Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
src
 
 
 
 
 
 

README.md

TFBA

Codes for Tensor Factorization with Back-off and Aggregation.

Prerequisites:

install sktensor (https://github.com/mnick/scikit-tensor)

This package contains the following files:

  • dataGen.py -- Used to generate tensors from the set of tuples.
  • factorize.py -- Joint tensor factorization.
  • cliqueMine.py -- Constrained Clique mining.

Usage:

$ python2.7 dataGen.py <tuples_file> <output_dir> </br>
--- Each line in the input file is a tab separated 4-tuple of the format 
	subject "\t" relation "\t" object "\t" other "\t" frequency. </br>
--- 3-tuples can also be provided in the same file along with 4-tuples, in which case use the string "<na>" for other. </br>
--- This script will create pkl files in the output directory. </br>

$ python2.7 factorize.py <data_dir> <output_dir> [other options]</br>
--- Performs the factorization and store the latent factor matrices and core tensors in the <output_dir> directory. </br>
--- <data_dir> should be same as the <output_dir> of dataGen.py. </br>
optional arguments: </br>
	  -h, --help            show this help message and exit </br>
	  --minLambda MINLAMBDA [MINLAMBDA ...] </br>
			        ** Enter the min lambda (list), default = 0.1 0.1 0.1 </br>
	  --maxLambda MAXLAMBDA [MAXLAMBDA ...] </br>
			       ** Enter the max lambda (list), needed only for grid
			        search. If no grid search, provide only minLambda option.
	  --step STEP           Enter the step size for grid search (default = 0.5) </br>
	  --maxIters MAXITERS   Enter the maximum iterations (default = 10) </br>
	  --rank1 RANK1         Enter rank1 (default = 10) </br>
	  --rank2 RANK2         Enter rank2 (default = 10) </br>
	  --rank3 RANK3         Enter rank3 (default = 10) </br>
	  --fit FIT             Y/N, default = N. Give Y for fit computation. </br>
	  --cores CORES         Number of Threads </br>


$ python2.7 cliqueMine.py <data_dir> <output_dir> --rank r1 r2 r3 </br>
--- Performs constrained clique mining and stores the schemas in <output_dir> </br>
--- <data_dir> should be same as <data_dir> used to run Factorize.py

References:

[1] Madhav Nimishakavi, Manish Gupta and Partha Talukdar. Relation Schema Induction using Tensor Factorization with Back-off and Aggregation. Proceedings of 2018 Conference on Association for Computaional Linguistics (ACL 2018).

About

HIgher-order Relation Schema Induction using Tensor Factorization with Back-off and Aggregation

Resources

License

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.