
1

•
•

•

•

•

•

taxon description language syntax overhaul

feb 16 2021

definitions

movement - a block’s position (coordinates of its centroid) changes

actuation - the block’s children in the kinematic tree move, but the block itself
does not

block - umbrella term referring to a motor, a tool, or a mechanism (formerly called
"block", see change log below for more info)

changes:

remove buildEnvironment property (maybe just for now)
standardize dimensions in envelope such that workEnvelope ::= (shape,
dimensions, position)
rename the former top-level blocks property to mechanisms . objects that go
in that are property are now known as “mechanisms” . “blocks” now refers
collectively to anything that’s part of the machine that’s rendered as a box:
motors , mechanisms , tools .
remove the componentType property everywhere. in the case of motors and
tools, the value was always “motor” or “tool” respectively anyway, so we can
infer this by just looking at the top-property anyway. in the case of mechanisms
(formerly blocks), we resolve this issue as described below.
for mechanisms (formerly blocks), replace componentType with
mechanismType which can be either: linear , parallel , cross , or
nonActuating (perhaps deltaBot some day soon). this emphasizes that the
top-level abstraction of the mechanism is only about how many motors it is
driven by, and how many axes it actuates on. by definition:

a linear mechanism has one driving motor and actuates on one axis

2

•
•
•
•

•
•

•

•

•

•

a parallel mechanism has 2 or more driving motors and actuates on one axis
a cross mechanism has 2 driving motors and actuates on two axes
a non-actuating mechanism has 0 driving motors and actuates on 0 axes
ideally, we check mechanismType , drivingMotors , and actuationAxes to
enforce this definition.

in mechanism objects, rename “axes” to be “actuationAxes”
in motor objects, remove “drivenStages”—now the pairing of motors and
mechanisms (formerly called blocks or stages) is indicated only within
“drivingMotors” within a mechanism object.
remove explicit kinematics as a mechanism-level property. all linear and all
parallel mechanisms are assumed to have directDrive kinematics. all cross
mechanisms have hBot /coreXY kinematics (the kinematic equations are the
same, but the physical properties might be different. to address this, we move
hBot vs. coreXY into the attributes property). we now only use terms like
"directDrive" in the compiler and these terms are never exposed to the
programmer.
remove “platform” and “toolAssembly” as mechanism-level properties;
instead, these now go in the mechanism’s attributes property. again, this
emphasizes that what we care about at the mechanism level is the input of
motors and output of actuation.
add new metafeatures property whose value is an object that contains any
information about the machine that does not pertain to its volumetric or
kinematic properties. as such, we move the formerly top-level “vendorInfo”
and “machineType” properties in here. properties in the metafeature object
are all optional, so we might as well add “version” as well.
remove connections as a top-level property: now, blocks “own” their
connections in which they are the parent (formerly called baseBlock) e.g.

“mechanisms”: [
 {
 “name”: “someParentMechanism”,
 “connections”: [
 {
 “child”: “someChildMechanism”
 …
 }
]
 }

3

•

]

Condense connection syntax as shown, e.g. from:

{
 "baseBlockName": "leadscrew motor a",
 "baseBlockFace": "-y",
 "baseBlockEnd": "0",
 "addBlockName": "z leadscrews",
 "addBlockFace": "+y",
 "addBlockEnd": "+z"
},

to:

{
 // implicit: baseBlock is the block that owns this connection
 “child: "y leadscrews",
 “parentPoint": "-y.center",
 “childPoint": "+y.+z"
}

where “basePoint” and “addPoint” have the syntax “F.P” where F is in [+/-x, +/-
y, +/-z]

