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H I G H L I G H T S  

• Machine learning was used to accelerate microstructural simulations of LiB discharge. 
• The model predicted the microstructural distribution of lithium throughout the electrode. 
• The state-of-lithiation gradients within individual particles was captured. 
• Predictions were verified at different C-rate and depth of discharge.  
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A B S T R A C T   

A machine learning (ML) model was developed to study the discharge behaviour of a LixNi0.33Mn0.33Co0.33O2 
half-cell with particle-scale resolution. The ML model could predict the state-of-lithiation of the particles as a 
function of time and C-rate. Although direct numerical simulation has been well established in this area as the 
prevalent method of modeling batteries, computational expense increases going from 1D-homogenized model to 
particle-resolved 3D models. The present ML model was trained on a total of sixty different electrodes with 
various lengths for a total of 4 different C-rates: 0.25, 1, 2, and 3C. The ML model used convolutional layers, 
resulting in an image-to-image regression network. To evaluate model performance, the root mean squared error 
was compared between the state of lithiation (SoL) predicted by the ML model and ground truth results from 
pore-scale direct numerical simulation (DNS) on unseen electrode configurations. It was shown that the ML 
model can predict the SoL at better than 99% accuracy in terms of relative error, but almost an order of 
magnitude faster than the DNS approach. The present work was limited to 2D cases but demonstrates that ML is a 
viable path forward for studying real 3D microstructures.   

1. Introduction 

Lithium-ion batteries are found in electronics ranging from cell 
phones, laptops, to electric vehicles (EVs) owing to their high energy 
density; though cost, limited range, and ability to fast-charge remain 
challenges, especially for mass EV adaptation [1]. One method of 
improving range would be to use higher capacity active materials, but 
this would involve research and development of novel chemistries and 
structures. Using currently available chemistries, one could naïvely add 
more active particles, but this would increase the capacity of a given 
only for a limited range of discharge rates [2]–[4]. It has been shown, 
however, that designing the cell architectures, by choosing a suitable 
particle-size distribution [3,5], specific particle placement [5], 

perforating electrodes [6], or combinations thereof, has the capability of 
improving cell performance by reducing losses due to concentration 
polarization. Designing these novel structures using computational tools 
would be preferrable, but the high computational cost is prohibitive so 
improved modeling techniques are of great interest. 

A lithium-ion cell consists of a positive and negative electrode, which 
are both porous layers comprised of active particles (graphite on the 
negative electrode and a Li-alloy on the positive side) held together with 
a carbonaceous binder that provides electrical conductivity throughout 
the domain. The electrolyte fills the void space through which active 
species diffuse and migrate during operation. Understanding the 
structure-performance relationship in these porous electrodes is the key 
to developing or designing improved batteries. Numerical modeling is 
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often employed in this regard, and by far the most widespread approach 
is the pseudo-two-dimensional (P2D) model, which incorporates 
concentrated solution and porous electrode theory [7,8]. Concentrated 
solution theory refers to the usage of molar flux equations from multi- 
component diffusion in liquids as described by the Onsager-Stefan- 
Maxwell equations. Porous electrode theory utilizes volume averaged 
properties of the electrode such as porosity, tortuosity, and effective 
electrical conductivity to model the transport in the through-plane di-
rection. A pseudo second dimension arises since the model also con-
siders the transport of Li ion in the solid phase by assuming spherical 
particles of active material. Due to the numerical simplicity and flexi-
bility of the P2D model, many phenomena, such as thermal transport or 
mechanical deformation, have been coupled on top of the standard P2D 
model [9,10]. There are limitations when considering the porous elec-
trode region as a homogeneous space. For example, a correlation must 
be used to account for the reduction in transport due to tortuosity 
through the porous structure. These correlations can be hard to measure, 
so substitutes are commonly used such as Bruggeman’s relation despite 
known errors [11]. In place of correlations, it is possible to use experi-
mentally measured transport processes, but these are not transferable 
between different microstructures. 

As an alternative to P2D-type models, the direct numerical simula-
tion (DNS) has been demonstrated with success [3,5,12]–[15]. DNS 
refers to conducting simulations on the exact internal geometry of the 
porous materials thus eliminating the need of effective quantities in 
contrast to porous electrode theory. For instance, a multiscale model 
utilizing the resolved microstructure with LixFePO4 electrode nano-
particles from nano-X-ray computed tomography (XCT) revealed 
lithium intercalation occurring 10× faster in small constrictions than 
what the P2D model would have predicted [12]. More recently Lu et al. 
resolved both carbon binder and NMC111 active material domains using 
a dual-scan superimposition nano-XCT technique [5]. Their work 
investigated the value of using a graded structure near the separator 
along with a simulated enlarged pore structure. The results indicated 
high specific capacity even at high discharge rates, which is beneficial in 
applications which require high areal capacities such as EVs [16]. While 
pore-scale modeling elucidates the effects of heterogeneous micro-
structures, only a limited volume of the electrode can be resolved owing 
to memory limitations and prohibitive computational runtimes. For 
instance, Lu et al. considered a (43× 43× 50 μm) representative volume 
element [5], and Xu et al. a (30× 30× 40 μm) volume [13]. Run times 
are reported in the 10 to 30 days range, depending on the computer 
resources available. 

There is a strong need to obtain higher-fidelity predictions compared 
to the P2D model yet to do so in more reasonable computational runtime 
than currently used microstructure-resolved DNS. Efforts have been 
made in this direction though the use pore network modeling (PNM) 
which was able to obtain good agreement with experimental discharge 
data, with simulation times in the range of hours instead of days or more 
compared to a DNS approach [17]. However, the PNM approach still 
requires a network extraction step, which is time-consuming especially 
for large domains. Also, while PNM is quicker than DNS it is still time- 
consuming for transient multiphysics simulations such as simulating 
battery discharge since it involves many iterations to deal with non-
linearities/coupling and many time steps. 

An alternative approach to be explored in this work is to use a ma-
chine learning method (ML) to predict key outputs, such as state-of- 
lithiation (SoL). ML and, more specifically, deep learning (DL) have 
recently gained traction due to the advances in modern computing 
power and thus have been used in various fields, achieving state-of-the- 
art results in various domains; in particular, the convolutional neural 
network (CNN) architecture has been successful in image-based learning 
tasks such as detection, segmentation, and object recognition [18]. 
Several works utilized ML methods to predict the velocity fields in 
porous media [19]–[21]. It should be mentioned that Wang et al. [19] 
and Santos et al. [20] cautioned against directly using the velocity field 

predictions from their neural networks (NN), but both had promising 
results in terms of predicting permeability from images, and Santos et al. 
suggested the resultant velocity field is best used as an initial guess in a 
lattice Boltzmann solver to accelerate convergence, and they demon-
strated a 10× speed-up. 

In parallel to the work on simulating transport as outlined above, 
there has been rapid progress in the application of ML to Li-ion batteries. 
Predicting the state-of-charge based on minimal external data has 
received a lot of attention due to its obvious value to end users [22–24]. 
Additionally, the prediction of life-cycle and durability has become 
possible [25,26]. Recent work has focused on predicting performance 
using physics-based simulations. Such simulations can be useful for 
designing cells but can be computationally costly, so machine learning 
provides an avenue to accelerate this process. For instance, Tu et al. [27] 
trained a ML model using continuum-based performance simulations 
and were able to predict discharge curves as a function of C-rate. Yang 
et al. [28] advanced this approach substantially by training their model 
on direct numerical simulations of microstructural images, demon-
strating the ability to predict the discharge curve as a function of the 
microstructural parameters such as particle size distribution. Although 
they used microstructural simulations to predict the macroscopic 
behaviour of the cell, they did not attempt to predict microstructural 
information such as the distribution of lithium (i.e., the state of lith-
iation) within individual particles. In a recent review, Li et al. [29] have 
highlighted the important role that ML prediction will play in predicting 
battery state-of-health and degradation. Performance degradation de-
pends on many factors, including stresses within individual particles due 
to uneven lithiation gradients. To date ML technique have not been used 
to accelerate microstructural simulations. In this work, we explore the 
possibility of using an ML framework based on CNNs to predict the SoL 
of NMC111 in a half-cell configuration trained with data generated from 
pore-scale finite element simulations. Since this work is a preliminary 
investigation, we used a 2D domain and the NMC particles were 
assumed to be circular with a narrow size distribution. As will be shown 
below, the proposed framework successfully predicts the SoL in parti-
cles, utilizing relatively simple input and metadata which circumvents 
the need for time-consuming preprocessing. It was shown that the ML 
model can predict the SoL at better than 99% accuracy in terms of 
relative error, but almost an order of magnitude faster than the DNS 
approach. The lessons learned here can be used to motivate and direct 
the development of a more rigorous model including 3D images and 
realistic particles. 

2. Background 

2.1. Electrochemical model 

In this work, a two-dimensional domain was considered as visualized 
in Fig. 1 (only the top half is shown), showing from left-to-right regions 
corresponding to lithium foil, porous separator, and particle-resolved 
positive electrode with circular NMC particles. During discharge, the 
foil acts as the anode and the NMC as the cathode. The governing 
equations for a homogeneous domain are described by the works of 
Newman et al. [2,7,8]. Though as the particles are resolved, instead of a 
reaction source term in the diffusion equation, the source/sink term 
resulting from lithium intercalation is instead described using a non- 
homogenous Neumann boundary through the Butler-Volmer equation 
as described by Xu et al. [13]. The model used here closely follows that 
of Xu et al. [13] so the detailed exposition of the governing equations is 
relegated to the Appendix. 

Each electrode in the dataset consists of half-cells where the NMC 
particles are represented by polydisperse circles with varying radii 
randomly generated by a Random Sequential Addition (RSA) algorithm 
as described by Torquato [30] (using PoreSpy [31]). Circles were used as 
a first approximation since NMC particles have been reported as rela-
tively spherical within literature [5,11,17]. 2-dimensional analysis of 
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other chemistries may require different geometries to be considered and 
a full 3-dimensional implementation could use voxel images obtained by 
X-ray tomography, but this is outside the scope of this preliminary study. 

The discharge simulation of the domain shown in Fig. 1 was done by 
solving the system of equations mentioned in Appendix A. Fig. 2 illus-
trates several results that are of engineering interest: (a) the concen-
tration of lithium ions in the electrolyte phase and (b) the lithium-ion 
concentration within the NMC particles under 3C-rate discharge. The 
magnitude of the lithium-ion concentration in the electrolyte and the 
resulting gradient is an indication of concentration polarization in the 
cell, and the concentration in the particles constitute the SoL. Although 
several variables were solved for by the DNS solver, only the solid 
concentration Cs as a function of time was tracked for training the 
model. This corresponds to figures similar to Fig. 2 (bottom), which for 
convenience we refer to as “SoL maps” (state-of-lithiation maps). The 
simulations were conducted at varied C-rates and were time-dependent 
studies, as such the CNN was tasked to predict the fractional SoL map in 
each particle given the C-rate and time step as well as additional inputs. 
As an aside, the definition of C-rate is the current density which dis-
charges the cell at inverse of C hours (e.g., at a C-rate of 2, the cell 
discharges in half an hour). The concentration and time were exported 
from COMSOL for the purpose of creating a dataset amenable to training 
a CNN, and this will be discussed in the following section. 

2.2. Dataset generation 

Recall that the DNS solver stores SoL values at the FEM mesh nodes, 
so it cannot be directly fed into the CNN workflow. Therefore, the DNS 
results need to be processed into a pixel format, i.e., as a 2D array of SoL 

values. Additionally, instead of having the ML model to directly output 
the SoL map of an entire microstructure, the model predicts the SoL of 
isolated particles to facilitate the learning process, as illustrated in 
Fig. 3. 

In this figure, the first column represents the SoL distribution within 
a cropped region obtained from the FEM solution, and the last column 
represents the processed SoL to be used for training the NN model. For 
this purpose, the FEM domain is first pixelized, i.e., turned into a 2D 
array of 0 s and 1 s, representing the electrolyte and NMC particles, 
respectively. It should be noted that the NN model developed in this 
work was designed to predict the SoL of the center particle in each 
cropped out region. In Fig. 3 (right), however, the SoL values for the 
neighboring particles are also shown, but only for illustration purposes. 
The following sections elaborate on the data processing steps. 

2.2.1. Electrodes used in training 
Starting from the DNS solution, the concentration of lithium in each 

NMC particle was saved from the simulations and normalized by the 
maximum intercalated lithium concentration, Cs,max, to obtain the 
fractional SoL. The ML dataset comprised of data from 60 random 
microstructure realizations in form of circle packings with lengths of 48, 
77, 101, 129, 154, and 176 μm, a constant width of 100 μm, porosities 
between 35% to 60%, and particle radii between 1 and 10 μm. FEM 
simulations of galvanostatic discharge were performed on these micro-
structures at 5C-rates of 0.25, 0.5, 1, 2, and 3C. SoL values were evenly 
sampled 12 times during discharge based on the theoretical time to fully 
discharge a cell at the specified C-rate. For demonstration, the specifi-
cations of 5 out of 60 microstructures are tabulated in Table 1. 

Fig. 1. Lithium-ion half-cell generated from the procedure as outlined in Appendix A. The regions represented in this figure are, from left to right: lithium foil, porous 
separator, and combined electrolyte-binder-NMC111 positive electrode. Only the top half of the electrode is shown in this figure. 

Fig. 2. Results from FEM simulation for the microstructure in Fig. 1 under 3C-rate discharge at t = 600 s. Ceℓ and Cs are the lithium-ion concentration in the 
electrolyte and NMC phase, respectively. 
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2.2.2. Generating dataset: voxelization of microstructural images and SoL 
maps 

The developed NN model takes in a binary image that represents the 
electrode microstructure with 0 s and 1 s representing the electrolyte 
and the NMC particles, respectively, and outputs an image of the same 
size with each representing the corresponding SoL. For each FEM 
simulation, the center coordinates, and the radii of the NMC particles are 
known. For creating the input images, using this information, disks were 
inserted into an empty image (initially filled with 0 s) with each disk 
representing an individual NMC particle. We scaled the coordinates to 
obtain a resolution of 0.2 μm per pixel. For the outputs, since the FEM 
simulations were conducted on an unstructured triangular mesh, we 
used SciPy’s interpolate module to interpolate these values on an 
orthogonal grid to create 2D images of SoL. 

2.2.3. Generating dataset: isolation of particles 
In addition to the binary image, the Euclidian distance transform 

(EDT) of the input image, as shown in Fig. 4 (left), was fed to the NN 
model since it has been shown to facilitate the training [32,33]. As 
mentioned in previous sections, the NN model was designed to predict 
SoL for individual particles. Note that, however, that the layout of the 
neighboring particles affects mass transport and consequently the SoL of 
the particle of interest. Therefore, the neighboring particles were also 

included in the input image to make NN predictions more robust. To 
standardize how many particles to include, starting from the center of an 
arbitrary particle of interest with a radius of Ri, the width and height of 
the input image was defined by 3Ri. Since the particle sizes are 
distributed between 1 μm and 10 μm, the extracted images will have 
different sizes. To standardize the inputs, the resulting images were 
scaled to be 150 by 150 pixels using the nearest neighbor interpolation. 
The zoom factor for each image was recorded and fed to the NN model as 
metadata, which will be discussed in the following sections. Finally, 
since each input image consists of many particles, only one of which is of 
interest, watershed segmentation was used to generate a mask to iden-
tify the particle of interest [34], as shown in Fig. 4 (middle), which is 
later used by the NN model to only return the SoL for this particle, as 
shown in Fig. 4 (right). 

2.2.4. Metadata 
In addition to the image-based inputs to the CNN, a feature vector 

was fed into the network to predict the SoL. This vector consists of 4 
parameters found necessary for the network to predict the dynamic 
nature of cell operation and the other 5 may be considered as metadata 
to facilitate the learning process. The parameters constituting the 
feature vector are tabulated in Table 2. The critical parameters were 
time, C-rate, zoom factor, and distance from separator. Many of the same 
images may be fed to the network which correspond to a particle of 
interest, but battery discharge is transient, thus without the time and C- 
rate parameters the output would be multimodal. Regarding distance 
from separator, during discharge the particles near the separator will 
reach a higher SoL sooner than the particles near the current collector so 
the distance from the separate was included in the metadata [3,13]. 
Additionally, smaller particles typically experience uniform lithiation 
whereas larger particles would have a larger concentration gradient, so 
the particle radius was provided [3,13]. It is a common practice to scale 
each variable to a standard range (i.e., 0→1) to help ML models better 
learn the data [35]. These features are all trivial to obtain to do not 

Fig. 3. Data processing steps from the DNS solution (left) to a binarized image of the electrode microstructure (middle) to the target SoL map (right). The NN model 
only considers the SoL of the center particle for training/prediction, and the SoL of the neighboring particles is only shown here for illustration purposes. 

Table 1 
Specification of five microstructures seen during training.   

Microstructures  

I II III IV V 

Length (μm) 154 176 48 176 129 
Number of Particles 247 531 118 287 317 
Porosity 0.55 0.43 0.49 0.53 0.58 
Tortuosity 1.64 1.80 1.79 1.63 1.50 
Mean Radius (μm) 2.53 1.97 2.12 2.50 2.91  

Fig. 4. Each input image (left) is a cut-out of a region of the microstructure centered around a particle followed by the Euclidian distance transform. The figure in the 
middle is the mask of the particle of interest and the one on the right is the SoL map for the respective particle. 
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require any computational resources that would undermine the speed- 
up obtained by the model. 

2.3. Machine learning model 

The ML workflow in this work was written in Python and using the 
TensorFlow library. We used an autoencoder architecture to build the 
NN model. This architecture is composed of two parts, the encoder and 
the decoder as shown in Fig. 5. The encoder takes in a 2D image as input 
and compresses it by consecutively applying convolutional filters fol-
lowed by max pooling, which eventually results in a 1D array of com-
pressed information. The decoder part, which is essentially the encoder 
but in reverse order, takes in this 1D array and decompresses it to 
eventually reconstruct a 2D image of the same size as the input. An 
additional convolutional layer with the sigmoid activation function was 
added so the output would be bounded between 0 and 1. Finally, the 
feature vector was introduced to the NN model by adding to the com-
pressed 1D array at the bottleneck section, i.e., the junction between the 
encoder and the decoder. 

A common practice within ML is to split the overall dataset into 
training, validation, and test datasets. The model is optimized using the 
training set, and the validation set helps fine-tune its hyperparameters. 
In this work, the dataset was randomly shuffled, so all 60 microstruc-
tures were included in both the training and validation sets. However, a 
more sensible approach would have been to shuffle on an electrode 

basis, so that the training and validation sets were comprised of entirely 
different microstructures. To address this, a separate small dataset was 
created for testing. This ensured that the model’s performance, illus-
trated in Fig. 6, could be evaluated on truly unseen microstructures. 
Further details will be provided in subsequent sections. 

3. Results 

3.1. Generation of ground truth data 

FEM simulations were performed on a 2021 MacBook Pro with the 
Apple M1 Pro chip. Generation of 60 electrodes with 5C-rates until 
100% Depth-of-Discharge (DoD) took ~26 h The proposed ML workflow 
was benchmarked against FEM and tabulated for a half-cell 

Table 2 
Features (metadata) used in the ML model to aid with predicting SoL.  

Features Normalization 
Value 

Description 

x 1 x-coordinate of center of particle 
(1) 

y 100 y-coordinate of center of particle 
(μm) 

R 10 radius of NMC particle (μm) 
L 176 length of electrode (μm) 
zoom factor 9 discussed in text 
C-rate 3 discussed in text 
time 14,400 time since discharge (s) 
distance from 

separator 
1 discussed in text 

porosity 1 discussed in text  

Fig. 5. The CNN-based autoencoder architecture used in this study. The images on the left and right are the input and target images, respectively. The orange and 
gray blocks represent Conv2D with max pooling and Conv2D with resizing layers each activated with ReLU. Purple, blue, and yellow are flatten, feed-forward with 
ReLU activation, and image resizing operations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 6. Training data from the randomly shuffled dataset on a per image basis, 
70% of the overall dataset was used (blue triangle markers). The red star 
markers represent data from two electrodes generated separately and is unseen 
data. The shaded regions are one standard deviation of loss values obtained 
from three independent trainings. The two-electrode dataset loss suggests that 
optimal model performance occurs at around epoch 25. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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configuration as per Table 3. This benchmark suggest that the proposed 
workflow is on average an order of magnitude faster than the DNS so-
lution. Based on Table 3, the ML runtime for the C-rate of 0.25 is almost 
twice that of other C-rates. This extra overhead is because the first run 
involves two additional steps for computing the distance transform and 
the watershed transform of the input image, which are then cached to 
speed up predictions at other C-rates. The results indicate that the FEM 
runtime decreases with increasing C-rate while the ML model has a 
relatively constant runtime around 65 s. Increasing the C-rate decreases 
the discharge time so the DNS solver would have to perform less time- 
stepping whereas the ML framework typically outputs 12 SoL maps. It 
should be noted that the metadata incorporated in this work is relatively 
simple (see Table 2), with the most time-consuming metric computed 
being the zoom factor. If a three-dimensional surrogate would be con-
structed with this ML approach, convolutions would run in linear time. 
In comparison, solving the assembled matrices in the DNS run in either 
quadratic or cubic time depending on if an iterative or direct algorithm 
is used, respectively. Therefore, an even more significant speed-up may 
be possible in implementing a three-dimensional model similar to the 
model presented here. 

3.2. Model training 

A total of 60 electrodes were generated, on which battery discharge 
was simulated using FEM at the following C-rates: 0.25C, 0.5C, 1C, 2C 
and 3C. The resulting dataset had 1,009,065 samples which were 
generated by taking snapshots of the solution for a particular electrode 
and C-rate at different time steps. 70% of the data were used for training, 
15% for validation, and the remaining 15% for testing. The inputs and 
targets were represented as pixel images, and the values were scaled 
between (0, 1). The model was trained by minimizing the loss function 
as per: 

L = 1
NsNxNy

∑Ns

k=1

∑Nx

i=1

∑Ny

j=1

(
Ŷ kij − Ykij

)2 (1)  

where Ns is the number of samples, and Nx and Ny are the number of 
pixels along x and y axes, respectively. In simple terms, the loss function, 
L , is defined as the mean squared error (MSE) between the predicted 
SoL and the ground truth SoL values from FEM simulations. Npixels are the 
number of pixels in the output image. The NN was trained using a sto-
chastic gradient descent approach. We used the Adam optimizer [36] 
with a batch size of 256 (to saturate the GPU memory for optimal per-
formance) with an initial learning rate of LR = 10−6, β1 = 0.9, β2 =
0.999, and ε = 10−7. The network was trained for 200 epochs where the 
learning rate was scheduled to halve every 50 epochs with an expo-
nential decay between each epoch [37]. The training and validation loss 
were computed across the respective datasets after each epoch. 

In terms of optimized hyper-parameters, two candidate autoencoder 
models were compared, the first with 16, 32, 64, 128, 256, and 512 
filters and the second with an additional layer with 1024 filters, depicted 
in Fig. 5. The latter was chosen as it had a lower training and validation 
loss of 2.52 × 10−6 and 3.89 × 10−5 compared to 8.63 × 10−6 and 2.95×
10−5. The NN was trained using TensorFlow v2.10 on a server computer 

with a 2.10 GHz Intel Xeon CPU and two Nvidia Quadro RTX 8000 48GB 
GPUs. Each epoch on average took 428 s for a total training time of 1428 
min. 

3.2.1. Loss curves 
Fig. 6 shows the loss curves for training and test datasets. It should be 

noted that this curve is not from the model training but was constructed 
post hoc. The training data in the figure was obtained in a similar fashion 
to the training data used during model training, viz. a 70% random 
shuffling on a per sample basis. The test data shown represents data 
generated from two electrodes separately from the original 60 electrode 
with new random particle arrangements. 

Based on this figure, the training loss is decreasing indefinitely while 
the test loss is at its minimum at around epoch 25, and then starts to 
increase. This indicates that the model starts to overfit (i.e., memorize 
the features in the training dataset) at epoch 25 and therefore, the model 
state at this stage was stored for later evaluations and is referred to as the 
“best model”. 

3.3. Model evaluation on single particles 

To evaluate the best model in physical terms rather than just 
reporting the L2 loss, we computed the average relative error of SoL for 
both the training and test datasets. The average relative error, also 
known as the mean absolute percentage error (MAPE), is defined in Eq. 
(2). 

MAPE = 1
n
∑Ns

k=1

∑Nx

i=1

∑Ny

j=1

Ŷ kij − Ykij

Ŷ kij
(2) 

For the training set, the average relative error was evaluated to be 
∼ 0.3%, which is not surprising since the NN model has already “seen” 
them during training. For the test set, which have not been seen by the 
NN during training, the average relative error was still less than 1%. This 
performance indicates that the NN model has been able to generalize 
well beyond the training set. For qualitative demonstration, Fig. 7 shows 
the SoL values for isolated particles predicted by the NN model against 
ground truth for randomly selected particles at different time points and 
C-rates, accompanied by the respective relative error computed at in-
dividual pixels. Based on our analyses and as confirmed by this figure, 
not only the average relative error for the entire test dataset is below 1%, 
but that for individual particles and even individual pixels within each 
particle is still maintained below 1%. 

Since concentration gradients within the particles have been shown 
to correlate to stress [14] and therefore degradation, it is of interest to 
see if the ML model is able to predict such gradients. Although the results 
presented in Fig. 7 show an acceptable agreement between ML pre-
dictions and ground truth for SoL, it is difficult to judge model accuracy 
for SoL gradients, especially that such gradients are very subtle within 
each particle and therefore, the colour bar needs to be rescaled to 
minimum and maximum SoL of individual particles. One challenge 
when analyzing gradients in the present work is due to the pixelated 
nature of the particle images, leading noisy derivatives. Matching gra-
dients was not included in the training in the present work, though 
recent work has explored this possibility in general terms [38,39]. Since 
SoL gradients within particles are relevant to Li-ion performance, this 
approach offers great potential for future improvements on the current 
approach. 

3.4. Comparison on whole electrode 

Thus far, an ML model has been trained to predict the SoL for isolated 
particles in a given electrode microstructure using the procedure 
described in Section 2.2 and with representative results shown in Fig. 7. 
However, the current form is not of practical use, so the predicted im-
ages must be recombined to create a continuous SoL map for the entire 

Table 3 
Run time comparison between the ground-truth FEM and the ML-based frame-
work, conducted on an electrode with a length of 176 μm, porosity of 0.435, 
tortuosity of 1.86, and a total of 553 particles.  

C-Rate FEM runtime (s) ML runtime (s) Speedup 

0.25 954 104.24 9.2 
0.5 838 66.54 12.6 
1 730 65.50 11.1 
2 539 64.69 8.3 
3 427 65.30 6.5  
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electrode. Fig. 8 shows the SoL map for the entire electrode at different 
C-rates at 50% depth of discharge as predicted by the ML model and 
compared against the FEM solution for a microstructure randomly 
selected from the test dataset. The ML predictions in this figure have 
been reconstructed, i.e., the ML model was used to predict the SoL map 
for individual particles and in the end, they were combined to generate 
the SoL map shown in this figure. Based on this figure, the average 
relative error is consistently below 5%, which indicates that the ML 
model has been able to generalize beyond the training dataset with an 
acceptable accuracy. Although the average relative error for all three C- 
rates is below 5%, the results show higher error as C-rate increases. To 
explain this behaviour, note that NN models tend to perform better 
when data is continuous and smooth [40,41]. Consequently, relatively 
sharp gradients are more difficult to capture for NN models. In the 
context of this work, discharging a battery at high C-rates leads to a Li 
concentration distribution with relatively sharp gradients near the 
separator, which possibly explains the worse performance of the ML 

model at high C-rates. 
Turning attention now to the spatial distribution of SoL on the 

electrode scale, Fig. 9 shows the plane-averaged SoL as a function of 
distance from the separator at 3C (left), 1.5C (middle), and 3.5C (right) 
discharge rates and at the theoretical 50% depth of discharge, i.e., t =
900 s, for an unseen microstructure. The shaded red region represents 
one standard deviation of SoL values for the FEM solution at the x-axis 
along the through-plane direction while the solid line and markers 
represent the average SoL at that point for FEM and ML model, 
respectively. Note that 3C discharge rate was already seen during 
training unlike 1.5C and 3.5C, which were chosen to evaluate the 
generalizability of the ML model in the interpolation and extrapolation 
regimes, respectively. 

Based on this figure, the maximum relative error for 3C, 1.5C, and 
3.5C discharge rates were calculated to be 5%, 4.5%, and 15%, 
respectively, which suggests good agreement in the interpolation 
regime, and acceptable agreement in the extrapolation regime. This 

Fig. 7. Comparison of ML predictions for SoL against ground truth for randomly selected particles from the test dataset.  

Fig. 8. SoL (colorbar) at 50% discharge capacity based on C-rates, current flows from left to right. The generated solmaps are for microstructure 3, as tabulated in 
Table 1. Column (a) is for 0.25C at 7200 s, (b) is for 1C at 1800s, and (c) is for 3C at 600 s. The top row shows the FEM simulation, the middle row shows the CNN 
prediction and the bottom row shows the relative % error. 
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sharp increase in relative error in the extrapolation regime is not sur-
prising since NN models typically perform best when operating in the 
interpolation regime [42,43]. To help the NN model to extrapolate, one 
could use physics informed neural networks (PINNs), which at its core 
involves adding a physics-based term to the loss function [44,45], but 
that is beyond the scope of this work. 

4. Conclusions 

A machine learning framework was developed to explore the possi-
bility of predicting the state-of-lithiation within the NMC particles of a 
Li-ion battery electrode. The model was intended as a surrogate with the 
aim of rapidly predicting the SoL given a new microstructure to avoid 
the use of computationally expensive direct numerical simulations. To 
simplify this task in this proof-of-concept study, the particles were 
assumed to be circular, with radii between 1 and 10 μm, and with a 
porosity range of 35–60%. For establishing ground truth values required 
for training the ML model, FEM simulations of battery discharge were 
conducted at various C-rates and depth of discharge. As for the ML 
model, an auto encoder convolutional neural network was used and 
trained on the data generated from FEM simulations. The inputs to the 
ML model were the binary image representing the microstructure, as 
well as its Euclidean distance transform, which was used to facilitate the 
training. To further aid the training, additional metadata was also 
extracted and fed to the ML model, such as distance from the separator. 
The ML model was designed to predict the SoL for isolated particles 
rather than for the entire electrode microstructure. For this reason, to 
predict the SoL for the entire electrode, the model needs to be run 
multiple times and the results pieced back together to reconstruct the 
entire electrode. Due to this approach, we evaluated the model perfor-
mance at two levels: isolated particles, and the entire electrode. For the 
former, the model was shown to be able to predict the SoL of individual 
particles with a reasonable accuracy, although it was less successful at 
predict the concentration gradient in larger particles at high C-rates. For 
the latter, however, the model was able to accurately capture the SoL 
distribution across the entire electrode with a good accuracy. We also 
evaluated the performance of the ML model in predicting the SoL for C- 
rates unseen during the training. We tested different C-rates both in the 
interpolation and extrapolation regimes. In the former, the model per-
formed very similar to those C-rates seen during training with a 
maximum relative error of 5% (for a particular unseen microstructure), 
while in the latter, the model accuracy dropped although it still main-
tained within an acceptable range with a maximum relative error of 15% 
(for the same microstructure). Conventional methods of predicting state- 
of-lithiation within electrode particles solve partial differential algebraic 
equations using numerical methods such as the finite element method. 
The main benefit of this framework was to reduce the computation time 

to predict the state-of-lithiation for battery discharge in heterogeneous 
models. Our benchmarks indicate that computation time is at least an 
order of magnitude quicker in comparison to finite element simulations, 
and we expect even higher speedups in the 3D case. One limitation of the 
current work, aside from being limited to 2D and spherical particles, is 
that the relatively small error achieved in concentration (SoL) pre-
dictions could still potentially lead to large errors in the concentration 
gradient. Recent work on incorporating gradients or spatial derivatives in 
the training process [38,39] is particularly relevant to the application of 
NNs to Li-ion electrodes since the lithiation gradient is particularly 
relevant for predicting stress-induced particle cracking. This work is a 
proof-of-concept which indicates that machine learning models could be 
a viable alternative to study battery behaviour, although we considered 
a simplified circular geometry for NMC particles as a first approxima-
tion. Future work in this area could investigate the use of machine 
learning to study battery discharge behaviour on real tomography 
images. 
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Appendix A. FEM battery discharge simulations 

A.1. System of governing equations 

The model used in this work closely follows that of Xu et al. [13] who performed microstructural simulations on tomographic images of electrodes. 
The governing equations for simulating battery discharge involve coupling concentration and potential fields. Lithium ions in the electrolyte phase 
move due to diffusion and migration, the former occurs due to a concentration gradient and the latter to the presence of a potential field in the 
electrolyte phase. Lithium ions intercalate into the NMC particles, described by Fick’s law. The boundary condition is a non-homogenous Neumann 
condition described by Butler-Volmer kinetics. In this configuration, the NMC electrode behaves as the positive electrode, thus there is a net flux of 
lithium ions into NMC particles during discharge. The following diagram sums up the governing equations and boundary conditions used here and 
described in the following subsections.

Fig. 10. Schematic diagram of domain with governing equations and boundary conditions indicated.  

Because only 2D domains were considered here it was not possible to have percolation of both the solid and void phase simultaneously, so a 
fictitious binder phase is superimposed onto the electrolyte phase in the positive electrode region to provide electrical conductivity for the electrical 
current. This was accomplished by assigning a non-zero electrical conductivity to the liquid electrolyte phase, which is a tactic used by other 
microstructural models [3,5]. 

A.1.1. Electrode kinetics 
The rate of intercalation of Li into the NMC active particles was described by the Butler-Volmer equation: 

j = jo

(
exp

[
αaFη
RT

]
− exp

[−αcFη
RT

])
(3) 

The value of jo, the exchange current density, is defined as: 

jo = (kc)αa (ka)αc
(
Cs,max − Cs,surf

)αc(Cs,surf
)αc

(
Ce

Ce,ref

)αa

(4) 

The exchange current density, jo, could be viewed as a reference kinetic parameter. The exchange current density is a function of the concentration 
of lithium ions as well as kinetic parameters [2,7,8]. Cs,surf and Cs,maxrepresent the intercalated lithium ions on the surface of NMC and maximum 
concentration of lithium ions in the active material host structure, and Ce, and Ce,ref the concentration of lithium ion in the electrolyte phase and 
reference concentration taken to be 1 mol

m3 [13], respectively. The kinetic parameters are ka and kc are the reaction rate constant of the anodic and 
cathodic directions of the lithium intercalation reaction, and aa, and ac are the Tafel coefficients, which has been reported to be equal in the anodic and 
cathodic direction [43], αa = αc = 0.5. 

η = ϕs −ϕl −U
(

Cs,surf

Cs,max

)
(5) 

Then, the activation overpotential, η, depends on the solid- and liquid electrolyte-phase potentials, ϕs and ϕl, as well as the electrode potential of 
the material, U. This is constant in the case of “typical” conversion-based electrodes but depends on the concentration of lithium ions on the surface in 
the case of intercalation materials. The potential is defined as the thermodynamically reversible potential, though in practice, this data is obtained 
under very low discharge (or C) rates; 0.02C as reported in [12]. 
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A.1.2. Lithium-ion transport in the electrolyte phase 
Lithium-ion transport in the electrolyte phase is modeled using the Onsager-Stefan-Maxwell equations as typically used in Newman’s framework 

[44]. In the void space of the electrode the current density is given by: 

il = − κ∇ϕl +
2RT

F
κ
(

1+ ∂lnf±
∂lnCl

)(
1− t+o

)
⋅ 1
Cl
∇Cl (6)  

where κ is the ionic conductivity varying with lithium concentration, f± is the mean molar activity coefficient of the electrolyte, and t+o is the lithium- 
ion transference number. 

In the microstructure-resolved model there are no sources or sinks for ionic current within. 
the bulk electrolyte phase, so the conservation equation for current in the electrolyte phase is: 

∇⋅il = 0 (7) 
The governing equation for ion transport in the electrolyte was described by the following governing equation: 

∂Cl

∂t
= ∇⋅(DLi∇Cl)−

t+o
F
∇⋅il (8)  

where DLi is the lithium-ion diffusivity in the electrolyte. Note that porosity and tortuosity of the electrode are not required since this effect arise 
directly from the fact that the microstructure is accounted for by the computation mesh. 

The microstructure of the porous separator was not resolved however, so the conservation law includes its porosity and tortuosity: 

εsep,l
∂Cl

∂t
= ε1.5

sep,l

(
∇⋅(DLi∇Cl)−

t+o
F
∇⋅il

)
(9)  

where εsep,l is the void fraction of the electrolyte phase in the separator region. The Bruggeman approximation was used to relate tortuosity to porosity, 
tsep = ε−0.5

sep , yielding the ε1.5
sep term. 

Lastly, then anode is treated as lithium foil which is commonly done experimentally to eliminate the confounding effects of anode performance on 
the results. The voltage in the liquid phase at the foil was taken as the ground: 
ϕl
(
x = xfoil, t

)
= 0 V (10) 

Initial conditions 
The initial conditions were as follows: 

ϕl = 0 V  

Cl(x, t = 0) = 1000 mol
m3 (11) 

At t = 0, the potential is ϕl = 0 V and typical concentrations of lithium used in batteries is CLi+ = 1M. 
Boundary conditions 
There are boundary conditions for both concentration and potential fields. At the lithium foil, the flux of lithium-ions is the applied current density, 

which is typically described using C-rates. The definition of C-rate is the current density which discharges the cell at inverse of C hours. So 1C would 
discharge the cell in 1 h and 2C would discharge the cell in half an hour. Then, the boundary condition at each particle is related to the Butler-Volmer 
equation: 
− n→⋅Γϕl

(
x = xfoil, t

)
= iapp  

− n→⋅Γϕl = jbvF,∀i ∈ Pi (12)  

where n→ is the normal vector pointing out of a domain, Γϕl is a shorthand for the ionic migration term, iapp represent the applied current density 
specified in multiples of C-rate, and Pi represents the i particles in the positive electrode region: 

− n→⋅ΓCl

(
x = xfoil, t

)
= iapp

F  

− n→⋅ΓCl = jbv,∀i ∈ Pi (13) 
Similarly, ΓCl is a shorthand for Fick’s law in the electrolyte region. 

A.1.3. Lithium-ion intercalation 
The solid phase refers to the lithium foil, current collector and the NMC particles. Concentration and potential are modeled in the NMC particle 

phase. Intercalation is modeled through Fick’s law and potential through Ohm’s law. The electrical conductivity of the NMC particle phase was 
adjusted to include the effect of conductive binder, though this was not explicitly resolved. 

Lithium-ion transport in particles 
Diffusion of Li-ions in the solid (NMC) phase was described using Fick’s second law: 

∂Cs

∂t
= ∇⋅(Ds∇Cs) (14) 
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where Cs is the lithium-ion concentration in the NMC host structure and Ds is the lithium diffusivity in the active particles. 
Solid potential 
Conservation of charge in the solid phase was applied as follows: 

∇⋅
(
− σNMC+Binder∇ϕs,NMC+Binder

)
= 0 (15)  

where σ is the electrical conductivity of the solid material. Again, this includes the fact that electronically conductive binder was not resolved 
separately from NMC particles. 

Electrical ground 
The ground node is selected to be at the lithium foil as in the solution-phase potential. 

ϕs,foil
(
x = xfoil, t

)
= 0 V (16) 

And the boundary conditions at the particle interfaces being related to the Butler-Volmer equation. 
Initial conditions 
The concentration in the solid phase was assumed to be constant throughout: 

Cs(x, t = 0) = Cs,0 (17)  

where Cs,0 is the initial lithium concentration in the NMC host structure. In addition, the initial potential of the conductive binder is assumed to be at 
the same potential as the NMC particles: 

ϕs,NMC,+Binder(x, t = 0) = UNMC

(
Cs,0

Cs,max

)
(18) 

Boundary conditions 
The source of lithium ions from the electrolyte phase into the NMC particles is as represented with a Neumann boundary condition and the second 

boundary indicates there is no flux of lithium out of the domain: 
− n→⋅ΓCs = − jbv, ∀i ∈ Pi  

− n→⋅ΓCs (x = xcurrent collector, t) = 0 (19)  

where Pi are the NMC particles in the positive electrode region. There is electronic current at the electrolyte/NMC particle interface and the boundary 
condition at the current collector is the applied current density: 
− n→⋅Γϕs = − jbvF, ∀i ∈ Pi  

− n→⋅Γϕs (x = xcurrent collector, t) = − iapp (20)  

A.2. Electrochemical and cell parameters 

Fig. 1 represents the cell geometry generated from the following outlined procedure. Cells could either be optimized towards energy or power 
where the former favours thicker and highly packed cells while the latter favours thin cells. In EVs, the trend is thin cells with high particle packings. 
This translates into cells with relatively low porosities of 0.32 to 0.37, readers could refer to Table I in [16] for a comprehensive overview. The 
separator lengths used in the simulations is taken to be 20 μm [13]. The physical parameters used in this work is tabulated in Table 4.  

Table 4 
Physical parameters for electrochemical simulations used in this work.  

Parameter Value [Ref] Unit Parameter Value [Ref] Unit 
σNMC 100 [45] S/m Cs,0 980 mol/m3 

σbinder 1 S/m Cl,ref 1 [13] mol/m3 

κ f(Cl), [2] S/m Cl,0 1000 [13] mol/m3 

t+o 0.363 [46] – εsep,l 0.4 – 
∂lnf±/∂lnCe 0 [2] – U f(Cs), [45] V 
kc 2 × 10−11 [43] m/s DLi 7.5× 10−10 m2/s 
ka 2 × 10−11 [43] m/s Ds 5 × 10−13 [45] m2/s 
αc 0.5 [43] – SOCmax 0.975 [45] – 
αa 0.5 [43] – SOCmin 0 [45] – 
Cs,max 48900 mol/m3     
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convolutional neural network to predict fluid flow through porous media. Adv 
Water Resour Apr. 2020;138:103539. https://doi.org/10.1016/j. 
advwatres.2020.103539. 

[33] Santos JE, et al. Computationally efficient multiscale neural networks applied to 
fluid flow in complex 3D porous media. Transp Porous Media Oct. 2021;140(1): 
241–72. https://doi.org/10.1007/s11242-021-01617-y. 

[34] van den Berg EH, Meesters AGCA, Kenter JAM, Schlager W. Automated separation 
of touching grains in digital images of thin sections. Comput Geosci Mar. 2002;28 
(2):179–90. https://doi.org/10.1016/S0098-3004(01)00038-3. 

[35] Obaid HS, Dheyab SA, Sabry SS. The impact of data pre-processing techniques and 
dimensionality reduction on the accuracy of machine learning. In: 2019 9th annual 
information technology, electromechanical engineering and microelectronics 
conference (IEMECON). IEEE; Mar. 2019. p. 279–83. https://doi.org/10.1109/ 
IEMECONX.2019.8877011. 

[36] Kingma DP, Ba J. Adam: A method for stochastic optimization. Dec. 2014. 
[37] Wang Y, Xiao Z, Cao G. A convolutional neural network method based on Adam 

optimizer with power-exponential learning rate for bearing fault diagnosis. 
J Vibroeng Jun. 2022;24(4):666–78. https://doi.org/10.21595/jve.2022.22271. 

[38] Yu J, Lu L, Meng X, Karniadakis GE. Gradient-enhanced physics-informed neural 
networks for forward and inverse PDE problems. Comput Methods Appl Mech Eng 
Apr. 2022;393:114823. https://doi.org/10.1016/j.cma.2022.114823. 

[39] O’Leary-Roseberry T, Chen P, Villa U, Ghattas O. Derivative-informed neural 
operator: an efficient framework for high-dimensional parametric derivative 
learning. J Comput Phys Jan. 2024;496:112555. https://doi.org/10.1016/j. 
jcp.2023.112555. 

[40] Grinsztajn L, Oyallon E, Varoquaux G. Why do tree-based models still outperform 
deep learning on typical tabular data?. 2023. 

[41] Rahaman N, et al. On the spectral bias of neural networks. 2023. 
[42] Barnard E, Wessels LFA. Extrapolation and interpolation in neural network 

classifiers. IEEE Control Syst Oct. 1992;12(5):50–3. https://doi.org/10.1109/ 
37.158898. 

[43] Xu K, Zhang M, Li J, Du SS, Kawarabayashi K, Jegelka S. How neural networks 
extrapolate: From feedforward to graph neural networks. Sep. 2020. 

[44] Kamrava S, Sahimi M, Tahmasebi P. Simulating fluid flow in complex porous 
materials by integrating the governing equations with deep-layered machines. Npj 
Comput Mater Aug. 2021;7(1):127. https://doi.org/10.1038/s41524-021-00598- 
2. 

[45] Zhou X-H, McClure JE, Chen C, Xiao H. Neural network–based pore flow field 
prediction in porous media using super resolution. Phys Rev Fluids Jul. 2022;7(7): 
074302. https://doi.org/10.1103/PhysRevFluids.7.074302. 

S. Ly et al.                                                                                                                                                                                                                                        


	Rapid prediction of particle-scale state-of-lithiation in Li-ion battery microstructures using convolutional neural networks
	1 Introduction
	2 Background
	2.1 Electrochemical model
	2.2 Dataset generation
	2.2.1 Electrodes used in training
	2.2.2 Generating dataset: voxelization of microstructural images and SoL maps
	2.2.3 Generating dataset: isolation of particles
	2.2.4 Metadata

	2.3 Machine learning model

	3 Results
	3.1 Generation of ground truth data
	3.2 Model training
	3.2.1 Loss curves

	3.3 Model evaluation on single particles
	3.4 Comparison on whole electrode

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	Appendix A FEM battery discharge simulations
	A.1 System of governing equations
	A.1.1 Electrode kinetics
	A.1.2 Lithium-ion transport in the electrolyte phase
	A.1.3 Lithium-ion intercalation

	A.2 Electrochemical and cell parameters

	References


