
Hack your Kubernetes controller in
Bash in 10 minutes!

https://github.com/maelvls/hack-your-controller-in-bash

Maël
Valais

Antoine
Le Squéren

Code and live
slides!

1

https://github.com/maelvls/hack-your-kubernetes-controller-in-10-minutes
https://github.com/maelvls/hack-your-controller-in-bash

Hack your Kubernetes controller in
Bash in 10 minutes!

Maël Valais,
Software Engineer

Antoine Le Squéren,
DevOps Engineer

@maelvls

A story about Vault, external-secrets, slow skaffold
run, and how a one-liner Bash controller did the trick.

"I maintain the cert-manager
project. I aim to build the best

Let's Encrypt experience on
Kubernetes."

"I improve the developer
experience at OneStock by

providing an efficient
development environment."

in/maelvalais

in/antoine-le-squéren-8495a774

2

https://twitter.com/maelvls
https://www.linkedin.com/in/maelvalais/
https://www.linkedin.com/in/antoine-le-squ%C3%A9ren-8495a774/
https://www.linkedin.com/in/antoine-le-squ%C3%A9ren-8495a774/

Hi everyone,

Few months ago, I met Mael at a coworking space at Toulouse, in the south of France.
We quickly got along well and we started to speak about our jobs problems during coffee breaks.
I told him I was struggling with a kubernetes problem, it involved Vault and the External Secret Operatior.
He told me, alright, I might be able to help you, show me the code.
So we sat in front of my computer and a moment later, he told me, you should write a kubernetes controller !
Ah. Are you serious ? Because it sounds really complicated to me.
You know, I don't contribute to the kubernetes project.
Then he wrote few bash commands and we had a functional prototype which solved my problem nicely.
He made me realised, it's not that hard to write kubernetes controller.

Today we want to share this story with you, because we think that writing small kubernetes controller is not that
complicated and it can solve real problems.

I'm Antoine Le Squéren, a devops engineer at OneStock
My goal is to improve developer experience by providing a nice development environment.

I'm Mael, I work at Jetstack. Jetstack is the company behind cert-manager, and cert-manager is a CNCF Sandbox
project for getting Let's Encrypt certificates in your Kubernetes cluster.

Part of my job is to maintain cert-manager and I focus on keeping TLS and X.509 boring.

This presentation is about a story.

Speaker notes

It starts with Antoine's story at OneStock, and how secrets were slowing down developers.

It continues with our common story, after we met, and how a simple Bash command that turned out to be a
controller ended up solving that speed problem.

(4) deliver

OneStock

website(3) order

(1) visit (2) fetch stock

3

warehouse

t-shirt in stock

Yes, so I'm going to briefly speak about OneStock and what problem we want to solve.

We sell an SAS solution to oneline retailers for unifying warehouse and store stocks.

Imagine you want to buy a tshirt on Intersport.
You visit the website, the warehouse have that tshirt in stock so you can order it.
The warehouse prepares your parcel and send it to you.

Speaker notes

(4) deliver

OneStock

website(3) order

(1) visit

warehouse

4

store

t-shirt not in stock

t-shirt in stock

(2) fetch stock

But what happens if the warehouse does not have stock ?
Well without OneStock, you will see an out of stock.
But, it's too bad because store may have you product in the shelves.

But with OneStock, stores and warehouse stocks are unified.
Now you see that your tshirt is in stock and you can order it.
You order will be sent to all stores that can fulfill it and store sellers will be able to claim your order.
The store seller will pickup you product, prepare the parcel and ship it to you.
It's completely transparent on your side.

This is a basic use case to avoid out of stock, but we handle many more.

OneStock has grown quickly over the last years.
More than 10 000 stores use our UI daily and
10% of europeans have already used our service without knowing us.
We are now more than 40 developers.

Speaker notes

Secrets at OneStock

60 clients
=> 300 secrets

External secrets:

Stock API
SFTP
Mailjet
Gmaps
...

5 secrets

Internal secrets

OneStock API
Postgre
MongoDB
ElasticSearch
...

10 secrets

5

3 environments
(dev, staging, prod)

At OneStock, we handle a lot of secrets as many companies do.

We have 2 kinds of secrets,

On one side, there are internal secrets for our stack credentials.
It includes our databases and api login/passwords used by our services.
These are set for each environment.

On the other side, there are external secrets.
They contain credentials to connect to external services such as the stock API of our clients.
Because we now have many clients, we have to handle more than 300 secrets.

Speaker notes

Prod

deploy Swarmssh

secrets.env

docker-compose.yaml

bastion

secrets.env

docker-compose.yaml

docker daemon

Staging (on 40 dev laptops)

deploy

6

Back in the old days

🔥

So how do we handle those secrets in our stack?
In two thousands sixteen, we have setup docker and docker-compose to run our stack.
In a classic way, we have one git repo per microservice with one Dockerfile.
We used docker-compose to build and push docker images to our registry but we also used it to run the application
locally.
We stored our secrets in plain text environment files on our laptop.

<***> We also used docker-compose and environment files on production.
To deploy a new release, you had to connect with ssh to a bastion, the security was done with an ssh configuration.
Then you update the docker-compose yaml file with new image versions.
And then update the secrets manually before running a docker-compose run.
Then it was deployed on an on-premise swarm cloud.
This have worked well for us up to last year when the dev team had grown quickly.
We exceeded 100 microservices for a standart installation with many databases such as elasticsearch.

<***> And unfortunatly, what should happen, happened, dev laptops had not enough resources to run the
application locally.

Speaker notes

(2) skaffold
run

Dev1 laptop

A new dev environment

dev1-ns

Deployment Secret

OVH managed cloud

secrets.env

skaffold.yaml
helm manifests

(1) load

7

dev2-ns

Deployment Secret

It is one of the reasons why we switched to a managed kubernetes cloud.
Historically, our servers were hosted by OVH so we have chosen the OVH managed cloud.

Each developer has its own namespace and he can deploy his application inside.
We use skaffold and helm instead of docker-compose to build and deploy.

The new cluster is autoscalable, up and down, based on the Pods resources.
This is a really nice feature because we only pay for the resources we use.
How does it works in practice ?
On the morning, the cluster progressively grows as developers start working and launch theis Pods.
At the end of the day, a CronJob shuts down all applications and the cluster fastly downscale to 1 machine.

With this solution, we have solved the resource limitation problem, but we also
have a nice benefit: it's easier for people to collaborate

For example, if a colleague ask for help about the new feature I just pushed, I can
inspect his running Pods with k9s, just as I do for my Pods.
It's the same for data, I can connect to his mongodb instance just as I do with my mongodb instance.
So it's easier to help each other. At OneStock, it has created a positive dynamic inside the dev teams.

Speaker notes

(2) skaffold
run

Dev laptop

A password leak

dev1-ns

Deployment Secret

Kubernetes

secrets.env

skaffold.yaml
helm manifests

(1) load

8

dev2-ns

Deployment Secret

leak!

But one day, my CTO came to my desk and told me:
Hey, someone from an untrusted IP is sending mail with our MailJet account !

After few investigations, the login/password have been leaked and a bad actor was using it !
Hopefully it was the dev account and only developers used it.
So it easy to fix the problem right ?
You change your credentials and you send a message to the dev channel.
People will update their local env files and everything is fine.
Right?

Well in practice, it was a pain.
People don't read all chat messages, they come back from holidays etc
I received messages during many weeks saying that mailing was broken.

So here, we had a secret rotation problem.

Speaker notes

Vault
(1) vault kv get

Vault

Dev laptop

skaffold.yaml
helm manifests (2) skaffold

run

dev1-ns

Deployment Secret

9

/secrets/dev/postgres

/secrets/prod/postgres

⏳

Kubernetes

That's why we use Vault.

For those who don't know, Vault is a secret management tool.
We have stored all our secrets there and we use the Vault policies to restrict secret access.
For example, only a few developers are allowed to access production secrets.
And as we already used LDAP for handling user identity, we just had to connect Vault to our existing LDAP.
So all devs can authenticate to Vault with their existing password, this is very convenient.

We just have to add a skaffold pre-install hook to fetch the credentials and we are done !

It was great for us because it has removed frictions and manual secret management for developers.
Now, we can update a secret in Vault and all new deployement will use the new value without any manual
intervention.

<***> But we have a problem with this solution.
Every time a developer deploys an application, the hook makes many calls to Vault
and it increased the deployment time by many seconds.

Speaker notes

(1) skaffold run Secret
"postgres"

(2) fetch

(3)
create

External secrets

Vault

Kubernetes

10

ExternalSecret
"postgres"

/secrets/dev/postgres

/secrets/prod/postgres

External secrets operator

Developer commands

To improve this we have setup the External Secret Operator.

The goal of this kubernetes operator is to synchronize secrets from external APIs into Kubernetes.
So in our case, we will use the operator to synchronise a vault key to a kubernetes Secret object.

<***> So instead of directly declaring the Secret object, helm declares an ExternalSecret object with a vault path
When the developer deploys an application with skaffold run, it creates an ExternalSecret object.
<***> The external secret operator will fetch the value in vault and create the corresponding Secret object in
kubernetes.
The pods definitions are not modified and they use the secret as they did before.

So great, we moved a synchronous action that slowed the application deployment
to an asynchronous action made by a controller in kubernetes.
I'm happy because I know it's an important factor of adoption.
The faster the deployment is, the more developers will use the plateform.

 On top of being asynchronous, the operator is self-healing. For example, if a new password leak happens and that
you decide to rotate the password in Vault, there will be an inconsistency between the password in Vault and the
secrets in Kubernetes, but external-secrets operator will self-heal. Would you like to know more about that?

 Yes!

Speaker notes

Self-healing, Consistency, Desired vs. Observed state

Kubernetes
Desired state

"linux processes=2""replicas=5"
Observed state≠

level-triggered action

edge-
triggered

action

action

consistent state
(desired = observed)

(transactional)

transfer money

user
interaction

11

observed state

desired state
replicas=5

action

linux processes=2

kubelet creates container

user
interaction

but always consistent

not able to recover data
inconsistencies

Bank
Desired state

"sum of balances is 0"
Observed state

"sum of balances in DB"
=

factconstraint

no data consistency

but can recover from inconsistencies

SUM(balance)
FROM accounts;

Mael: for example, take a bank.

Speaker notes

observed state

desired state

action

Self-healing in external-secrets operator

redis out
of sync

postgres
 in sync

postgres in sync password in Vault matches Secret in Kubernetes

postgres out of sync password in Vault does not match Secret in Kubernetes

vault get &&
kubectl patch secret

12

Mael: n/a

Speaker notes

A bad actor
Kubernetes

dev2-ns

ingress API Secret

Data

Vault

/secrets/dev/api

13

dev1-ns

ingress API Secret

Data
leak!

dev1-ns

ingress API

Secret

Thanks Mael for those precisions.
The 40 developers have used the External Secret Operator for last months and they are happy with it.

After the password leak I mentioned earlier, we decided to improve the security in the company.
We thought about the following scenario:
If someone with bad intentions manage to acces the kubernetes cluster
and manage to compromise the API credentials of a developer,
 he could access to this developer dev data by making api calls.

<***> But as all developers use the API credentials defined in Vault, the bad actor could also access to all
developers data.
This does not looks good.

And OneStock has many different teams and each teams handle different kind of data.
Some may be sensible even in a dev environment.

This security issue had been highly prioritized.
Ok, so we have to fix it.

Speaker notes

40 developers
=> 400 random passwords

Secrets at OneStock (bis)

60 clients

External secrets:

Stock API
SFTP
Mailjet
Gmaps
...

5 secrets

Internal secrets

OneStock API
Postgre
MongoDB
ElasticSearch
...

10 secrets

14

Well we cannot touch the external secrets as it refers to external services.
So we speak about internal secrets here.
We decided to generate random secrets for every developers.

So 10 secrets cross 40 developers, we have now 400 passwords to generate.
Ok, so how can we handle those new secrets ?

Speaker notes

Slow solution

(0) vault put
<randompass>

(1) skaffold run Secret
"postgres"

(2) fetch

15

(3) create

Vault

Kubernetes

ExternalSecret
"postgres"

/secrets/dev-1/postgres

/secrets/dev-2/postgres

⏳

External secrets operator

Developer commands

Let's go back to the previous diagram.
Now, we have to add the username in the secret paths in Vault because each developer will have its own randomly
generated passwords.

We cannot generate them once for all because new developers arrive and some other leave the company.
And even at a developer level, we cannot generate those passwords once for all.
What happens if I pull the product repo and someone has defined a new secret ?
I will deploy the new External Secret object in kubernetes
but the ExternalSecretOperator will fail to fetch the vault secret
because it doesn't exist in my username path.

<***>
So I have no choice, at every deployment, a pre-install hook must check the existence of the secrets in vault and
generate them if it doesn't exist.
But it's the same problem than we saw earlier when we did many vault get during the deployment
Can we make this action in a controller ? It would be asynchronous and selfhealing.
I have searched on the web but I haven't found a controller that does this.

Mael:
On a rien trouvé sur internet de controller qui permette d'initialiser un ES avec un password aléatoire

Antoine:
Mael mais tu délires, un controller, j'ai jamais contribué au projet kubernetes, j'ai fait que l'utiliser

Speaker notes

Defining a controller: what are the desired and observed states?

Observed state: "Run kubectl get externalsecret and I look for
SecretSyncedError"

Desired state: "No external secret is stuck with 'secret not found' due to a
missing secret in Vault."

Action:

$ vault kv put secret/dev-1/postgres password=random
======= Metadata =======
Key Value
--- -----
created_time 2022-06-26T15:37:26.01313574Z
custom_metadata <nil>
d l i i /

"Run vault put password=random"

$ kubectl get externalsecret
NAME KEY PROPERTY READY REASON MESSAGE
redis secret/dev-1/redis password True SecretSynced Secret was synced
postgres secret/dev-1/postgres password False SecretSyncedError Could not get secret data

 reason: SecretSyncedError

apiVersion: external-secrets.io/v1bet1
kind: ExternalSecret2
status:3
 conditions:4
 - type: Ready5
 status: False6

7
 message: Secret key was not found8

This means 'secret not found'

16

TL;DR: we don't "vault put" on the critical path, we wait until we get the error "secret not found" before doing
something.

1) Show what desired state means: "There is no SecretSyncedError in ExternalSecret"

2) How to build the observed state: kubectl get es and check whether the ready condition has the reason
"SecretSyncedError".
→ show kubectl get | jq .conditions select SecretSyncedError

3) Reconciliation actions = vault put

Speaker notes

kubectl --watch to avoid polling ExternalSecrets

https://asciinema.org/a/504357/iframe?autoplay=1

Get alerted as soon as SecretSyncedError appears

17

https://asciinema.org/a/504357/iframe?autoplay=1

kubectl get externalsecret --watch -ojson \
 | jq 'select(.status.conditions[]?.reason == "SecretSyncedError")' --unbuffered \
 | jq '.spec.data[0].remoteRef' --unbuffered \
 | jq '"\(.key) \(.property)"' -r \
 | while read key property
do
 vault kv put $key $property=somerandomvalue
done

1
2
3
4
5
6
7
8

kubectl get externalsecret --watch -ojson \1
 | jq 'select(.status.conditions[]?.reason == "SecretSyncedError")' --unbuffered \2
 | jq '.spec.data[0].remoteRef' --unbuffered \3
 | jq '"\(.key) \(.property)"' -r \4
 | while read key property5
do6
 vault kv put $key $property=somerandomvalue7
done8

 | jq 'select(.status.conditions[]?.reason == "SecretSyncedError")' --unbuffered \
kubectl get externalsecret --watch -ojson \1

2
 | jq '.spec.data[0].remoteRef' --unbuffered \3
 | jq '"\(.key) \(.property)"' -r \4
 | while read key property5
do6
 vault kv put $key $property=somerandomvalue7
done8

 | jq '.spec.data[0].remoteRef' --unbuffered \
 | jq '"\(.key) \(.property)"' -r \

kubectl get externalsecret --watch -ojson \1
 | jq 'select(.status.conditions[]?.reason == "SecretSyncedError")' --unbuffered \2

3
4

 | while read key property5
do6
 vault kv put $key $property=somerandomvalue7
done8

 | while read key property

kubectl get externalsecret --watch -ojson \1
 | jq 'select(.status.conditions[]?.reason == "SecretSyncedError")' --unbuffered \2
 | jq '.spec.data[0].remoteRef' --unbuffered \3
 | jq '"\(.key) \(.property)"' -r \4

5
do6
 vault kv put $key $property=somerandomvalue7
done8
 vault kv put $key $property=somerandomvalue

kubectl get externalsecret --watch -ojson \1
 | jq 'select(.status.conditions[]?.reason == "SecretSyncedError")' --unbuffered \2
 | jq '.spec.data[0].remoteRef' --unbuffered \3
 | jq '"\(.key) \(.property)"' -r \4
 | while read key property5
do6

7
done8

kubectl get externalsecret --watch -ojson \
 | jq 'select(.status.conditions[]?.reason == "SecretSyncedError")' --unbuffered \
 | jq '.spec.data[0].remoteRef' --unbuffered \
 | jq '"\(.key) \(.property)"' -r \
 | while read key property
do
 vault kv put $key $property=somerandomvalue
done

1
2
3
4
5
6
7
8

Writing our one-liner controller

so that we can use jq

because we
are piping jq

We only need to take
action when

SecretSyncedError
exists

Action

18

Observe state

https://asciinema.org/a/504076/iframe?autoplay=1&t=25s

Our one-liner controller in action!

19

https://asciinema.org/a/504076/iframe?autoplay=1&t=25s

controller pod

./controller.sh

A real controller runs inside a Pod, right?

Kubernetes

helm
install

dev-1
dev-1 namespace

ExternalSecret
"postgres"

Secret
"postgres"

vault
secret/dev-1/postgres

 = external-secrets operator

20

(observe state)
kubectl get --watch

 = our controller

(reconcile action)

vault p
ut

Visualising the controller pod in the cluster

fetch

create

A real controller runs inside a Pod, right?
Let us write a Dockerfile and a Deployment manifest

#! /bin/bash

kubectl get externalsecret --watch -ojson \
 | jq 'select(.status.conditions[]?.reason == "SecretSyncedError")' --unbuffered \
 | jq '.spec.data[0].remoteRef' --unbuffered \
 | jq '"\(.key) \(.property)"' -r \
 | while read key property
do
 vault kv put $key $property=somerandomvalue
done

controller.sh

apiVersion: apps/v1
kind: Deployment
metadata:
 name: controller
spec:
 replicas: 1
 selector:
 matchLabels: {name: controller}
 template:
 metadata:
 labels: {name: controller}
 spec:
 containers:
 - name: controller
 image: controller:local
 imagePullPolicy: Never
 env:
 - name: VAULT_ADDR
 value: http://vault.vault:8200
 - name: VAULT_TOKEN
 valueFrom:
 secretKeyRef:
 name: vault-token
 key: vault-token
 serviceAccountName: controller

apiVersion: v1
kind: ServiceAccount
metadata:
 name: controller

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: controller
subjects:
 - kind: ServiceAccount
 name: controller
roleRef:
 name: external-secrets-reader
 kind: Role
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: external-secrets-reader
rules:
 - apiGroups: [external-secrets.io]
 resources: [externalsecrets]
 verbs: [get, list, watch, update, patch]

deploy.yaml

FROM alpine:3.16

The "setcap -r" is detailed in https://github.com/hashicorp/vault/issues/10924.
RUN tee -a /etc/apk/repositories <<<"@testing http://dl-cdn.alpinelinux.org/alpine/edge/testing"
 && apk add --update --no-cache bash curl jq kubectl@testing vault libcap \
 && setcap -r /usr/sbin/vault

COPY controller.sh /usr/local/bin/controller.sh
CMD ["controller.sh"]

Dockerfile

21

https://asciinema.org/a/504467/iframe?autoplay=1

A real controller runs inside a Pod, right?
The controller pod in action

22

https://asciinema.org/a/504467/iframe?autoplay=1

What now?

Use conditions to
alert user when
something goes

wrong

apiVersion: external-secrets.io/v1beta
kind: ExternalSecret
metadata:
 name: postgres
spec:
 data:
 - remoteRef:
 conversionStrategy: Default
 key: secret/dev-1/postgres
 property: password
 secretKey: password
 refreshInterval: 5s
 secretStoreRef:
 name: vault-backend
 target:
 name: postgres
status:
 conditions:
 - type: Ready
 status: False
 reason: SecretSyncedError
 message: Secret key was not found
 - type: Created
 status: False
 reason: VaultConnError
 message: Vault returned 403 unauthorized

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Users won't know
when something

goes wrong

See controller-with-conditions.sh 23

https://github.com/maelvls/hack-your-controller-in-bash/blob/39eb0a7cc/controller-with-conditions.sh

What now?

Use Go and
controller-runtime

Slow
sequential
processing
due to the while loop

func main() {
 mgr, _ := manager.New(config.GetConfigOrDie(), manager.Options{}
 c, err := controller.New("ext-secrets-vault-creator", mgr, contro
 Reconciler: reconcile.Func(func(ctx context.Context, r reconcil
 extsecret := v1.ExternalSecret{}
 err := mgr.GetClient().Get(ctx, r.NamespacedName, &secret)

 // vault kv put

 return reconcile.Result{}, nil
 }),
 })
}

1
2
3
4
5
6
7
8
9

10
11
12
13

no more slow sequential processing, i.e., controller can handle hundreds of
ExternalSecrets

24

@maelvls in/maelvalaisin/antoine-le-squéren-8495a774

Maël ValaisAntoine Le Squéren
25

https://twitter.com/maelvls
https://www.linkedin.com/in/maelvalais/
https://www.linkedin.com/in/antoine-le-squ%C3%A9ren-8495a774/
https://www.linkedin.com/in/antoine-le-squ%C3%A9ren-8495a774/

Thanks Mael for this explanation.

I have tested the onliner bash controller inside our cluster and it worked well.
But in order to use it for real, I mean with all developers and for a long run, I will definitively implement the tiny go
controller.
It would be easier to test and maintain, especially at OneStock because most of developers write go code every
day so the knowledge and tools are already here.
By the way, if you are looking for a job in golang development or devops, OneStock has open positions so feel free
to contact me or the company. Fullremote is accepted.

I'm really happy to have met Mael.
We still speak about software problems during coffee breaks and we still help each other.
It's nice to see people from outside of your company, it opens perspectives and it may give you new ideas.
And we think coworking spaces are a great place for that.

Thank you for your attention

Speaker notes

