mHandler.postDelayed(this, 1000);

}

};

Once all the data are uploaded, the thread responsible for the uploading must be

stopped, to save the waste of resources.

sm.finishProcess();

60

3.3 Managers

To finish, according to users preferences, the WiFi connection could be turn off.

sysm.setWifiEnabled(false, getApplicationContext());

To upload the local database, some PHP scripts are necessaries, provided along

with the framework. Different scripts could be used, but the framework user must be

careful with the scripts name and the paths where these are located. By default, if the

user does not change scripts names or paths, the files get last ID.php, DB config.php,

insert mobile metadata.php, insert mobile signals.php, insert mobile units.php,

insert shimmer metadata.php, insert shimmer signals.php and insert shimmer units.php

must be located in a path where can be accessible by the address http://serverIP/nameFile.php

(for example, in the directory Htdocs for XAMPP).

Consequently, if the user wants to use different scripts or just for server reasons

needs to change their path, it can be achieved by means of the following functions: set-

MobileUnitsPath(String path), setMobileSignalsPath(String path), setMobileMetadata-

Path(String path), setShimmerUnitsPath(String path), setShimmerSignalsPath(String

path), setShimmerMetadataPath(String path) and setLastIDPath(String path).

3.3.2.3 Uploading test

The elapsed time to upload data depends on the upload speed of the internet connection

used and of the number of rows that will be uploaded. As was commented, two different

implementations have been developed. The first one uses as many Http Post executions

as rows needed to be uploaded and the second one passes the data into a JSON.

For testing the first model, a connection with an upload speed of 749 kbps (93.6

KB/s) was used. The local database looked like follows:

• Mobile Units Table: 11 rows

• Metadata Table: 5 rows

• Signals Table: 601 rows

It gives a total of 617 rows to upload. The elapsed time for the whole uploading

process was 11 minutes 30 seconds.

For the second test corresponding to the final setup a connection with an upload

speed of 701 kbps (87,6 KB/s, slightly slower) has been used. In this case, the number

of rows was higher than in the first test, 1021 rows to upload:

• Mobile Units Table: 11 rows

61

3. EHEALTHDROID

• Metadata Table: 5 rows

• Signals Table: 1005 rows

The elapsed time for the whole process of uploading this time was 8.768 seconds,

way faster than the first model.

62

3.3 Managers

3.3.3 Visualization Manager

This is the manager in charge of the data graphic representation. The data represen-

tation can be dynamic or static; in other words, the manager offers the possibility of

the online and offline data representation. In the offline mode, it can represent both

data acquired from the device and, furthermore, other kinds of data such as the session

length. The manager is composed, besides by the own manager, by a class called Plot.

3.3.3.1 Description

Since Android does not provide a good API for making charts, it was decided to look

for a library which could help us with this task. Several libraries were considered: An-

droidplot (67), Graphview (68), Chartdroid (69), Afreechart (70), Achartengine (71).

Finally, Graphview was the library chosen to make this manager. It was chosen due to

the fact that it is a free, open source (anything can be changed in case it is demanded),

and easy to use. It is also possible to implement online visualization.

Graphview library

GraphView library has five important classes:

• GraphView: This is the main class. It is abstract and extends from LinearLayout.

This object represents the frame of the graph and almost everything is defined

and implemented here.

• GraphViewData: It is an inner class defined inside of the Graphview class. It

has only two variables: valueX and valueY. This object represents a point in the

graph and their variables are the coordinates.

• GraphViewSeries: All the 2D graphs are composed by a set of coordinates (Y

axis and X axis). This class represents the sets of data to be drawn. The set of

data is defined as an array of GraphViewData. It is possible to choose the color

and thickness of the series as well as to store a little description of it. This class

also implements functions to either append data or reset them.

• LineGraphView: This class extends from the GraphView class, and it is only in

charge of painting specifically a line graph.

• BarGraphView: This class extends from the GraphView class and it is only in

charge of painting specifically a bar graph.

63

3. EHEALTHDROID

The library had to be modified in order to make the visualization online, but this

will be explained in 3.3.3.3.

Manager

At this point, a class which deals with both the library and the manager was de-

manded. Thus, the class Plot was created. The class Plot can be defined as a middle

layer, and it represents a graph with its series. It has three variables: a Graphview

object and two Hashtables. The Graphview object is the object necessary to use the

library. One of the Hashtable is made to store the list of the series belonging to the

graph, a list of GraphViewSeries objects. The other Hashtable is made to store the

counter of each series. These counters are the values of the highest X coordinates of

the graphs. The class defines an enumeration: GraphType. This enumeration is made

to choose what kind of graph is desired, either line graph or bar graph.

There are some methods (addSeries, appendData, resetData, removeSeries, re-

moveAllSeries) that modify the graph and the class variables in some way, and call

the library functions.

• addSeries receives the series name and the data to be represented and converts

them into the coordinates of the graph by creating an array of GraphViewData.

Then, a counter with the number of coordinates is stored, the series is created,

and added to the graph. The function returns either True in a case of success or

False in a case of not success. There is another version of this function, which

receives as parameters the color and the thickness of the series.

• appendData receives the series name, the value to be inserted at the end of the

series, and a Boolean indicating whether or not the graph must scroll to the last

value. The function increments its counter and adds the value in the end of the

series.

• appenData2 is a function that was necessary to implement for the online visual-

ization. It is actually defined in the GraphViewSeries class and introduces a value

at the end of the series. But unlike appenData, this function does not increase the

size of the array with the values. It moves the values one position to the left in

the array and introduces the new value in the last position. It could be expressed

as follows: X[0] = X[1], X[1] = X[2], ... X[n-1] = X[n], X[n] = NewValue.

• resetData receives the series name and an ArrayList with the new values. The

64

3.3 Managers

function creates a new array with the values given and replaces the current array

for the new one. Finally it replaces the counters.

• removeSeries and removeAllSerie removes a single series or removes all the series

respectively.

The rest of the methods of this class -setHorizontalLabels, setViewPort, setScalable,

isScrollable, getLegendAlign ...- are made to mask the most relevant functions of the

library. That is, the methods only call to the library functions.

The Visualization Manager was created to make a representation of any kind of data,

but overall, to make possible the online visualization of the data received. It extends

from Activity (the why will be explained later) and has four variables: an instance of

itself since it is a singleton class, an instance of the Communication Manager in order

to get the data sending by the sensors, a Hashtable which contains all the graphs, and

finally, an array with eight different colors.

Thinking about the online visualization, and in a similar way of how it was done

in the communication manager, a new object was created: ObjectVisualization. This

object is an inner class which has three variables: a Plot object, an ArrayList and an

Int. The Plot object is the graph, the ArrayList is a list of the device sensors to be

visualized, and the Int is a counter. The last two variables are only used for the online

visualization.

As it happens with all the managers, the function getInstance must be used to get

the unique instance of the manager in order to use it. Creating the graph is the first

thing to do in order to visualize the data. To do that, this manager offers the function

addGraph, which needs as parameters the name of the graph (it must be unique), the

type of the graph, and the application context. Another important function in this

topic is paint, which needs as parameter the graph name and a LinearLayout. What

this function does is add the customized graph to the LinearLayout in order to be

painted. Taking that into account, this function should be called at the end, when

everything in the graph is already set. Once the graph is created, to make the offline

visualization or create simple graphs, the manager offers the addSerie function. This

function needs as parameters the name of the graph, the name of the series, and the

data to be represented. The function checks whether the graph exits and call the

function addSeries of the class Plot. The appendData function is also interesting for

the statics graphs since it allows values to be added at the end of the series. It receives

as parameters the graph name, the series name, the value, and a Boolean indicating if

65

3. EHEALTHDROID

the graph must scroll to the end. The function first checks whether the graph exists

and then calls the appendData function of the Plot class.

To make the online visualization, it was decided to take the same approach used

for the Communication Manager. That is, the data received by the communication

manager would be sent to the visualization manager by messages. The ObjectCom-

munication of the Communication Manager defines an ArrayList with the names of

the graphs which will represent the data. A flag is also defined, which is activated

whenever the data must be sent to this manager. In the Visualization Manager, it was

necessary to define a Handler, which receives all the messages. Since the manager is

going to change the user interface, the code of the Handler has to be defined inside

of the runOnUiThread function. This function makes the code inside of it run in the

thread of the user interface. But the function is defined in the Activity class. This is

why the manager inherits from this class. The messages sent by the Communication

Manager contain an ObjectData. This ObjectData is the sample sent by the device

to the Communication Manager. The device name is retrieved from the ObjectData

and with it, the ObjectCommunication is retrieved from the Communication Manager.

The list with the names of the graphs, which will represent any data of the sample, is

retrieved from the ObjectCommunication. Then, for each graph in the list, the sample

is checked to see if there are any values of the sensors to be represented. In case there

are, the new value is added to its corresponding series. There are two cases when the

data are added and it depends on the viewport. When the number of samples received

is below of the viewport, the function appendData is used. Otherwise, the function

appendData2 is used. It is coded like this to get the data representation from being

continuous. Finally, the counter of the samples received is incremented, and the graph

is redrawn.

To start the online visualization, the manager offers the function visualizationOn-

line. It receives the graph name, the device name, and a list of the sensors which will

be represented in the graph. The function creates a series for each sensor given and

activates the flag of the ObjectCommunication for sending the data to the Visualization

Manager. It is important to note that the data of a device can be handled by different

graphs, but a graph can NOT handle the online visualization of different devices.

To stop the online visualization, the manager offers the function stopVisualiza-

tionOnline. It receives the graph name and the device name. The function removes the

graph name from the list of the graph defined in its corresponding ObjectCommunica-

tion. Then, the flag for sending the data to the visualization manager is deactivated in

case the list of the graph is empty.

66

3.3 Managers

Communication
Manager

Visualization
Manager

Handler

Object Data
(sample)

Graph 1

Graph n

Graph 2

…

Figure 3.15: Passing message from the Communication Manager to the different graphs.

The functions removeSerie and removeAllSerie remove a particular series or all of

the series respectively from statics graphs as well as from a graph with online data

visualization. It does this by calling to their homonymous functions in the class Plot.

The rest of the functions of this manager, setScalable, setVerticalLabels, getLegendAlign,

isScrollable, isShowLegend, etc, are made to set the graph features, and basically, just

call to the functions of the library through the class Plot.

3.3.3.2 How to use it

Since it is a singleton class, first it is necessary to get the instance:

VisualizationManager vm = VisualizationManager.getInstance();

Then, a graph must be created. A unique name to the graph and its type (Line or

Bars) must be selected. The UI context must also be indicated.

vm.addGraph("graph", GraphType.LINE, getApplicationContext());

Now, it depends on the approach desired, either online or offline. Here, both of them

are explained.

• Offline

To create a series, first it is necessary to create an array with the values of the Y

coordinates. For this example, the Sine of a set of numbers will be used:

float[] array = new float[250];

float a = 0;

67

3. EHEALTHDROID

(a) Horizontal view (b) Vertical view

Figure 3.16: Simple grah with one series.

(a) Horizontal view (b) Vertical view

Figure 3.17: Two graphs in the same view. The first one with two series and legend.

The second one with customized labels.

68

3.3 Managers

(a) Horizontal view (b) Vertical view

Figure 3.18: Online visualization of the 3D accelerometer signals.

for (int i = 0; i < 250; i++) {

a += 0.2;

array[i] = (float) Math.sin(a);

}

To introduce the data into the graph, the following procedure must be used:

vm.addSerie("graph", "Sin", array);

or

vm.addSerie("graph", "Sin", array, Color.BLUE, 1, "Sin from 0 to 250");

A series can be introduced with a description. To show it, one must activate the

option. Its alignment in the graph can be set as well:

vm.setShowLegend("graph", true);

vm.setLegendAlign("graph", LegendAlign.TOP);

The graph must be included in a layout In order to be painted:

LinearLayout layout = (LinearLayout) findViewById(R.id.graph);

vm.paint("graph", layout);

69

3. EHEALTHDROID

Horizontal and vertical labels are created automatically, but they can be set like

this:

String [] month = {"January", "February", "March", "April", "May",

"June", "July", "August", "Sept.", "Oct.", "Nov.", "Dec."};

vm.setHorizontalLabels("graph", month);

vm.setVerticaltalLabels("graph", month);

• Online

Like in the offline mode, it is necessary to add the graph into a layout:

LinearLayout layoutOnline = (LinearLayout)

findViewById(R.id.graphOnline);

vm.paint("graph", layoutOnline);

To visualize online data, it is necessary indicate the set of sensors desired:

ArrayList<SensorType> sensors = new ArrayList<SensorType>();

sensors.add(SensorType.ACCELEROMETER_X);

sensors.add(SensorType.ACCELEROMETER_Y);

sensors.add(SensorType.ACCELEROMETER_Z);

sensors.add(SensorType.GYROSCOPE_X);

sensors.add(SensorType.GYROSCOPE_Y);

sensors.add(SensorType.GYROSCOPE_Z);

sensors.add(SensorType.MAGNETOMETER_X);

sensors.add(SensorType.MAGNETOMETER_Y);

sensors.add(SensorType.MAGNETOMETER_Z);

The scrollable feature of the graph MUST be activated. Otherwise online visual-

ization will NOT work:

vm.setScrollable("graph", true);

Now it is the time to use the function, which does all the work, to visualize the

data:

vm.visualizationOnline("graph", "nameDevice", sensors);

To stop the visualization process, the following method may be used:

vm.stopVisualizationOnline("graph", "nameDevice");

70

3.3 Managers

There are some features that are advisable to set in order to get a better visual-

ization in both modes:

- Make the graph scalable (advisable for offline mode):

vm.setScalable("graph", true);

- Set the init and the viewport (advisable for online mode):

vm.setViewPort("graph", 1, 200);

- Set the values of the Y axis (advisable for both modes):

vm.setManualYAxisBounds("graph", 10, -10);

3.3.3.3 Difficulties and solutions applied

Online visualization

As it has been said before, one of the most important points of this manager was

the online visualization. The first version developed was tested on a mobile phone with

Android 2.3.3. It worked well, but when it was tested on a mobile phone with Android

4.0.3, it did not work. To make sure which was the problem, the application was tested

in different phones. Then, it was noticed that in versions of Android over 4.X it did not

work. As it was explained in the previous section, the online visualization lies in the

addition of data at the end of the series with the function appenData. This function

scrolls the graph to the end and redraw it using the function redrawAll defined in the

class GraphView.

public void redrawAll() {

verlabels = null;

horlabels = null;

numberformatter = null;

invalidate();

viewVerLabels.invalidate();

}

The work of redraw is done with the function invalidate which belongs to the Android

API, specifically to the class View. But this function did not work properly; it should

redraw the graph eventually, and it was only done when the screen was touched. Since

this was an internal problem of Android, it was not possible to fix it. To make the

online visualization work, the following solution was applied:

71

3. EHEALTHDROID

public void redrawAll() {

verlabels = null;

horlabels = null;

numberformatter = null;

this.invalidate();

ViewGroup v;

v= ((ViewGroup)getParent());

v.removeView(this);

v.addView(this);

viewVerLabels.invalidate();

}

The View (the whole graph) is removed from its parent and is added right after.

When this problem was fixed, it was possible to make an intensive battery test.

Then, a new problem was noticed. As it is shown in the next piece of code, the

function appenData makes a copy of the current series. Then, the new value is added

at the end of the array. This means that the array just gets bigger and bigger.

public void appendData(GraphViewData value, boolean scrollToEnd) {

GraphViewData[] newValues = Arrays.copyOf(values, values.length+1);

newValues[values.length] = value;

values = newValues;

for (GraphView g : graphViews) {

if (scrollToEnd) {

g.scrollToEnd();

}

}

}

The function is called every time the Visualization Manager receives a message. That is,

for a sample rate of 50 Hz, the function is run approximately 50 times per second. In 10

minutes of online visualization, the array would have 30000 elements, and the function

would have done 30000 memory reallocation (owing to the Array.copyOf function). This

would be only for one series/signal. Despite the fact the mobile phones are equipped

with a lot of RAM memory nowadays, Android just gives a small amount of it to

the applications, and in case they need more (when the garbage collector is called),

it is given little by little. Therefore, the system would not be able to handle a long

visualization.

During the test, when the array had a size of around 10000 elements, the application

started to collapse, and eventually it failed. Since the library needed many changes to

72

3.3 Managers

fix it, an alternative solution must to be found. It was decided to not let the array

get bigger than the viewport. To do this, it was necessary to create a new appenData

function:

public void appendData2(GraphViewData value, boolean scrollToEnd) {

GraphViewData[] newValues = Arrays.copyOfRange(values, 1,

values.length+1);

newValues[values.length-1] = value;

values = newValues;

for(int i=0; i<values.length; i++)

values[i].valueX--;

for (GraphView g : graphViews) {

if (scrollToEnd) {

g.scrollToEnd();

}

}

}

In this function, a copy of the series from the index 1 to the arrays length plus one is

created first. This is done like so to validate that the copy has the same size and to

discard the last element (first index) at the same time. Then, the new element is added

at the end of the array. In order to make the graph continuous, all the X coordinates

are decremented. Finally, the graph is scrolled to the end and redraws. Thus, the ap-

penData function is used until the number of samples received is equal to the viewport.

Then, the appenData2 function is used after that to avoid the array increase and to

create the illusion of continuity.

Viewport variable

In order to make the online visualization, getting the size of the viewport was

necessary; but it was not accessible since it was defined as a private variable. A new

function in the class GraphView had to be created to get the viewport.

public double getViewportSize(){

return viewportSize;

}

73

3. EHEALTHDROID

3.3.4 System Manager

The System Manager aims are helping the user to manage intrinsic aspects that specif-

ically corresponds to the mobile device. It is composed by the following modules:

1. Services → Provides functionality to make a phone call, sending messages or

schedule notifications.

2. Setup → Provides functionality to set WIFI or Bluetooth or adjust the screen

brightness.

3. Guidelines → Provides functionality to reproduce YouTube videos as well as local

stored ones. Audios stored locally can be reproduced too. It is composed by three

sub-modules: YouTube, Audio and Video.

3.3.4.1 Description

To develop these modules Android APIs has been used. Thus, encapsulating them in a

proper way was in some cases the main task to worry about. By contrast, the YouTube

Guidelines sub-module has been developed using the Android YouTube Player API and

is development is way more different.

Services

The functionalities provided for this module are to make a phone call, to send a

text message and to create notifications that may be scheduled at a specified time.

For the function call used to make a phone call is necessary to create a new Intent,

setting the type parameter with Intent.ACTION CALL and the phone number to call.

Once this is done, a new activity with this intent as parameter can be launched. In

the case of sendSMS function used to send a text message, a SmsManager must be

obtained to use its function sendTextMessage, giving as parameter the phone number

and the text message to be sent.

With respect to notifications, there were multiple ways to implement them due

to each Android version provides different functionality to create them. Since the

framework developed is compatible with the Android SDK Version 10, notifications

implementation uses the functions provided for this Android version. To create a

notification, it is needed to obtain a Notification Manager (72). Then a new Notification

object must be created and set properly. Some notifications features like flags and

sounds are optional, which means that if these are not specified their default values

are set automatically. However, others parameters are compulsory, such as context or

74

3.3 Managers

the Intent to be launched when the user clicks the notification. Finally, the created

notification is added to the Notification Manager.

Since there are different features available to create notifications, three different

functions are offered. The function sendSimpleNotification send a simple and default

notification with a title, text and icon. With sendComplexNotification is possible to

specify also the Intent that will be launched when the user clicks on the notification.

Finally, with sendComplexNotificationCustomSound is also possible to specify a sound

reproduced when a notification is launched.

Notifications can also be scheduled. To do that, a new class called ScheduledTask

was created. It extends from BroadcastReceiver (73) in order to be able to receive

intents. It contains only one function called onReceive. It checks what kind of task is

demanded -simple notification, complex notification, complex notification- and run it.

In order to use it must be declared as a receiver in the Android manifest. Thus, to

schedule a notification, first a new Intent with the ScheduledTask class as parameter is

created. The Intent will be launched at the time scheduled. Secondly, a PendingIntent,

which will perform the broadcast, is created. Then, an AlarmManager (74) is retrieved

from the system. Finally, the alarm is registered in the system at the specified time.

The ScheduledTask is a class specifically created to schedule tasks.

Due to the fact that there exist three different functions for notifications, there

also exist three functions to schedule these notifications: scheduledSimpleNotification,

scheduledComplexNotification and scheduledComplexNotificationCustomSound. It is

also possible to schedule the playing of an audio or soundtrack using the function

scheduledAudio.

Setup

This module provides functionality to set the Wi-Fi ,Bluetooth protocol or to adjust

the screen brightness.

For the setWifiEnabled function offered to set the Wi-Fi, a WifiManager is obtained

in order to use its own function setWifiEnabled. With Bluetooth the process is similar,

but using a mBluetoothAdapter and its functions enable and disable. With respect

to the setScreenBrightness used to adjust the screen brightness, a WindowManager is

obtained and the screen brightness is modified changing its value screenBrightness.

Guidelines

YouTube

75

3. EHEALTHDROID

The guideline module offers two functionalities: reproducing a YouTube video in

a YoutubePlayerView and loading in a listView every video of a YouTube playlist

reproducing the one selected by the user.

The main class of this module is the Youtube class. The function reproduceSin-

gleVideoMode is in charge of reproducing a YouTube video. This function calls to

getYouTubeVideoID to obtain the real YouTube ID video (just in case the API user

does not provide it directly). The Youtube ID video is inside the url body, so just doing

some matching pattern recognition the ID is be extracted.

Once this is done, the method initialize of the youtubePlayerView is called, need-

ing a key developer and a YoutubePlayer.onInitializedListener, which is an interface

for callbacks which are invoked when player initialization succeeds or fails. If the ini-

tialization is successful, the function onInitializationSuccess is executed, reproducing

the video with cueVideo. Otherwise, if the initialization fails, onInitializationFailure is

executed, showing a toast error message.

The development of the function of reproducing a playlist with its corresponding

listView is way more complex. The function to be used is reproducePlayListMode,

which needs as parameter a listView, a layout with the format for each entry (video

description, url and thumbnail image) and the playlist url.

The first thing to be done is to acquire all the information about every video in the

playlist. This process is done in an auxiliary thread (to not block the main one) and is

accomplished by the class GetYoutubeUserVideosTask (which implements Runnable).

The method run performs the following steps to obtain the information of every video

in the playlist:

1. Execution of an HttpUriRequest.

HttpClient client = new DefaultHttpClient();

HttpUriRequest request = new

HttpGet("https://gdata.youtube.com/feeds/api/playlists/" +

playlist + "?v=2&alt=jsonc");

HttpResponse response = client.execute(request);

The parameter playlist is the playlist ID provided by the API user.

2. Creation of a JSONObject using the obtained response.

BufferedReader reader = new

BufferedReader(newInputStreamReader(response.getEntity().getContent(),

"UTF-8"));

76

3.3 Managers

String jsonString = reader.readLine();

JSONObjectjson = new JSONObject(jsonString);

3. Creation of a JSONArray using the tags “data” and “items” belonging to the

JSONObject and creation of an ArrayList where videos will be introduced. The

ArrayList contains Video objects, where Video is a class with 3 attributes: title,

url and thumbnail url.

JSONArrayjsonArray = json.getJSONObject("data").getJSONArray("items");

ArrayList<Video> videosList = new ArrayList<Video>();

4. Loop the JSONArray creating Video objects and introducing them in the Videos

ArrayList.

for (int i = 0; i<jsonArray.length(); i++) {

JSONObjectjsonaux =

jsonArray.getJSONObject(i).getJSONObject("video");

String title = jsonaux.getString("title");

String url = null;

try {

url = jsonaux.getJSONObject("player").getString("mobile");

} catch (JSONException ignore) {

url = jsonaux.getJSONObject("player").getString("default");

}

String thumbUrl =

jsonaux.getJSONObject("thumbnail").getString("sqDefault");

videosList.add(new Video(title, url, thumbUrl));

}

5. Creation and filling of a bundle to send it to the Youtube class.

Bundle data = newBundle();

data.putSerializable("VideosList", videosList);

Message msg = Message.obtain();

msg.setData(data);

replyTo.sendMessage(msg);

Back to the Youtube class, there exists a handler with the aim to obtain the message

77

3. EHEALTHDROID

sent by the GetYoutubeUserVideosTask class and to call to the method fillListView

with the message as parameter. This method set an adapter for the listView, which is

in charge of populate the listView inserting every video in an entry of the list.

videosListView.setAdapter(newAdapterList(context, videoEntryViewID,

listVideos) {

@Override

publicvoidonEntry(Object entry, View view) {

if (entry != null) {

TextViewsuperiorText = (TextView)

view.findViewById(R.id.textView_superior);

if (superiorText != null)

superiorText.setText(((Video) entry).getTitle());

TextViewinferiorText = (TextView)

view.findViewById(R.id.textView_inferior);

if (inferiorText != null)

inferiorText.setText(((Video) entry).getUrl());

ImageView thumb = (ImageView)

view.findViewById(R.id.imageView_imagen);

String aux = ((Video) entry).getThumbUrl();

ImageDownloader downloader = newImageDownloader();

downloader.download(aux, thumb);

}

}

ImageDownloader is a class used to download asynchronously the thumbnail image

of the videos.

At this stage, the listview is correctly filled with every video. An onClickListener

is necessary, this way when an user application will click in a video, this will be repro-

duced in the same way as for the single video case.

Audio

The Audio Guideline module has been developed using the Media Player Android

78

3.3 Managers

API. Only some functions has been encapsulated in the module, since the goal of this

module is to provide the basic functionality. The API user can find about the entire

functionality that this API provides in the Android Developer webpage (9)

Figure 3.19: Media Player Android API State Diagram. Figure from (9)

To use MediaPlayer functions in a proper way, it is important to keep in mind its

state diagram. For the encapsulated functions, this is not important since there has

been extracted the complexity that the state diagram could bring.

Video

All the functionality provided is done through the VideoView class. The functions

encapsulated are only the basic ones to be able to display a video. The API user can

use the entire functionality of the VideoView class which can be found in the Android

Developer Webpage (75).

79

3. EHEALTHDROID

3.3.4.2 How to use it

System Manager is a singleton class. Thus, to obtain the unique instance that could

exists in an application it is necessary to use the getInstance function.

SystemManager sm = SystemManager.getInstance();

Services and Setup

Services and Setup modules are quite simple to use. To perform a mobile call or to

send a text message it could be done like follows:

sm.call(number, activity);

sm.sendSMS(number, message);

Where number parameter is the mobile number to call or send a message and

message the text message to be sent.

There are three kind of notifications which can be used as follow:

sm.sendSimpleNotification(title, text, notificationID, icon, context);

PendingIntent contentIntent =

PendingIntent.getActivity(getApplicationContext(), 0, Intent, 0);

int flags = Notification.FLAG_AUTO_CANCEL;

sm.sendComplexNotification(title, text, notificationId, icon, flags,

contentIntent, context);

Uri soundUri =

RingtoneManager.getDefaultUri(RingtoneManager.TYPE_NOTIFICATION);

sm.sendComplexNotificationCustomSound(title, text, notificationId, icon,

flags, contentIntent, soundUri, context);

Where title parameter is the notification title, text the text to be shown, notifi-

cationId the notification ID, icon an notification icon and context the application UI

context. For the last two notification type, contentIntent is the Intent which is run

when the notifications are clicked on and flags parameters are the notifications flags

available for user usage (76).

NOTE. The minimum Android SDK Version required is 10th so some flags belonging

to newer Android SDK versions may do not work properly.

These same notifications may be scheduled. It is necessary to declare in the Android

Manifest the class ScheduledTask as a receiver.

80

3.3 Managers

<receiver android:name="systemManager.services.ScheduledTask"/>

sm.scheduledSimpleNotification(title, text, notificationID, icon, context,

date);

sm.scheduledComplexNotification(title, text, notificationId, icon, flags,

contentIntent, context, date);

sm.scheduledComplexNotificationCustomSound(title, text, notificationId, icon,

flags, contentIntent, soundUri, context, date);

All parameters play the same role than explained previously except Date. It is a

Calendar type which indicates when the notification is scheduled. It is also possible to

schedule an audio to be reroduced by this:

sm.scheduledAudio(path, context, date);

Where path is the files path, context is the application UI context and date is a

Calendar type indicating when the audio is scheduled to be reproduced.

To turn on/off Wi-Fi or Bluetooth:

sm.setWifiEnabled(true/false, context);

sm.setBluetooth(true/false);

The first boolean parameter set the Wi-Fi/Bluetooth state and context is the ap-

plication UI context. Finally, the screen brightness could be adjust as follows:

sm.setScreenBrightness(brightness, activity)

The parameter of brightness is a float number between 0 and 1 (from dark to

bright). It is also possible to set it to less than 0, which means that the user default

screen brightness is used.

Guidelines

The manner of using any of the guidelines modules is slightly different. First, it is

necessary to obtain an instance of the class which will be used and once this is done,

just use its functions.

YouTube

To build the YouTube module has been necessary the YouTube Android Player API

(77). To employ this API is compulsory to provide at least a YoutubePlayerView. An

example of how to use the YouTube Guideline module is shown next:

setContentView(R.layout.youtube_layout);

81

3. EHEALTHDROID

YouTubePlayerViewyoutubeView =

(YouTubePlayerView)findViewById(R.id.youtube_view);

youtube = sm.getYoutubePlayer(getApplicationContext(), youtubeView,

DEVELOPER_KEY);

The developer key is a variable that identifies the YouTube developer submitting

an API request. In the case when only playing a YouTube video is wanted, it could be

done by:

youtube.reproduceSingleVideoMode(url)

The URL parameter is the YouTube video URL to be reproduced, that consists of

the last part of the video link.

It is also possible to reproduce YouTube playlist videos, selecting the video to be

reproduced using a listView view. In order to do this, it is necessary to have in the

current layout a listView view.

ListViewvideosListView = (ListView)findViewById(R.id.listListView);

youtube.reproducePlaylistMode(videosListView, R.layout.entry, PLAYLIST_URL);

The parameter entry is a layout with every entry format of the listview.

Audio

The Audio module has been developed using the Media Player Android API (9).

To utilize this module, the first thing to do is to obtain an instance of the Audio class.

Audio audioPlayer = sm.getAudioPlayer();

Now, to play a stored audio file in the mobile phone, this must be done:

String path = Environment.getExternalStorageDirectory() + "/" + "song.mp3";

audioPlayer.loadFile(path);

audioPlayer.prepare();

audioPlayer.play();

More functions are available, such as pause, resume, getDuration, etc. However,

every function of the MediaPlayer API may be used.

Video

The Video module is based on the functionality provides by the VideoView view

(75). To reproduce a video which is stored in the mobile external card, the following

should be done:

82

3.3 Managers

setContentView(R.layout.video_layout);

VideoViewvideoHolder = (VideoView)findViewById(R.id.videoView);

Video video = sm.getVideoPlayer(videoHolder);

String path = Enviroment.getExternalStorageDirectory() + "/" + "video.mp4";

video.setVideoPath(path);

video.play();

More functions are available, such as pause or resume. Every function of the

VideoView class may be used.

83

3. EHEALTHDROID

3.3.5 Data Processing Manager

This manager is in charge of the data processing and knowledge inference, making it is

one of the most powerful managers of the framework. The knowledge inference can be

done online as well as offline. In order to make the framework flexible, and following

the sequence shown in the Figure 3.5, the manager was divided in five modules or

packages. The Acquisition package is the responsible for the data collection. The

Pre-processing package has the functions to make the pre-process of the data. The

Segmentation package is in charge of splitting into segments the data. The Features

Extraction package is responsible for obtaining the signal features. The Classifcation

package is in charge of the knowledge inference.

3.3.5.1 Description

In a similar way to the Communication Manager, this manager must be able to run in

background. Therefore, it is also defined as a Service. The manager has, among other

things, an instance of the Communication Manager, an instance of Storage module, and

an instance of each module that composed it (acquisition, preprocessing, segmentation,

featuresExtraction and classification), in order to use the functions that they offer. It

also has a bunch of data structures where the data acquire/process/calculate will be

stored:

• hash stores the acquired data and is the following data structure:

ArrayList<Pair<String, Hashtable<SensorType, ArrayList<Double>>>>

• hashProcessed stores the processed data and is the following data structure:

ArrayList<Pair<String, Hashtable<SensorType, ArrayList<Double>>>>

• indexSegmentation stores the index of the data segments and is the following data

structure (the ObjectSegmentation object will be explain later):

ArrayList<Pair<String, ArrayList<ObjectSegmentation>>>

• featuresVector stores the extracted features and is the following data structure:

ArrayList<Double>

• featuresMatrix stores a matrix of extracted features and is the following data

structure:

84

3.3 Managers

ArrayList<ArrayList<Double>>

In order to indicate what kind of data must be used (processed or not processed)

for some of the methods, the DataType enumeration was created. It has two values:

Processed and Raw. This is translated, in programming terms, in the use of the variable

either hash or hashProcessed.

The manager is mainly composed by methods that define the functionalities of-

fered by its modules (retrieveByID, retrieveBySession, upSampling, downSampling,

windowing overlap, windowing NoOverlap, features extraction, trainClassifier, setClas-

sifier, etc). All these methods will be explained later in their corresponding module.

There are methods with other purposes such as the getInstance function, to get the

instance of the manager or the createAndSetStorage function, which needs the UI’s

context as parameter, and initialize the storage variable needed to use the functions

defined in the Acquisition module.

As it was mentioned at the section’s beginning, it is possible to make the knowl-

edge inference either online or offline. To make offline knowledge inference, the user

only needs to call the different methods offered by the manager. To make the online

knowledge inference, it was necessary that the Data Processing Manager got the sam-

ples sent by the portable biomedical devices. Hence, it was decided to implement the

approach used for the Communication Manager and the Visualization Manager. That

is, the samples will be sent by messages. It was also necessary to create a buffer for

each device connected, and a synchronization mechanism in order to know when all

the buffers are filled, and thus, to begin the knowledge inference. To make this work,

a Handler and a new object was defined. The new object is named ObjectProcessing

and is defined as an inner class. It has six variables: buffer is an array where the

samples received are stored. windowSize is the size of the window. In other words, it is

the number of samples that will be use in the knowledge inference. maxSize is an Int

indicating the size of the buffer. cont is an Int which represents a counter. hashOnline

is a Hashtable where the key is a SensorType and the object is an array containing the

values of a specific sensor. sensors is an array with the device’s sensors whose values

will be used in the knowledge inference. The object has, besides the constructor, two

functions. The first one is setWsize. It is called in the object’s constructor and it sets

the windowSize variable, multiplying the device’s sample rate by the seconds given (the

user must indicate the window’s size in seconds). The method responsible for starting

the online knowledge inference is inferenceOnline. This is the only method that the

user needs to call. It receives as parameter all the information needed to make the

85

3. EHEALTHDROID

Buffer:

WindowSize: 250
MaxSize: 750
Cont: 250
HashOnline:

Sensors:

Key Value

Acc_Z

Acc_X
ArrayList<Double>

ArrayList<Double>

Object
Data

Acc_X Acc_Y Acc_Z

Object
Data

Object
Data

Object
Data

Acc_Y
ArrayList<Double>

1.5 1.2 1.3 1.5

9.9 9.8 10.2 9.6

0.2 1.1 0.8 0.6

Figure 3.20: Example of an ObjectProcessing filled.

whole process. Its parameters are:

• windowInSeconds: It is the window’s size measured in seconds.

• sensorsAndDevices: It is a list with the devices and its sensors where the data

will be acquired to make the knowledge inference. Its structure is the following:

ArrayList<Pair<ArrayList<SensorType>, String>>

• preprocessingType: It is the type of pre-processing to be done. It should be Null

when is not desired to do the pre-processing.

• factor : In case the pre-processing is done, this is the factor to be used. Otherwise

this variable is discarded.

• typeClassAtribute: It indicates the kind of the variable to be returned when the

classification is done. It can be either String or Double.

• [mHandler] : This parameter is only for one of the two function versions. It is

the handler (which must be defined by the framework’s user) where the classified

data will be sent through a message.

86

3.3 Managers

The function creates an ObjectProcessing for each device given in the parameter sen-

sorsAndDevices. Then, for each device too, a flag in its ObjectCommunication, called

dataProcessing, is enabled. This produces that the Communication Manager sends the

samples received to this manager. Finally, the rest of the variables needed to make the

knowledge inference are stored in their corresponding class variables. The Handler of

the manager is responsible for handling the messages received and for making the syn-

chronization mechanism. When a message is received by this manager, the name of the

device, that sent the sample, is retrieved. The ObjectProcessing linked to that device

is obtained, the sample received is added into its buffer, and its counter is incremented

one value. When the amount of received samples is equal to the window’s size, an

array is created for each sensors specified in the sensors variable. These arrays contain

the values of the samples for a specific sensor. Then, the hashOnline Hastable of the

ObjectProcessing is filled with these arrays, and the class variable called buffersReady

is incremented one value. When all the buffers are full, all the hashOnline Hastable

are introduced in the hash variable (which has been explained previosly). That is, the

data structure used for the knowledge inference is filled. Finally, a Runnable object is

added to the message’s queue through the post function. The Runnable object, named

runnableOnline, has the code for making the knowledge inference. It checks whether

there is a pre-process to do. If so, the pre-process is done using the corresponding

function. Then, the features extraction is done to the data either processed or raw,

and the data is classified. In order to stop the online knowledge inference, the func-

tion endInferenceOnline is developed. It receives as parameter a list of devices names.

The method, for each devices in the list disables the endInferenceOnline flag of its

ObjecCommunication, and clears the buffer and the Hastable of its ObjectProcessing.

This manager is divided in five packages in order to make its implementation and

use easier:

Acquisition
This module is responsible for acquiring data from the local database when offline

inference is performed. This module is not used when online inference is carried out,

due to the Communication Manager which is the one that provides the data.

There are six different ways of acquiring data: by row IDs, by session, by interval

sessions, by X last seconds streamed, by interval dates or just by all the available data.

All of them need to use the Storage Module in order to execute queries into the local

database to obtain the data. Every function may be used by one or more biomed-

ical devices and they all return the same structure object: ArrayList<Pair<String,

87

3. EHEALTHDROID

Communication
Manager Devices

Object Processing

Object Processing

Object Processing

Buffer Ready:

Data Processing
Manager

Object
Communi-

cation

Object
Communi-

cation

Object
Communi-

cation

Buffer Ready:

Buffer Ready:

Runnable

[PreProcessing]

Features
Extreaction

Classification

Data
Classified

Figure 3.21: Graph showing the process to make the knowledge inference.

Hashtable<SensorType, ArrayList<Double>>>>. Inside this Arraylist of Pairs, the

first element is the device name and the second element corresponds to the data, stored

inside a hash with SensorType as keys. They also receive a common parameter, which

is the structure ArrayList<Pair<ArrayList<SensorType>, String>>, representing a

list of the devices which the data wants to be extracted from along with the signal

sensors to be acquired. An example of how this structure could be filled:

• Device Shimmer Chest → Accelerometer X, Accelerometer Y, Accelerometer Z,

Gyroscope X, Gyroscope Y, Gyroscope Z, ECG Right, ECG Left, Timestamp.

• Device Shimmer Arm → Accelerometer X, Accelerometer Y, Accelerometer Z,

Magnetometer X, Magnetometer Y, Magnetometer Z, Timestamp.

• Device Portable Mobile → Accelerometer X, Accelerometer Y, Accelerometer Z,

Humidity, Temperature, Light, Timestamp.

A detailed explanation of the developed functions follow:

• retrieveInformationByID : it retrieves data by giving two IDs of the Signal Table,

so all the data (signals) inside that range are acquired. It receives as parameter

88

3.3 Managers

starting and ending IDs and the sensorAndDevices structure (devices and sensors

to be acquired). The function code looks like this:

public ArrayList<Pair<String, Hashtable<SensorType,

ArrayList<Double>>>> retrieveInformationByID(

int start, int end, ArrayList<Pair<ArrayList<SensorType>,

String>> sensorsAndDevices) {

ArrayList<Pair<String, Hashtable<SensorType, ArrayList<Double>>>>

data = new ArrayList<Pair<String, Hashtable<SensorType,

ArrayList<Double>>>>();

if ((start != 0) && (start < end)) {

storage.open();

for (int i = 0; i < sensorsAndDevices.size(); i++) {

Hashtable<SensorType, ArrayList<Double>> hashAux;

ArrayList<SensorType> sensors =

sensorsAndDevices.get(i).first;

String nameDevice = sensorsAndDevices.get(i).second;

String nameTable = cm.getDevice(nameDevice).getTableName();

hashAux = storage.retrieveInformationByID(sensors, nameTable,

start, end);

Pair<String, Hashtable<SensorType, ArrayList<Double>>>

pairAux = new Pair<String, Hashtable<SensorType,

ArrayList<Double>>>(

nameDevice, hashAux);

data.add(pairAux);

}

if (!cm.isStoring())

storage.close();

}

return data;

}

After checking that IDs are correct and opening the database, it is proceeded to

acquire the data for each device (looping sensorsAndDevices structure). Thus, it

is necessary to extract from this structure each device name and its sensors to be

acquired, plus the Signals table name (necessary for the SQL query). After doing

this, the function retrieveInformationByID defined in the Storage Module is used

to execute the corresponding queries into the database for the data acquisition of a

89

3. EHEALTHDROID

device. This functions builds an SQL query and executes it. Then, using a Cursor

it inserts all the data in a hash which is returned to the retrieveInformationByID

function defined in Acquisition module. This is done as follows:

public Hashtable<SensorType, ArrayList<Double>>

retrieveInformationByID(ArrayList<SensorType> sensors,

String nameTable, int start, int end) {

Hashtable<SensorType, ArrayList<Double>> hash = new

Hashtable<SensorType, ArrayList<Double>>();

int numKeys = sensors.size();

List<List<Double>> arrays = new ArrayList<List<Double>>();

for (int i = 0; i < numKeys; i++) {

ArrayList<Double> aux = new ArrayList<Double>();

arrays.add(aux);

}

String columns = getColumnsName(sensors);

String sql = "select " + columns + " from " + nameTable + " where

" + ID + " BETWEEN " + start + " AND " + end + ";";

Cursor c = db.rawQuery(sql, null);

c.moveToFirst();

while (!c.isAfterLast()) {

for (int i = 0; i < numKeys; i++) {

if (c.isNull(i))

arrays.get(i).add(Double.NaN);

else

arrays.get(i).add(c.getDouble(i));

}

c.moveToNext();

}

for (int i = 0; i < sensors.size(); i++)

hash.put(sensors.get(i), (ArrayList<Double>) arrays.get(i));

return hash;

}

The aim of the function getColumnsName is to build a string with all the sensors

90

3.3 Managers

names to be acquired using its database tables names. As it is possible that

sometimes there exists a null value for some ID (table rows), it is important to

check if this happens and if it does, a NaN value is inserted.

Once this process has been done for every device, the obtained Hash is returned

to the Data Processing Manager.

• retrieveInformationBySession: it retrieves data streamed in a particular session.

The method needs as parameter the session number and the sensorAndDevices

structure. The process is similar to the one seen for retrieveInformationByID,

in fact the function retrieveInformationByID of the Storage Module is used as

well. The existing difference is that before calling to this function it is necessary

to obtain the starting and finishing ID of the particular session to be acquired.

This information is stored in the Metadata table with the same ID as the session

to retrieve. Thus, a Storage Module method called getSessionIDs is used, which

executes a simple query to obtain the starting and finishing IDs and returns them

using a Pair structure. Now that these IDs are obtained, the rest of the process

is the same for the retrieveInformationByID.

• retrieveInformationByIntervalSessions: it retrieves the data belonging to consec-

utive sessions. Its parameter are starting and finishing sessions IDs and senso-

rAndDevices structure. The process is really similar to the one for a particular

session. This time, the function getSessionIDs is called twice. The first call is to

obtain the starting ID of the starting session, and the second call to obtain the

finishing ID of the finishing session. These two parameters are used to call to the

function retrieveInformationByID.

• retrieveInformationByDates: it retrieves the streamed data inside of a range of

two dates. Its parameters are the starting time, ending time and sensorAndDe-

vices structure. For every device, once the Signal Table name has been obtained,

the function retrieveInformationByDates defined in the Storage Module is called

to acquire the data. This method converts both dates to its Epoch Time format

[REF](using Android function toMillies defined in the Time class),which is the

same format of the database signals timestamp. Then, the SQL query is built

(using the WHERE clause with both dates) and executed.

• retrieveInformationLastSeconds: it retrieves the last data streamed according to

a number of seconds. Its parameters are sensorsAndDevices and seconds, which

is an integer number meaning the number of seconds to be acquired. A Storage

91

3. EHEALTHDROID

Module method called retrieveInformationLastSeconds is used. It converts the

number of seconds to be acquired to milliseconds and executes a SQL query to

obtain the last ID of the Signal table and its timestamp value. This is the upper

timestamp value limit and the lower is obtained subtracting to this the number

of seconds (in milliseconds format).

int maxId = getMaxIndex(nameTable);

String sql = "select " + TIME_STAMP + " from " + nameTable + " where

" + ID + "=" + maxId + ";";

Cursor c = db.rawQuery(sql, null);

c.moveToFirst();

long finishingInterval = c.getLong(0);

long secondsMs = seconds * 1000;

long startingInterval = finishingInterval - secondsMs;

if (startingInterval < 0) {

startingInterval = 0;

}

Opposite to the previously seen functions, there is one more thing to deal with.

For the segmentation stage in the inference knowledge process, it is important

to use windows of the same size. Because of this, the function must always

return the same number of signals (sometimes biomedical devices may send less

or more signals than they should according to its rate). Thus, if the number

of rows acquired is marginally lower or just higher than the esteemed rows, it

is necessary to fill with NaN values or delete some rows. By this process, all

windows will hold the same size.

//Number of esteemed rows

double esteemedRows = cm.getDevice(nameDevice).getRate() * seconds;

double percentage = 5;

double differenceAccepted = (esteemedRows / 100) * percentage;

int obtainedRows = hashAux.get(sensors.get(0)).size();

// Less rows, therefore a fill up of NaN values is done in every

arraylist inside the hash

if ((obtainedRows < esteemedRows) && (obtainedRows > esteemedRows -

differenceAccepted)) {

for (int j = obtainedRows; j < esteemedRows; j++) {

for (int h = 0; h < sensors.size(); h++)

hashAux.get(sensors.get(h)).add(Double.NaN);

}

92

3.3 Managers

}

// More rows, therefore is necessary to delete rows

if (obtainedRows > esteemedRows) {

for (int j = obtainedRows - 1; j >= esteemedRows; j--) {

for (int h = 0; h < sensors.size(); h++)

hashAux.get(sensors.get(h)).remove(j);

}

}

• retrieveAllInformation: it retrieves all the information stored in the database.

Its unique parameter is sensorsAndDevices structure. For the data acquisition,

the method retrieveAllInformation defined in the Storage Module is used. This

builds and executes a SQL query and returns the data.

Pre-Processing
This module is responsible for the signal pre-processing. The implemented methods

are Upsampling and Downsampling.

Upsampling is the process of increasing the sampling rate of a signal. The Upsampling

factor is usually an integer or a rational fraction greater than unity. This factor multi-

plies the sampling rate. Downsampling is the process of reducing the sampling rate of

a signal. The Downsampling factor is usually an integer or a rational fraction greater

than unity. This factor divides the sampling rate.

The module is composed only by the preProcessing class. It has an enumeration

called PreProcessingType. It was created in order to choose the pre-process method

desired. The enumeration has two values since there are two different methods: Up-

sampling, and Downsampling. The class has four methods, two upSampling and two

downSampling.

• The first upSampling function is designed to be used only for one portable health

device. It must receive as parameter a data structure like this:

Hashtable<SensorType, ArrayList<Double>>

In this Hashtable, the key is a SensorType, and the object is an array with the

values of this sensor. The other parameter is the Upsampling factor. The Up-

sampling is calculated using the following loop:

for (int i = 0; i < data.size() - 1; i++) {

newData.add(data.get(i));

93

3. EHEALTHDROID

double n = (data.get(i+1) - data.get(i)) / factor;

for (int f = 1; f < factor; f++)

newData.add(data.get(i)+f*n);

}

newData.add(data.get(data.size() - 1));

hash.put(s, newData);

In the fragment of code, the data variable represents an array of the Hashtable

given as parameter. The newData variable is the array which contains the Up-

sampling. The hash variable is a new Hashtable containing the Upsampling arrays

calculated. This Hashtable is the data returned by the function. The other up-

Sampling function is designed to be used for multiple portable health devices. It

must receive as parameter a data structure like this:

ArrayList<Pair<String, Hashtable<SensorType, ArrayList<Double>>>>

This data structure represents a list of Pair, where the first element is the name

of a portable health device, and the second element is a Hashtable. In this

Hashtable, the key is a SensorType, and the object is an array with the values

of that sensor. The other parameter is the Upsampling factor. This function

calculates the Upsampling of the list of devices, one by one, using the function

described previously. Finally, a data structure with the Upsampling of all the

devices is returned. This data structure is equivalent to the data structure given

as parameter.

• The first downSampling function is designed to be used only for one portable

health device. The parameters that must be received are the same as for the

upSampling function (the one designed to be used only for one device). The

Downsampling is calculated by taking one value for each Downsampling factor

values. That is, if the Downsampling factor is 2, then 1 value for each 2 is

taken. If the Downsampling factor is 3, then 1 value for each 3 is taken, and

so on. The function returns a Hashtable with the Downsampling arrays. The

Hashtable’s structure is equal to the Hashtable given as parameter. The other

downSampling function is designed to be used for multiple portable health devices.

The parameters that must be received are the same as for the upSampling function

(the one designed to be used for multiples devices). This function calculates the

Downsampling of the list of devices one by one, using the function described

previously. Finally, a data structure with the Downsampling of all the devices is

94

3.3 Managers

returned. This data structure is equal to the data structure given as parameter.

Segmentation
This module is in charge of the signals segmentation. The implemented methods

are the Windowing, and the Windowing with overlap. Windowing is the process of

segmenting a signal. That is, to split the signal. These pieces are called segments or

windows. The size of these windows can be set in different units of measures (seconds,

number of samples, etc). The Windowing can be done either by overlapping other

windows or without overlapping. Also, a window can be complete or incomplete. It is

completed when its size is the size set for the window. It is incomplete when its size is

smaller than the size set for the window.

The module is composed only by the Segmentation class. Since the signals are

always stored in arrays, it was decided to make the Windowing by storing the win-

dows’ indexes instead of splitting the arrays. In order to make this task easier, the

ObjectSegmentation was created. This object has three variables: start, finish, and

complete. start is an Int which stores the index where the window begins. finish is an

Int which stores the index where the window finishes. complete is a Boolean which de-

fines whether the window is either complete or incomplete. The class has four functions,

two windowing noOverlap, and two windowing Overlap.

• The first windowing noOverlap function is designed to segment the data of only

one portable health device. It must receive as parameter a data structure like

this:

Hashtable<SensorType, ArrayList<Double>>

In this Hashtable, SensorType is the key, and the object is an array with the

values of that sensor. The other two parameters are the window’s size (measure in

seconds), and the device’s sample rate (measure in Hz). To make the Windowing,

the function calculates the window’s size, measure in number of samples, and

stores in the windowInSamples variable. Then, the number of windows that are

contained in the acquired data (the signal) is calculated. The windows’ indexes

are calculated as follow:

start = i * windowInSamples

finish = i * windowInSamples + (windowInSamples - 1)

Finally, the function returns an array containing the windows’ indexes. The

other windowing noOverlap function is designed to segment the data of multiples

portable health devices. It receives as parameter the following data structure:

95

3. EHEALTHDROID

ArrayList<Pair<String, Hashtable<SensorType, ArrayList<Double>>>>

This data structure represents a list of Pair, where the first element is the name of

a portable health device, and the second element is a Hashtable. In this Hashtable,

a SensorType is the key, and the object is an array with the values of that sensor.

The other parameters are the window’s size (measure in seconds), and an array

with the devices sample rates. This function calculates the Windowing without

overlap for a list of devices, one by one, using the windowing noOverlap function

designed for one device. Finally, an ArrayList with a list of the windows’ indexes

for each device is returned.

• The first windowing Overlap function is designed to make the overlap segmenta-

tion for the data of only one portable health device. It receives as parameter a

data structure like this:

Hashtable<SensorType, ArrayList<Double>>

In this Hashtable, SensorType is the key, and the object is an array with the

values of that sensor. The other parameters are the window’s size (measure

in seconds), the device’s sample rate (measure in Hz), and the seconds of the

previous window to overlap. To make the Windowing with overlap, the function

calculates the window’s size, measure in number of samples, as well as the the

number of samples from the previous window to overlap. The windows’ indexes

are calculated as follow:

int start = 0;

int finish = windowInSamples - 1;

while(finish < sensors.get(s).size()) {

index.add(new ObjectSegmentation(start, finish, true));

start = finish - samplePreviousWindow;

finish = start + (windowInSamples - 1);

}

if(start < sensors.get(s).size() - 1)

index.add(new ObjectSegmentation(start, sensors.get(s).size() - 1,

false));

The indexes for the first window are set and stored. The following indexes are

calculated until the windows end is out of the array. Then, the last windows in-

dexes (which are uncompleted), are stored. Finally, the function returns the array

which contains the windows’ indexes. The other windowing Overlap function is

96

3.3 Managers

designed to segment, with overlap, the data of multiples portable health devices.

It receives as parameter the following data structure:

ArrayList<Pair<String, Hashtable<SensorType, ArrayList<Double>>>>

This data structure represents a list of Pair, where the first element is the name of

a portable health device, and the second element is a Hashtable. In this Hashtable,

a SensorType is the key, and the object is an array with the values of that sensor.

The other parameters are the window’s size (measure in seconds), the seconds

of the previous window to overlap, and the array with the devices’ samples rate.

This function calculates the Windowing with overlap for a list of devices, one by

one, using the windowing Overlap function designed for one device. Finally, an

ArrayList with a list of the windows’ indexes for each device is returned.

Features extraction
This is the module in charge of the features extraction. It is only composed by

the FeaturesExtraction class, but an enumeration named FeatureType is also defined

in order to choose the feature desired. Their possible values are: Mean, Variance,

Median, Standard Deviation, Zero Crossing Rate, Mean Crossing Rate, Maximum and

Minimum. They represent the type of features that the module is able to extract.

The features are extracted from a specific signal of a particular wearable health

device. Thus, in order to make easier the specification of this information, the Object-

Feature object was created. ObjectFeature is composed by three elements: a String with

the device’s name, a SensorType with the type of sensor (or signal), and a FeatureType

with the type of the feature to extract.

The module has two public functions, both of them called feature extraction. These

are the only functions that can be used by framework’s users.

• The first feature extraction method is design for no segmented signals. It receives

as parameter the following data structure:

ArrayList<Pair<String, Hashtable<SensorType, ArrayList<Double>>>

This data structure represents a list of Pair, where the first element is the name

of a portable health device, and the second element is a Hashtable. In this

Hashtable, a SensorType is the key, and the object is an array with the values of

that sensor. The other parameter is an array of ObjectFeatres with the features to

be extracted. The function retrieves, one by one, all the features from the features

array given as parameter, and calculates them calling to its specific function

97

3. EHEALTHDROID

(which are explained later). Finally, an array with all the features extracted is

returned. The other feature extraction method is designed for splitting signals.

It receives as parameter the following data structure:

ArrayList<Pair<String, Hashtable<SensorType, ArrayList<Double>>>

This data structure represents the same as that in the first feature extraction

method. The others parameters are an array of ObjectFeatres with the features

to be extracted, an array with the windows indexes, and a Boolean which indi-

cates whether the uncompleted windows must be used to calculate the features.

The function retrieves, one by one, all the features from the features array given

as parameter. Then, the features are extracted from all the signal’s windows by

calling to its specific function (which are explained later). In case the Boolean

given as parameter is True, the features from the uncompleted windows are ex-

tracted too. Finally, a matrix with all the features extracted is returned. Every

row of the matrix is composed by all the features extracted for a single window.

The private functions, which cannot be used by the framework’s users, are the following:

two Mean, two Variance, two Std, two Median, two ZeroCrossing, two MeanCrossing,

two Maximum, two Minumun,getHashByNameDevice, and getIndexByNameDevice.

• The first Mean is designed to calculate the mean of a no split signal for a specific

portable health device. It receives as parameter a Hashtable which represents a

device. In this Hashtable, a SensorType is the key, and the object is an array with

the values of that sensor. The other parameter is the type of sensor (or signal) on

which the feature extraction is calculated. The function returns the mean of the

signal. The other Mean is designed to calculate the mean of a segmented signal

for an specific portable health device. It receives as parameter a Hashtable which

represents a device. In this Hashtable, a SensorType is the key, and the object

is an array with the values of that sensor. The other parameters are the type of

sensor (or signal) on which the feature extraction is calculated, and the windows

indexes. The function returns an array with the mean of each window.

• The first Variance is designed to calculate the variance of a no split signal for

a specific portable health device. It receives as parameter a Hashtable which

represents a device. In this Hashtable, a SensorType is the key, and the object is

the array with the values of that sensor. The other parameter is the type of sensor

98

3.3 Managers

(or signal) on which the feature extraction is calculated. The function returns the

variance of the signal. The other Variance is designed to calculate the mean of a

segmented signal for a specific portable health device. It receives as parameter a

Hashtable which represents a device. In this Hashtable, a SensorType is the key,

and the object is the array with the values of that sensor. The other parameters

are the type of sensor (or signal) on which the feature extraction is calculated,

and the windows indexes. The function returns an array with the variance of

each window.

• The first Std is designed to calculate the standard deviation of a no split signal

for a specific portable health device. It receives as parameter a Hashtable which

represents a device. In this Hashtable, a SensorType is the key, and the object

is the array with the values of that sensor. The other parameter is the type

of sensor (or signal) on which the feature extraction is calculated. The function

returns the standard deviation of the signal. The other Std is designed to calculate

the standard deviation of a split signal for a specific portable health device. It

receives as parameter a Hashtable which represents a device. In this Hashtable, a

SensorType is the key, and the object is the array with the values of that sensor.

The other parameters are the type of sensor (or signal) on which the feature

extraction is calculated, and the windows indexes. The function returns an array

with the standard deviation of each window.

• The first Median is designed to calculate the median of a no split signal for

a specific portable health device. It receives as parameter a Hashtable which

represents a device. In this Hashtable, a SensorType is the key, and the object is

the array with the values of that sensor. The other parameter is the type of sensor

(or signal) on which the feature extraction is calculated. The function returns

the median of the signal. The other Median is designed to calculate the median

of a split signal for an specific portable health device. It receives as parameter a

Hashtable which represents a device. In this Hashtable, a SensorType is the key,

and the object is the array with the values of that sensor. The other parameters

are the type of sensor (or signal) on which the feature extraction is calculated,

and the windows indexes. The function returns an array with the median of each

window.

• The first ZeroCrossing is designed to calculate the zero crossing rate of a no split

signal for a specific portable health device. It receives as parameter a Hashtable

which represents a device. In this Hashtable, a SensorType is the key, and the

99

3. EHEALTHDROID

object is the array with the values of that sensor. The other parameter is the type

of sensor (or signal) on which the feature extraction is calculated. The function

returns the zero crossing rate of the signal. The other ZeroCrossing is designed

to calculate the zero crossing rate of a split signal for a specific portable health

device. It receives as parameter a Hashtable which represents a device. In this

Hashtable, a SensorType is the key, and the object is the array with the values of

that sensor. The other parameters are the type of sensor (or signal) on which the

feature extraction is calculated, and the windows indexes. The function returns

an array with the zero crossing rate of each window.

• The first MeanCrossing is designed to calculate the mean crossing rate of a no split

signal for a specific portable health device. It receives as parameter a Hashtable

which represents a device. In this Hashtable, a SensorType is the key, and the

object is the array with the values of that sensor. The other parameter is the type

of sensor (or signal) on which the feature extraction is calculated. The function

returns the mean crossing rate of the signal. The other MeanCrossing is designed

to calculate the mean crossing rate of a split signal for a specific portable health

device. It receives as parameter a Hashtable which represents a device. In this

Hashtable, a SensorType is the key, and the object is the array with the values of

that sensor. The other parameters are the type of sensor (or signal) on which the

feature extraction is calculated, and the windows indexes. The function returns

an array with the mean crossing rate of each window.

• The first Maximum is designed to calculate the maximum value of a no split

signal for a specific portable health device. It receives as parameter a Hashtable

which represents a device. In this Hashtable, a SensorType is the key, and the

object is the array with the values of that sensor. The other parameter is the type

of sensor (or signal) on which the feature extraction is calculated. The function

returns the maximum value of the signal. The other Maximum is designed to

calculate the maximum value of a segmented signal for a specific portable health

device. It receives as parameter a Hashtable which represents a device. In this

Hashtable, a SensorType is the key, and the object is the array with the values of

that sensor. The other parameters are the type of sensor (or signal) on which the

feature extraction is calculated, and the windows indexes. The function returns

an array with the maximum of each window.

• The first Minimum is designed to calculate the minimum value of a no split signal

for a specific portable health device. It receives as parameter a Hashtable which

100

3.3 Managers

represents a device. In this Hashtable, a SensorType is the key, and the object is

the array with the values of that sensor. The other parameter is the type of sensor

(or signal) on which the feature extraction is calculated. The function returns the

minimum value of the signal. The other Minimum is designed to calculate the

minimum value of a split signal for a specific portable health device. It receives as

parameter a Hashtable which represents a device. In this Hashtable, a SensorType

is the key, and the object is the array with the values of that sensor. The other

parameters are the type of sensor (or signal) on which the feature extraction is

calculated, and the windows indexes. The function returns an array with the

minimum of each window.

• The getHashByNameDevice receives as parameter the following data structure:

ArrayList<Pair<String, Hashtable<SensorType, ArrayList<Double>>>

This data structure represents a list of Pair, where the first element is the name

of a portable health device, and the second element is a Hashtable. In this

Hashtable, a SensorType is the key, and the object is an array with the values of

that sensor. The other parameter is a device’s name. The function seeks, in the

pair’s array given as parameter, the device’s name given as parameter too. When

the device’s name is found, its Hashtable is returned. In case it is not found, the

function returns Null.

• The getIndexByNameDevice function receives as parameter the windows’ indexes

of a set of portable health devices. It also receives the device’s name. The function

seeks the windows’ indexes of the device given as parameter and returns them.

In case it is not found, the function returns Null.

Classification
It is in charge of the classification stage in the biomedical inference knowledge

process. It is composed by the Classification class and has been developed using Weka

(78). Weka is a popular suite of machine learning software written in Java, developed at

the University of Waikato, New Zealand. It encapsulates the functionality of a stripped

version of Weka for Android, offering functionalities like creating a model using different

classifiers, training or testing these or classifying instances.

The classifications class defines an enumeration named ClassifierType, used to spec-

ify a classifier of the followings: Naive Bayes, J48, Adaboost, Zeror or Linear Regres-

sion. The defined methods are described, being important to note that most of them

101

3. EHEALTHDROID

are meant to be used one after another.

• readFile: it reads a Weka file (arff format) and is loaded into the class variable

atf of ArffLoader Weka type.

• setTrainInstances: method to set train instances using a previously loaded arff

file. It loads the trainInstances class variable of Instances Weka type and at-

tributes, a list of Weka Attributes objects.

public void setTrainInstances() {

if (atf != null)

try {

trainInstances = atf.getDataSet();

} catch (IOException e) {

e.printStackTrace();

}

for (int i = 0; i < trainInstances.numAttributes(); i++)

attributes.add(trainInstances.attribute(i));

}

• setTestInstances: method to set test instances using a previously loaded arff file.

It loads the testInstances class variable of Instances Weka type.

• getTrainInstancesSummary : it returns a summary with train instances informa-

tion.

• trainClassifier : essential method to perform knowledge inference, used to train

classifiers. Before using it the class variable trainInstances must be loaded and it

needs as parameters the index of the class attribute and the type of classifier to

be used (the enumeration ClassifierType. When the classifier is built, it is loaded

into the class variable called cModel of Weka Classifier type.

public void trainClassifier(int classIndex, classifierType

classifier) {

trainInstances.setClassIndex(classIndex);

switch (classifier) {

case NAIVE_BAYES:

cModel = new NaiveBayes();

break;

102

3.3 Managers

case ADABOOST:

cModel = new AdaBoostM1();

break;

case J48:

cModel = new J48();

break;

case LINEAR_REGRESSION:

cModel = new LinearRegression();

break;

case ZEROR:

cModel = new ZeroR();

break;

}

try {

cModel.buildClassifier(trainInstances);

} catch (Exception e) {

e.printStackTrace();

}

}

• testClassifier : it tests a loaded classifier (cModel). Thus, it loads a class vari-

able of Evaluation type called eTest using testInstances and evaluates the model

performance.

public void testClassifier() {

if (testInstances != null && cModel != null) {

try {

eTest = new Evaluation(testInstances);

eTest.evaluateModel(cModel, testInstances);

} catch (Exception e) {

e.printStackTrace();

}

}

}

• getTestSummary : it returns a summary description of a classifier evaluation. It

needs eTest to be loaded.

• getTestConfusionMatrix : it returns the confusion matrix of a classifier evaluation.

It needs eTest to be loaded.

103

3. EHEALTHDROID

public double[][] getTestConfusionMatrix() {

double[][] confusionMatrix = null;

if (eTest != null) {

confusionMatrix = new double[eTest.confusionMatrix().length][];

confusionMatrix = eTest.confusionMatrix();

}

return confusionMatrix;

}

• featureVectorToInstances: it converts a features vector into an Instances object.

public Instances featureVectorToInstances(ArrayList<Double>

featureVector) {

Instances instances = new Instances("Instances", attributes, 0);

DenseInstance instance = new DenseInstance(attributes.size());

for (int i = 0; i < featureVector.size(); i++)

instance.setValue(i, featureVector.get(i));

instances.add(instance);

// Set class attribute

instances.setClassIndex(attributes.size() - 1);

return instances;

}

• featureMatrixToInstances: it converts a features matrix into a Instances object.

public Instances featureMatrixToInstances(

ArrayList<ArrayList<Double>> featureMatrix) {

Instances instances = new Instances("Instances", attributes, 0);

DenseInstance instance = new DenseInstance(attributes.size());

for (int i = 0; i < featureMatrix.size(); i++) {

for (int j = 0; j < featureMatrix.size(); j++) {

instance.setValue(j, featureMatrix.get(i).get(j));

}

instances.add(instance);

// Set class attribute

instances.setClassIndex(attributes.size() - 1);

}

104

3.3 Managers

return instances;

}

• classifyInstanceToDouble: it classify an unlabeled Instance. It returns a double

value with the classifying result.

public double classifyInstanceToDouble(Instance unlabeled) {

double clsLabel = -1;

try {

clsLabel = cModel.classifyInstance(unlabeled);

} catch (Exception e) {

e.printStackTrace();

}

unlabeled.setClassValue(clsLabel);

return clsLabel;

}

• classifyInstanceToString : it classify an unlabeled Instance. It returns a string

with the classifying result.

• loadModel : it takes a Classifier Weka object as parameter and loads a model into

the cModel class variable.

• getAttributes: it returns the class object attributes.

3.3.5.2 How to use it

Since it is a singleton class, first it is necessary to get the unique instance.

DataProcessingManager dpm = DataProcessingManager.getInstance();

It is also necessary to initialize and set (for the acquisition module) the Storage

variable belonging to the RemoteStorageManager class called storage. This is done by:

dpm.createAndSetStorage(getApplicationContext());

Now it proceeds depending on the inference knowledge approach desired: online or

offline.

Offline

Acquisition

105

3. EHEALTHDROID

To show how the data acquisition is done, some devices and sensors where data

are retrieved must be selected. For example, it is shown how to acquire the signals

accelerometer X, accelerometer Y, accelerometer Z and timestamp of a given wear-

able device called “Shimmer Chest” and the gyroscope X, gyroscope Y, gyroscope Z,

humidity and timestamp of a portable mobile device called “Mobile Device”.

ArrayList<Pair<ArrayList<SensorType>, String>> sensorsAndDevices = new

ArrayList<Pair<ArrayList<SensorType>, String>>();

ArrayList<SensorType> sensors1 = new ArrayList<SensorType>();

ArrayList<SensorType> sensors2 = new ArrayList<SensorType>();

sensors1.add(SensorType.ACCELEROMETER_X);

sensors1.add(SensorType.ACCELEROMETER_Y);

sensors1.add(SensorType.ACCELEROMETER_Z);

sensors1.add(SensorType.TIMESTAMP);

sensors2.add(SensorType.GYROSCOPE_X);

sensors2.add(SensorType.GYROSCOPE_Y);

sensors2.add(SensorType.GYROSCOPE_Z);

sensors2.add(SensorType.HUMIDITY);

sensors2.add(SensorType.TIMESTAMP);

String nameDevice1 = "Shimmer CHEST";

String nameDevice2 = "Mobile Device";

Pair<ArrayList<SensorType>, String> pair1 = new Pair(sensors1, nameDevice1);

Pair<ArrayList<SensorType>, String> pair2 = new Pair(sensors2, nameDevice2);

sensorsAndDevices.add(pair1);

sensorsAndDevices.add(pair2);

Now that sensorsAndDevices is ready, any Acquisition function may be used. To

acquire all the selected data in the IDs range 100-500:

dpm.retrieveInformationByID(100, 500, sensorsAndDevices);

To retrieve data belonging to the first existing session:

dpm.retrieveBySession(1, sensorsAndDevices);

To retrieve data belonging to the first, second and third session:

dpm.retrieveInformationByIntervalSessions(1, 3, sensorsAndDevices);

To retrieve the last 20 seconds of available data in the local database:

106

3.3 Managers

dpm.retrieveInformationLastSeconds(20, sensorsAndDevices);

Retrieving data using dates is slightly more complicated. An example of retrieving

all the data streamed from the day 24th January 2014 at 22:00:00 hour to the day 25th

January 2014 at 16:00:00 follows. It is important to keep in mind that month value

goes in the interval [0-11]

Time start = new Time();

start.hour = 22;

start.minute = 0;

start.second = 0;

start.year = 2014;

start.month = 0;

start.monthDay = 24;

Time end = new Time();

end.hour = 16;

end.minute = 0;

end.second = 0;

end.year = 2014;

end.month = 0;

end.monthDay = 25;

dpm.retrieveInformationByDates(start, end, sensorsAndDevices);

To retrieve all the information available:

dpm.retrieveAllInformation(sensorsAndDevices);

Pre-Processing

From this point, it is assumed that the data has been already acquired and stored

in the hash variable (which is defined in this manager). Thus, to calculate either the

Upsampling or the Downsampling, one just needs to do the following:

dpm.downSampling(2);

dpm.upSampling(3);

The result will be stored into the hashProcessed variable, which is defined in this

manager.

Segmentation

To make the segmentation, first it is necessary to get the devices’ sample rate. For

this example, an array with false sample rates is created:

107

3. EHEALTHDROID

ArrayList<Float> rates = new ArrayList<Float>();

rates.add((float) 50.0);

rates.add((float) 50.0);

rates.add((float) 50.0);

Then, the windowing no overlap can be calculated as follow:

dpm.windowing_NoOverlap(DataType.Raw, (float) 2, rates);

and the windowing overlap as follow:

dpm.windowing_overlap(DataType.Raw, (float) 2.5, (float) 0.5, rates);

Features Extraction

The features must be defined in order to make the features extraction. These are

some features definitions:

dpm.addFeature("Device Shimmer 1", SensorType.ACCELEROMETER_X,

FeatureType.MAXIMUM);

dpm.addFeature("Device Shimmer 2", SensorType.ACCELEROMETER_Y,

FeatureType.MINIMUM);

dpm.addFeature("Device Mobile", SensorType.ACCELEROMETER_Z,

FeatureType.VARIANCE);

dpm.addFeature("Device Shimmer 1", SensorType.GYROSCOPE_Y,

FeatureType.STANDARD_DEVIATION);

dpm.addFeature("Device Shimmer 2", SensorType.MAGNETOMETER_X,

FeatureType.ZERO_CROSSING_RATE);

dpm.addFeature("Device Mobile", SensorType.MAGNETOMETER_Z,

FeatureType.MEAN_CROSSING_RATE);

Owing to the previous steps, the features extraction can be done from different data:

- From not processed data and not segmented:

dpm.feature_extraction(DataType.Raw, false, false);

- From processed data and not segmented:

dpm.feature_extraction(DataType.Processed, false, false);

- From not processed data and segmented:

dpm.feature_extraction(DataType.Raw, true, false);

- From processed and segmented data, using the uncompleted windows:

108

3.3 Managers

dpm.feature_extraction(DataType.Processed, true, true);

Classification

The way to use the Classification module does not change depending on the selected

approach (offline or online). The first thing to do is to read a Weka file (arff format).

dpm.readFile(Environment.getExternalStorageDirectory(), "example.arff");

Now, test or training instances may be set. Also a summary of both train instances

may be obtained.

dpm.setTrainInstances();

dpm.setTestInstances();

String TrainSummary = dpm.getTrainInstancesSummary();

A model may be built with the trainClassifier function. The first parameter is the

class attribute and usually is the last attribute. The second parameter is the classifier

type to be used, in this case J48 (Decision Tree). The getAttributes function returns a

list of the existing Attributes.

int numAttributes = classification.getAttributes().size();

dpm.trainClassifier(numAttributes - 1, classifierType.J48);

The model may be directly loaded as well using the loadModel method:

dpm.loadModel(classifier);

Now that the model has been built, this can be evaluated by the method testClas-

sifier. A summary about the evaluation may be obtained by getTestSummary method.

The confusion matrix is obtained using the getTestConfusionMatrix function.

dpm.testClassifier();

String summaryEvaluation = dpm.getTestSummary();

String confusionMatrix = dpm.getConfusionMatrix();

To convert features vector or features matrix coming from the Feature Extracture

stage into Instances Weka objects, the methods featureVectorToInstances and feature-

MatrixToInstances are available.

Instances instances = dpm.featureVectorToInstances(featureVector);

Instances instances = dpm.featureMatrixToInstances(featureMatrix);

To clasify and unlabeled instance, there are two functions available: classifyIn-

stanceToDouble and classifyInstanceToString. For example, to classify the first instance

109

3. EHEALTHDROID

of an Instances object called instances:

String label = dpm.classifyInstanceToString(instances.firstInstance());

Double label = dpm.classifyInstanceToDouble(instances.firstInstance());

Online

Acquisition and Segmentation

These modules are not used in the online inference knowledge process, due to that

the Communication Manager is the one which provides the data through windows with

a determinate size.

Pre-Processing , Feature Extraction , and Classification

To make the online knowledge inference, it is necessary to define the features to

be extracted. The classification model and the class attribute must be defined as well.

The previous section, Offline knowledge inference, shows how to do it.

In order to execute the knowledge inference as a sequence, all the steps are defined

under one function:

dpm.inferenceOnline(2, sensorsAndDevices, null, 0, 1);

The last parameter indicates which kind the class attribute is (and in consequence the

value returned): String or Double. In case the last parameter is 0, the returned value

will be a String and will be stored in the stringClassified variable (which is defined in

this manager). In case the last parameter is 1 (like in the example), the returned value

will be Double and will be stored in the doubleClassified variable (which is also defined

in this manager).

There is also another function for the online knowledge inference:

dpm.inferenceOnline(2, sensorsAndDevices, null, 0, 1, mHandler);

110

4

APP

An app that demonstrates the usefulness and potential of the eHealthDroid framework

is here implemented and presented. The app allows to collect data from Shimmer de-

vices in order to obtain physiological and kinematic data, although existing sensors in

the mobile device may be also used for monitoring. It offers functionality to visual-

ize any of the received data streams from the portable biomedical devices, as well as

uploading the collected data to a remote storage. It is also possible to recognize the

physical activity that an app user is performing thanks to an expert system built as

part of the app. To help the user to keep healthy habits, guidelines are supported

through online video broadcasting and schedulable notifications.

4.1 App usage

It is possible to navigate around the app making use of the available tabs in the top of

the screen. Each tab offers a functionality for the following: Connectivity, Visualization,

Activity Recognition, Remote Storage, Notifications Manager and YouTube Guidelines.

4.1.1 Connectivity

This tab offers to the user all the connectivity features and the devices configuration.

The tab has a Button to add the new devices, and a ListView to visualize them.

In order to add a new device, the “Plus” Button must be pressed. Then, a message

will be thrown asking for the device name. The message also have two buttons in order

to select the kind of device. It can be either Mobile or Shimmer.

Once the device is added, it will be displayed in the ListView. It is showed three

fields for each device: The first one is the device’s name, the second one is the device’s

111

4. APP

Figure 4.1: Connectivity tab.

type, and the third one is its state. The state is represented by a coloured circle. It

will be red when the device is disconnected, orange when the device is streaming, or

green when the device is connected but not streaming.

When a device is pressed, a menu with several options is displayed. These options

will depend on the device’s type and its status. The possible options are the following

ones:

• Connect/Disconnect. With this option, the device is either connected (if it was

disconnected) or disconnected (if it was connected). Since the mobile device

does not need to be connected or disconnected, this function is only available for

Shimmer devices.

• Start/Stop streaming. With this option, the device either starts or stops stream-

ing.

• Sensors. This option throws a window to set the enabled sensors. The sensors

available can be different for each kind of device. It is only showed when the

device is not streaming.

• Configuration. This option opens a window to set the device configuration. Here,

it is also set whether the data must be stored into the database. The device

configuration can be different for each kind of device. It is only showed when the

112

4.1 App usage

Button for adding devices

(a) Button “Plus” (b) Selection of the device’s name

and its type

(c) Bluetooth scanning for

portable health devices

(d) Device added and connected

Figure 4.2: Steps to add a device.

113

4. APP

(a) Identical name (b) Multiple mobile devices

Figure 4.3: Error messages during insertion.

Figure 4.4: Different type of devices in different status. Green: Connected. Orange:

Streaming. Red: Disconnected

114

4.1 App usage

device is not streaming.

• Remove. This option removes a device from the devices list.

(a) Mobile device not streaming (b) Mobile device streaming

Figure 4.5: Menus for the mobile device.

4.1.2 Visualization

This tab permits to visualize the signals recorded through the sensors. The tab is

composed by a graph and two buttons: the Configuration button and the Start button.

When the Configuration button is pressed, a menu is open in order to set the graph

configurations. The options are initially disabled (the graph has a configuration by

default). These have to be enabled in order to use them. The configuration menu is

not available during the visualization, so the graph must be set before starting. The

configuration options are the following ones:

• View Port. This option sets the graph view port. That is, the number of samples

to be shown in the graph.

• Y coordinates. This option sets the maximum and minimum values for the Y

axis.

115

4. APP

(a) Shimmer device not stream-

ing

(b) Shimmer device streaming

Figure 4.6: Menus for the Shimmer device.

(a) Mobile sensors (b) Shimmer sensors

Figure 4.7: Window to enable the different sensor devices

116

4.1 App usage

(a) Mobile device configuration (b) Shimmer device configuration

Figure 4.8: Window to configure the different types of devices

Figure 4.9: Visualization tab.

117

4. APP

• Legend. This option shows the legend of the graph series. It can be aligned in

three different positions. On the top of the graph, in the middle, or at the bottom.

(a) No options selected (b) All options selected

Figure 4.10: Menu of the visualization’s configuration

When the Start button is pressed, a list of devices streaming is showed in order

to select the device to be visualized. In case there are no devices streaming, an error

message will be showed. When a device is selected, it is displayed a list with the device

enabled sensors. When the device sensors to visualize are selected, and the OK button

is pressed, the visualization starts.

4.1.3 Activity Recognition

This tab uses inference knowledge module to perform activity recognition of a set of

activities described in section 4.2. In the section 4.3 it is described how was built the

model used to recognize activities.

To start the activity recognition, it is necessary to set each connected device to its

position in the body (chest, right wrist or left ankle). For this purpose there are three

spinners on the screen, one for each position. Once this is done, the button start is used

to begin the activity recognition. On the top of the screen there will appear an image

and text representing the activity which the app user is performing. In case there are

118

4.1 App usage

(a) List of the streaming devices

(b) Streaming sensors of the “mo-

bile device”

(c) Streaming sensors of the

“wrist” (Shimmer device)

Figure 4.11: Devices and its sensors available for the visualization.

119

4. APP

Figure 4.12: Error message when the visualization is not possible

Figure 4.13: Visualization performance of three different sensors.

no devices streaming, an error message will be showed.

120

4.1 App usage

Figure 4.14: Activity recognition tab.

(a) Selecting the appropriate

portable health devices

(b) Activity recognition ready to

start

Figure 4.15: Setting up the activity recognition before to start.

121

4. APP

Figure 4.16: Error message when the activity recognition is not possible

Figure 4.17: Activity recognition performance. In the figure, the Sitting activity is

recognized.

122

4.1 App usage

4.1.4 Notifications

This tab permits to create different kind of notifications. When the tab is selected, it

appears a form that it must be filled in order to create the notification. This field is

composed:

Figure 4.18: Notifications. General view

• Title. Title of the notification.

• Description. Full description text of the notification.

• Sound. A field where three different sounds may be selected to be reproduced

when the notification is launched: Alarm, Ringtone and Notification sounds.

There is also the possibility of set this sound to “None”.

• Launch Recommendations. It is a checkbox that in the case of being checked,

when the notification is clicked the YouTube guidelines is launched.

• Schedule Notification. It allows for the scheduling the notification to a specified

date and time.

As an example, it can be used an app user with back problems that needs to be

reminded about his daily exercises. Thus, for this purpose, the user can create a

notification and customize it by putting the notification title and description, as well

as setting the hour of its appearance. Moreover, if the user wants to visualize some

123

4. APP

Figure 4.19: Notifications. Sound to be reproduced

(a) Notification Date (b) Notification Time

Figure 4.20: Notifications. Setting date and time

recommended exercises he can mark the Launch Recommendations option that after

clicking on the notification will automatically open the YouTube guidelines 4.1.5

124

4.1 App usage

(a) Notification saved (b) Notification launched

Figure 4.21: Notifications. Saving notification and notification launched

4.1.5 YouTube Guidelines

This tab allows the app user the visualization of videos in order to keep healthy habits

or learn new exercises with physical therapy purposes. There are five different playlists

that can be selected by the user using the button Playlists:

Figure 4.22: YouTube Guidelines. General view

125

4. APP

• General Health: playlist about how to keep healthy daily habits and how to

maintain a healthy diet.

• Knee: playlist with videos of knee rehabilitation, orientate to user with knee

problems.

• Back: playlist with videos of back rehabilitation, orientate to user with back

problems.

• Ankle: playlist with videos of ankle rehabilitation, orientate to user with ankle

problems.

• Neck: playlist with videos of neck rehabilitation, orientate to user with neck

problems.

(a) Available playlists (b) Video list extended

Figure 4.23: Youtube Guidelines. Selecting and extending a playlist

Once that a playlist has been selected, a scrollable list of videos will appear on the

screen. This list can be extended pressing on the Extend List button and collapse by

pressing on it again. When the user selects a video to be reproduced, this appears on

the player and can be reproduced when the start icon is clicked. The player may also

be extended using the button Extend Player or collapse clicking on it again.

126

4.2 Activity Recognizer: Experimental Dataset

(a) Reproducing video in normal

size

(b) Reproducing video with

player extended

Figure 4.24: Youtube Guidelines. Reproducing videos

4.1.6 Remote Storage

This tab allows the user app to upload to a remote storage the collected data from the

portable biomedical devices. It is composed of a list with every of the available devices

in the app and a button to set the WiFi connection (for the sake of simplicity, since

3G connection can be used as well).

When a device of the list is pressed on, it appears a dialog asking the app user to

define which tables must be uploaded. There are three options: Units, Metadata and

Signals. After pressing the OK button the uploading of the selected data starts. A

message will appear in the screen to notify the end of the uploading process.

4.2 Activity Recognizer: Experimental Dataset

To demonstrate the system capabilities (section 4.3) a dataset is collected by using

the Shimmer sensors together with the mobile device. This dataset is composed the

following activities (from lower intensity to upper) and its length:

1. Standing still → 1 minute, 2. Sitting and relaxing → 1 minute, 3. Lying down

→ 1 minute, 4. Walking → 1 minute, 5 .Climbing stairs → 1 minute, 6. Waist bends

forward → 20 repetitions, 7. Frontal (vertical) up/down → 20 repetitions, 8. Knees

127

4. APP

(a) General view (b) Choosing information to up-

load

Figure 4.25: Remote Storage. Setting the uploading

Figure 4.26: Remote Storage. Starting and finishing uploading

bended→ 20 repetitions, 9. Cycling→ 1 minute, 10. Jogging→ 1 minute, 11. Running

→ 1 minute, 12. Jump forward and back → 20 repetitions.

The experiment setup was composed by a mobile device (situated for example in a

pocket) and three SHIMMER devices placed on the chest (SHIMMER CHEST), wrist

128

4.2 Activity Recognizer: Experimental Dataset

CHEST-B6D0

RLA-B80C

LC-B6F8

RT-PHONE

Figure 4.27: Positioning of the portable wearable devices

(SHIMMER RLA) and ankle (SHIMMER LC) as figure 4.27 shows.

The mobile device is used to manage and synchronize the SHIMMER devices, as

well as store the physiological and kinematic data that these collect. The activated

sensors for every device were:

• SHIMMER Chest : Timestamp, Accelerometer X, Accelerometer Y, Accelerome-

ter Z, ECGRALL and ECGLALL.

• SHIMMER RLA: Timestamp, Accelerometer X, Accelerometer Y, Accelerometer

Z, Magnetometer X, Magnetometer Y, Magnetometer Z, Gyroscope X, Gyroscope

Y and Gyroscope Z.

• SHIMMER LC : Timestamp, Accelerometer X, Accelerometer Y, Accelerometer

Z, Magnetometer X, Magnetometer Y, Magnetometer Z, Gyroscope X, Gyroscope

Y and Gyroscope Z.

The ECGRALL and ECGLALL are used to acquire information about ECG. A

SHIMMER ECG daughter board and four electrodes are used. These electrodes are

situated in four positions (4.28): Left Arm (LA), Left Leg (LL), Right Arm (RA) and

Right Leg (RL).

129

4. APP

Figure 4.28: Positioning of the four electrodes. Picture from (10)

Figure 4.29: Electrodes in subject for ECG acquisition

The experiment was performed for ten subjects, seven males and three females

of similar age and complexity. After the experiment, the recorded data were labeled

according to time on which the activities were performed.

130

4.3 Performance evaluation

4.3 Performance evaluation

The performance of a system trained on these data is shown in the following. To that

end, the recognition process is defined through a segmentation of two seconds window

size. MATLAB (79) have been used to perform the feature extraction of the dataset.The

following features were calculated for the data extracted from every SHIMMER device:

• Mean: Accelerometer X, Accelerometer Y, Accelerometer Z

• Standard Deviation: Accelerometer X, Accelerometer Y, Accelerometer Z

• Max: Accelerometer X, Accelerometer Y, Accelerometer Z

• Min: Accelerometer X, Accelerometer Y, Accelerometer Z

After this process, instances corresponding to two seconds of data were obtained

composed of 36 features plus a label column which acts as attribute class. Putting

these instances into WEKA (78) the model was built using the J48 classifier (80). To

test the classifier performance, a cross-validation test with ten folds was used. Of 3353

instances, 3296 instances were correctly classifier, which gives a 98.3 % of accuracy

performance. Some others statistics follow:

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 3296 98.3 %

Incorrectly Classified Instances 57 1.7 %

Kappa statistic 0.9814

Mean absolute error 0.0029

Root mean squared error 0.0504

Relative absolute error 1.923 %

Root relative squared error 18.26 %

Total Number of Instances 3353

The accuracy of the recognizer (per class) is:

131

4. APP

=== Confusion Matrix ===

a b c d e f g h i j k l <-- classified as

300 0 0 0 0 0 0 0 0 0 0 0 | a = 1

0 300 0 0 0 0 0 0 0 0 0 0 | b = 2

0 0 299 0 0 1 0 0 0 0 0 0 | c = 3

0 0 0 300 0 0 0 0 0 0 0 0 | d = 4

0 0 0 0 296 0 1 2 1 0 0 0 | e = 5

0 0 0 0 0 270 1 7 0 0 0 0 | f = 6

0 0 0 0 0 0 288 0 0 0 0 0 | g = 7

0 0 0 0 3 8 1 273 2 0 0 0 | h = 8

0 0 0 0 0 0 0 0 300 0 0 0 | i = 9

0 0 0 1 0 0 0 0 0 288 10 1 | j = 10

0 0 0 0 0 0 0 0 0 17 283 0 | k = 11

0 0 0 0 0 0 0 0 0 0 1 99 | l = 12

132

5

Conclusions

This work has presented a mobile framework for the development of biomedical ap-

plications specifically devised for the Android platform. The framework provides di-

verse functionalities, from which developers may levarage during the implementation of

health monitoring apps. Any trustworthy and complete biomedical application needs

to offer functionalities such as communication with portable biomedical devices, data

streaming and visualization, local and remote storage, activity recognition, notifications

and guidelines among others. All these functionalities can be incorporated to mobile

applications using this framework in a really easy way, which makes the programmer

task much easier and reachable for everybody with basic programming skills.

Personally, I think this work is a big contribution to the biomedical engineering

field. There are many biomedical applications for different health purposes, however,

there is a lack of biomedical frameworks to speed up, facilitate and provide to a wide

range of programmers the development of biomedical apps.

5.1 Achievements achieved

All objectives established in this work has been achieved, at least to provide the basic

functionality of every framework component. However, as will be commented in the

section 5.2 every component can be extend or improved. The objectives achieved follow:

• Framework to allow rapid development of medical, health and wellbeing applica-

tions.

• Efficient and fast communication between portable biomedical devices and portable

mobile devices to gather patient data like physiological or kinematic signals. For

133

5. CONCLUSIONS

this version of the framework, SHIMMER devices and mobile sensors can be used

as portable biomedical devices.

• Development of applications capable of working with different portable health

devices simultaneously.

• Efficient data transfer across the framework managers.

• Fast data storage either local or remote.

• Visualization of any kind of data stream like patient’s vital signs or kinematic

data, either online or offline.

• Medical knowledge inference procured through machine learning and statistical

model.

• Guidelines support through Audio, Video or YouTube playlists, as well as notifi-

cations procedures.

• System control and configuration tools to manage WiFi, Bluetooth, screen bright-

ness, making phone calls or sending text messages.

• User management through login functionality, also supporting security and pri-

vacy.

• Multiple user dataset collection (kinematics+ECG) through the developed APP.

This is partially used for the app activity recognizer.

• Development of an exemplary app which implements the most important frame-

work functionalities.

5.2 Future work

Given the important magnitude of the engineering biomedical field and the fact that

the health care is becoming essential in our lives along with the continuous release of

wearable health devices, this framework could be envisioned as a key tool for future

investigation and development could be carried on by companies on this field. Various

framework functionalities could be improved and new ones may be added. Some ideas

are described:

134

5.2 Future work

• To add more wearable health devices to the framework. This requires to imple-

ment new drivers for these. Also, could be necessary to create the intermediate

driver between the framework and the device if this is not provided by the device

manufacturer.

• Development of APPs for any particular health issue. Some ideas:

– APP that performs activity recognition of daily basis activities along with

health cardiac activity visualization. Principally devised for elders.

– APP that performs activity recognition of knee rehab exercises. The app

could also show the user how to correctly perform the exercise through the

use of the built-in guidelines.

– APP for people with obesity problems. The APP could encourage the user to

keep healthy habits using guidelines, notifications promoting sport practice

or recommending healthy diets, etc.

– Any APP that uses a portable health device used for a specific health issue

(i.e, oxygen in blood, ECG, EEG, EMG or chronic diseases).

• Add other communication protocols, such as ZigBee or Xbee, as the market starts

providing new communication interfaces.

• To improve the medical knowledge inference process extending the pre-processing

and features extractions modules belonging to the Data Processing Manager

adding more pre-processing methods and features to be extracted.

• To add a new stage to the Data Processing Manager called fusion used to aggre-

gate the classification decisions of every available device.

• To provide a mechanism for absolute synchronization of the wearable health de-

vices connected.

• To improve the Visualization manager, with functionalities such as displaying

different devices in the same graph.

• To extend the Remote Storage Manager, making possible the data transference

in both ways and using the server side for more functionalities than storage.

• To extend the guidelines functionalities and the settings to manage the portable

mobile.

• To update the notifications to the new ones provided by the last Android versions.

135

5. CONCLUSIONS

136

References

[1] Wikimedia Commons, 2013.

http://commons.wikimedia.org/. v, 2

[2] Population Pyramid, 2013.

http://en.wikipedia.org/wiki/Population pyramid.

v, 3

[3] L. Mertz. Ultrasound? Fetal monitoring? Spec-

trometer? There’s an app for that!: Biomedical

smart phone apps are taking healthcare by storm.

IEEE Pulse, 3(2):16–21, 2012. Cited By (since 1996):1.

v, 10, 12

[4] Yu M. Chi, Patrick Ng, Eric Kang, Joseph Kang, Jennifer

Fang, and Gert Cauwenberghs. Wireless non-contact

cardiac and neural monitoring. In Wireless Health

2010, WH ’10, pages 15–23, New York, NY, USA, 2010.

ACM. v, 11, 12

[5] Mobisante. The MobiUS SP1 System, 2013.

http://www.mobisante.com/products/product-

overview/. v, 13

[6] EarlySense. Florida hospital installs Earl-

ySense to advance health care, 2013.

http://israel21c.org/news/florida-hospital-installs-

earlysense-to-advance-health-care/. v, 14

[7] Oresti Banos, Miguel Damas, Hector Pomares, Fernando

Rojas, Blanca Delgado-Marquez, and Olga Valenzuela.

Human activity recognition based on a sensor

weighting hierarchical classifier. Soft Computing,

17(2):333–343, 2013. v, 15

[8] SQL injection comic. http://xkcd.com/327/. vi, 55

[9] Media Player Android API.

http://developer.android.com. vi, 79, 82

[10] Shimmer. Discovery in motion.

http://www.shimmersensing.com. vii, 130

[11] The Evolution of mortality, 2013.

http://www.demogr.mpg.de/en/. 1

[12] Kevin G Kinsella. Changes in life expectancy 1900-

1990. 1992. 1

[13] World Health Organization.

http://www.who.int/en/. 1

[14] UNAIDS. Joint United Nations Programme on

HIV/AIDS, 2013. http://www.unaids.org/. 2

[15] World Health Organization. Sierra Leona. Service

Availability and Readiness Assessment 2010, 2013.

http://apps.who.int/healthinfo/systems/. 2

[16] World Health Organization. Zambia. Service Avail-

ability and Readiness Assessment 2010, 2013.

http://www.who.int/healthinfo/systems/. 2

[17] World Health Organization 2010 Report.

http://www.who.int/whr/2010/en/. 4

[18] A. Burns, B.R. Greene, M.J. McGrath, T.J. O’Shea,

B. Kuris, S.M. Ayer, F. Stroiescu, and V. Cionca. SHIM-

MER. A Wireless Sensor Platform for Noninva-

sive Biomedical Research. Sensors Journal, IEEE,

10(9):1527–1534, 2010. 5, 12

[19] B. Karagozoglu. Ambulatory monitoring. In

2013 The International Conference on Technological Ad-

vances in Electrical, Electronics and Computer Engineer-

ing, TAEECE 2013, pages 244–249, 2013. 9

[20] J.A. Garibaldi-Beltran and M. Vazquez-Briseno. Per-

sonal Mobile Health Systems for Supporting Pa-

tients with Chronic Diseases. In Electronics, Robotics

and Automotive Mechanics Conference (CERMA), 2012

IEEE Ninth, pages 105–110, 2012. 9

[21] D. R. Lustick and M. H. Zaman. Biomedical engineer-

ing education and practice challenges and oppor-

tunities in improving health in developing coun-

tries. In 2011 Atlanta Conference on Science and Inno-

vation Policy: Building Capacity for Scientific Innovation

and Outcomes, ACSIP 2011, Proceedings, 2011. 10

[22] AirStrip. AirStrip ONE Cardiology, 2013.

http://www.airstriptech.com/cardiology/care-

continuum/. 10

[23] AirStrip. AirStrip ONE Patient Monitoring,

2013. http://www.airstriptech.com/cardiology/care-

continuum/. 10

[24] J. Wojtczak and P. Bonadonna. Pocket mobile smart-

phone system for the point-of-care submandibu-

lar ultrasonography. American Journal of Emergency

Medicine, 31(3):573–577, 2013. 11, 12

[25] S. Mazilu, M. Hardegger, Z. Zhu, D. Roggen, G. Trster,

M. Plotnik, and J. M. Hausdorff. Online detection of

freezing of gait with smartphones and machine

learning techniques. In 2012 6th International Con-

ference on Pervasive Computing Technologies for Health-

care and Workshops, PervasiveHealth 2012, pages 123–

130, 2012. Cited By (since 1996):2. 11

[26] Kasey Panetta. Impact of Portable Medical Devices,

2013. http://www.mdtmag.com/articles/2013/06/. 11

[27] F. Axisa, P. M. Schmitt, C. Gehin, G. Delhomme,

E. McAdams, and A. Dittmar. Flexible technolo-

gies and smart clothing for citizen medicine,

home healthcare, and disease prevention. IEEE

Transactions on Information Technology in Biomedicine,

9(3):325–336, 2005. Cited By (since 1996):106. 11

[28] Michael Marschollek, Matthias Gietzelt, Mareike

Schulze, Martin Kohlmann, Bianying Song, and Klaus-

Hendrik Wolf. Wearable sensors in healthcare and

sensor-enhanced health information systems: all

our tomorrows? Healthc Inform Res, 18(2):97–104,

June 2012. 11

137

http://commons.wikimedia.org/
http://en.wikipedia.org/wiki/Population_pyramid
www.scopus.com
www.scopus.com
www.scopus.com
http://doi.acm.org/10.1145/1921081.1921085
http://doi.acm.org/10.1145/1921081.1921085
http://www.mobisante.com/products/product-overview/
http://israel21c.org/news/florida-hospital-installs-earlysense-to-advance-health-care/
http://israel21c.org/news/florida-hospital-installs-earlysense-to-advance-health-care/
http://dx.doi.org/10.1007/s00500-012-0896-3
http://dx.doi.org/10.1007/s00500-012-0896-3
http://xkcd.com/327/
http://developer.android.com/reference/android/media/MediaPlayer.html
http://www.shimmersensing.com/
http://www.demogr.mpg.de/en/news_press/press_releases_1916/the_evolution_of_mortality_3056.htm
http://www.who.int/en/
http://www.unaids.org/
http://www.unaids.org/
http://apps.who.int/healthinfo/systems/datacatalog/index.php/ddibrowser/25/download/94
http://apps.who.int/healthinfo/systems/datacatalog/index.php/ddibrowser/25/download/94
http://www.who.int/healthinfo/systems/zmb_sara_report_2010_web.pdf
http://www.who.int/healthinfo/systems/zmb_sara_report_2010_web.pdf
http://www.who.int/whr/2010/en/
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
http://www.airstriptech.com/cardiology/care-continuum/
http://www.airstriptech.com/airstrip-one-patient-monitoring
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
http://www.mdtmag.com/articles/2013/06/impact\discretionary {-}{}{}portable\discretionary {-}{}{}medical\discretionary {-}{}{}devices#.UoZmQ_kvSSo
www.scopus.com
www.scopus.com
www.scopus.com
http://dx.doi.org/10.4258/hir.2012.18.2.97
http://dx.doi.org/10.4258/hir.2012.18.2.97
http://dx.doi.org/10.4258/hir.2012.18.2.97

REFERENCES

[29] P. Zhou, Z. Li, F. Wang, and H. Jiao. Portable wireless

ECG monitor with fabric electrodes. In IFMBE

Proceedings, 39 IFMBE, pages 1495–1498, 2013. 11

[30] T. J. Walters, K. A. Kaschinske, S. J. Strath, A. M. Swartz,

and K. G. Keenan. Validation of a portable EMG

device to assess muscle activity during free-living

situations. Journal of Electromyography and Kinesiology,

23(5):1012–1019, 2013. 11

[31] Nina J. Cleven, Jutta A. Mntjes, Holger Fassbender, Ute

Urban, Michael Grtz, Holger Vogt, Maik Grfe, Thorsten

Gttsche, Tobias Penzkofer, Thomas Schmitz-Rode, and

Wilfried Mokwa. A Novel Fully Implantable Wire-

less Sensor System for Monitoring Hypertension

Patients. IEEE Trans. Biomed. Engineering, 59(11-

2):3124–3130, 2012. 12

[32] P. Bartolomeu, J. Fonseca, and F. Vasques. Challenges

in Health Smart Homes. In Pervasive Computing

Technologies for Healthcare, 2008. PervasiveHealth 2008.

Second International Conference on, pages 19–22, 2008.

12

[33] I. Jablonski. Wearable Interrupter Module for

Home-Based Applications in a Telemedical Sys-

tem Dedicated to Respiratory Mechanics Mea-

surements. Biomedical Engineering, IEEE Transactions

on, 58(3):785–789, 2011. 13

[34] Jessica M. Kelly, Robert E. Strecker, and Matt T.

Bianchi. Recent Developments in Home Sleep-

Monitoring Devices. ISRN Neurology, 2012, 2012. 13

[35] Ralph E. Johnson. Frameworks = (components +

patterns). Commun. ACM, 40(10):39–42, October

1997. 13

[36] A. Shawish and M. Salama. Cloud computing:

Paradigms and technologies. Studies in Computa-

tional Intelligence, 495:39–67, 2014. cited By (since

1996)0. 14

[37] U. Morgenstern, A. Abdel-Haq, V. Barth, H. Dietrich,

and I. Rudolph. TheraGnosos: An interactive

blended learning, simulation and training system

for biomedical engineering university courses. In

IFMBE Proceedings, 22, pages 2757–2759, 2008. 14

[38] A. Schlgl, C. Vidaurre, and T. H. Sander. BioSig: The

free and open source software library for biomed-

ical signal processing. Computational Intelligence and

Neuroscience, 2011, 2011. Cited By (since 1996):7. 14

[39] H. Jiang, P. C. M. Van Zijl, J. Kim, G. D. Pearlson, and

S. Mori. DtiStudio: Resource program for diffu-

sion tensor computation and fiber bundle track-

ing. Computer methods and programs in biomedicine,

81(2):106–116, 2006. Cited By (since 1996):414. 14

[40] T. A. Pologruto, B. L. Sabatini, and K. Svoboda. Scan-

Image: Flexible software for operating laser scan-

ning microscopes. BioMedical Engineering Online, 2,

2003. Cited By (since 1996):183. 14

[41] J. C. Barrett, B. Fry, J. Maller, and M. J. Daly.

Haploview: Analysis and visualization of LD and

haplotype maps. Bioinformatics, 21(2):263–265, 2005.

Cited By (since 1996):6431. 14

[42] V. J. Barclay, R. F. Bonner, and I. P. Hamilton. Ap-

plication of Wavelet Transforms to Experimen-

tal Spectra: Smoothing, Denoising, and Data Set

Compression. Analytical Chemistry, 69(1):78–90, 1997.

Cited By (since 1996):185. 15

[43] Giovanni Acampora, Chang-Shing Lee, Autilia Vitiello,

and Mei-Hui Wang. Evaluating cardiac health

through semantic soft computing techniques. Soft

Computing, 16(7):1165–1181, 2012. 15

[44] M. Korrek and A. Nizam. Clustering MIT-BIH ar-

rhythmias with Ant Colony Optimization using

time domain and PCA compressed wavelet coef-

ficients. Digital Signal Processing: A Review Journal,

20(4):1050–1060, 2010. Cited By (since 1996):12. 15

[45] Corinna Cortes and Vladimir Vapnik. Support-Vector

Networks. Mach. Learn., 20(3):273–297, September

1995. 15

[46] Lotfi A. Zadeh. Fuzzy logic = computing with

words. Fuzzy Systems, IEEE Transactions on, 4(2):103–

111, 1996. 15

[47] R. Setiono and Huan Liu. Neural-network feature

selector. Neural Networks, IEEE Transactions on,

8(3):654–662, 1997. 15

[48] J.R. Quinlan. Induction of decision trees. Machine

Learning, 1:81–106, 1986. 15

[49] S. Karpagachelvi, M. Arthanari, and M. Sivakumar. Clas-

sification of electrocardiogram signals with sup-

port vector machines and extreme learning ma-

chine. Neural Computing and Applications, 21(6):1331–

1339, 2012. 15

[50] Open Handset Alliance.

http://www.openhandsetalliance.com. 20

[51] Apache License. http://www.apache.org/licenses/. 21

[52] Number of available Android Applications.

http://www.appbrain.com/stats/number-of-android-

apps/. 21

[53] Google Play hits 25 billion downloads.

http://officialandroid.blogspot.ca/2012/09/google-

play-hits-25-billion-downloads.html. 21

[54] Developer Economics Q3 2013.

http://www.developereconomics.com/reports/q3-

2013/. 21

[55] Android, the world’s most

popular mobile platform.

http://developer.android.com/about/index.html/.

21

[56] Service. Android API component.

http://developer.android.com/reference/android/app/Service.html.

25

[57] Message. Android API component.

http://developer.android.com/reference/android/os/Message.html.

25

[58] Handler. Android API component.

http://developer.android.com/reference/android/os/Handler.html.

25

138

www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
http://dblp.uni-trier.de/db/journals/tbe/tbe59.html#ClevenMFUGVGGPSM12
http://dblp.uni-trier.de/db/journals/tbe/tbe59.html#ClevenMFUGVGGPSM12
http://dblp.uni-trier.de/db/journals/tbe/tbe59.html#ClevenMFUGVGGPSM12
http://dx.doi.org/10.5402/2012/768794
http://dx.doi.org/10.5402/2012/768794
http://doi.acm.org/10.1145/262793.262799
http://doi.acm.org/10.1145/262793.262799
http://www.scopus.com/inward/record.url?eid=2-s2.0-84883734168&partnerID=40&md5=f18d50e3c64e04cb132dfa63876ba344
http://www.scopus.com/inward/record.url?eid=2-s2.0-84883734168&partnerID=40&md5=f18d50e3c64e04cb132dfa63876ba344
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
http://dx.doi.org/10.1007/s00500-011-0792-2
http://dx.doi.org/10.1007/s00500-011-0792-2
www.scopus.com
www.scopus.com
www.scopus.com
www.scopus.com
http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1023/A:1022627411411
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1007/s00521-011-0572-z
http://dx.doi.org/10.1007/s00521-011-0572-z
http://dx.doi.org/10.1007/s00521-011-0572-z
http://dx.doi.org/10.1007/s00521-011-0572-z
http://www.openhandsetalliance.com/
http://www.apache.org/licenses/
http://www.appbrain.com/stats/number-of-android-apps
http://officialandroid.blogspot.ca/2012/09/google-play-hits-25-billion-downloads.html
http://www.developereconomics.com/reports/q3-2013/
http://developer.android.com/about/index.html
http://developer.android.com/about/index.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/os/Message.html
http://developer.android.com/reference/android/os/Handler.html

REFERENCES

[59] Looper. Android API component.

http://developer.android.com/reference/android/os/Looper.html.

25

[60] JSON (JavaScript Object Notation), 2013.

http://www.json.org/. 50

[61] XAMPP, 2013. http://www.apachefriends.org/en/. 53

[62] PHP language. www.php.net. 53

[63] MySQL Improved Extension.

http://php.net/manual/es/book.mysqli.php. 54

[64] Original MySQL (MySQL), 2013.

http://www.php.net/manual/en/book.mysql.php/.

54

[65] SQL Injection. Bobby Tables, 2013.

http://psoug.org/blogs/mike/2010/04/11/little-bobby-

tables/. 54

[66] Prepared Statements.

http://mattbango.com/notebook/code/prepared-

statements-in-php-and-mysqli. 56

[67] Androidplot. 63

[68] Graphview library. 63

[69] Chartdroid. 63

[70] Afreechart. https://code.google.com/p/afreechart/. 63

[71] Achartengine. https://code.google.com/p/achartengine/.

63

[72] Notification Manager.

http://developer.android.com/. 74

[73] Broadcaster Receiver.

http://developer.android.com/. 75

[74] Alarm Manager. http://www.developer.android.com/.

75

[75] Video View Class. http://developer.android.com/. 79,

82

[76] Notification Class. http://developer.android.com/. 80

[77] Youtube Android Player API.

https://developers.google.com/youtube/android/player/.

81

[78] Weka: Data Mining Software in Java.

http://www.cs.waikato.ac.nz/ml/weka/. 101, 131

[79] MATrix LABoratory. http://www.mathworks.com/.

131

[80] C4.5 algorithm (J48).

http://en.wikipedia.org/wiki/C4.5 algorithm/. 131

139

http://developer.android.com/reference/android/os/Looper.html
http://www.json.org/
http://www.apachefriends.org/en/xampp.html
www.php.net
http://php.net/manual/es/book.mysqli.php
http://www.php.net/manual/en/book.mysql.php/
http://psoug.org/blogs/mike/2010/04/11/little-bobby-tables/
http://mattbango.com/notebook/code/prepared-statements-in-php-and-mysqli/
http://androidplot.com/
http://www.jjoe64.com/p/graphview-library.html
https://code.google.com/p/chartdroid/
https://code.google.com/p/afreechart/
https://code.google.com/p/achartengine/
http://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html
http://developer.android.com/reference/android/app/AlarmManager.html
http://developer.android.com/reference/android/widget/VideoView.html
http://developer.android.com/reference/android/app/Notification.html
https://developers.google.com/youtube/android/player/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.mathworks.com/products/matlab/
http://en.wikipedia.org/wiki/C4.5_algorithm

	PFC_cover_rafa_final

