
BRB
& BRBDT’s
& Anti-Entropy
& BRB Membership

Byzantine Reliable Broadcast

Byzantine Reliable Broadcast (BRB)
An algorithm that guarantees all honest procs apply BRBDT Operations in Source
Order.

BRBDT: Byzantine Reliable Broadcast Data Types

● These are data types that are protected by BRB. e.g. AT2, ORSWOT, CRDT’s

Source Order: Op’s are ordered in the same order that a source produced them,
but no ordering guarantees are made between Op’s from different sources.

BRB Algorithm (high level)
1. An Op is initiated by broadcasting a request

for validation to the network.
2. Network members validate the Op and sign

it and respond back to the source with their
signature.

3. The source collects these signatures
4. Once it receives a super majority of

signatures, the source broadcasts out a
proof of agreement.

5. Once members receive the proof, they
apply the Op to the BRBDT.

See the next slide for a worked example.

2. A Broadcasts request for
message validation:

RequestValidation(m)

1. A initiates an operation
on the BRBDT and wraps
it in a Msg:

m = Msg { op, A1
}

3. procs validate msg and
inc. A’s receive clock

4. All members send A signed
msg as proof of their validation:

SignedValidated(m, sig)

5. Once A has collected a
quorum of signatures, A
Broadcasts these signatures
as proof of agreement

ProofOfAgreement(
 msg,
 {Asig, Bsig, Csig}
)

6. Procs apply the op to
the BRBDT after verifying
the proof

BRB - Sequence Diagram

A = B = C = Proc {
 pending_proof: {},
 peers: {A, B, C},
 received: {A0, B0, C0}
 delivered: {A0, B0,
C0}
}

A = B = C = Proc {
 pending_proof: {},
 peers: {A, B, C},
 received: {A1, B0, C0}
 delivered: {A0, B0,
C0}
}

A = Proc {
 pending_proof: {M: {Asig, Bsig,
Csig}},
 peers: {A, B, C},
 received: {A1, B0, C0}
 delivered: {A0, B0, C0}
}

B = C = Proc {
 pending_proof: {},
 peers: {A, B, C},
 received: {A1, B0, C0}
 delivered: {A0, B0,
C0}
}

A = B= C = Proc {
 pending_proof: {},
 peers: {A, B, C},
 received: {A1, B0, C0}
 delivered: {A1, B0,
C0}
}

1.

2a
2b 2c

3a
3b

3c

4c

4b

4a

5a
5b 5c

6a
6b 6c

A B C

BRBDataTypes (BRBDT)
BRB is agnostic to the underlying data type it protects. We refer to this data type as BRBDT
(a throwback to CRDT’s).

BRB will provide a source ordering guarantee. If a BRBDT requires stricter ordering
guarantees, it must provide them through the `validate(..)` method by refusing to validate an
Op if it does not satisfy the stricter ordering requirements.

Called when an actor is first
instantiated.

Called when we’ve been requested to
validate an operation.

Called once BRB has seen network
agreement over this operation.

BRB Anti-Entropy
Anti-Entropy is a process used to keep network members up-to-date and to
ensure totality over Op delivery, we also use it for onboarding new members or
creating read-only replicas.

Totality: if one honest process applies an op, eventually all other honest
processes will apply the same op or leave the network.

Motivating example: Say we run through the BRB algorithm up to the phase
where the source has collected a super-majority of signatures. The source can
then send this proof to just one honest member and then halt. The rest of the
network will not learn of this proof of agreement and never apply it. This violates
totality.

BRB Anti-Entropy
Honest procs periodically initiate anti-entropy with each voting members.

● Initiate Anti-Entropy by sending an “Anti-Entropy packet” containing your current generation
and your current delivered VClock.

● A proc receiving these Anti-Entropy packets responds by comparing the generation and
delivered VClock with their own and sending back any new Op’s or Membership changes
they have seen.

● Onboarding is handled by the new proc initiating Anti-Entropy with:

AntiEntropy { generation: 0, delivered: VClock::new() }

BRB Membership
A consensus algorithm for dynamically reconfiguring network
membership.

Each membership reconfiguration is marked by a corresponding
generation clock increment.

Each generation, any member may propose at most 1 Reconfig.

The BRB Membership algorithm will try to reach consensus over the
set of reconfigurations we will apply to take us to the next generation

BRB Membership | Algorithm
● A member broadcasts a vote with Ballot::Propose(reconfig) .
● When a member receives a vote, it logs the vote and then considers

the following cases
● Have we voted already?

○ If no, then adopt this ballot as our own and broadcast it as our vote.

● Is it still possible to form super majority over a set of reconfigs?
○ If not, we have a split vote, change our vote to a Ballot::Merge(..) containing all

votes we’ve seen so far

● Do we have a super majority over super majorities?
○ If yes, the algorithm terminates and we advance the generation and apply the

reconfigurations

● Do we have a supermajority?
○ If yes, then change our vote to Ballot::SuperMajority containing the votes we have seen

and broadcast

See the next few slides for some worked examples of the network agreeing on network reconfigurations.

Onboarding 2 new Procs:
1 proposes Reconfig::Join(2)

Forms Super-Majority with itself

And onboards 2

1 & 2 Agree to Reconfig::Join(3)

And 3 is onboarded by first sending proof that 2
is a voting member, then sending proof that 3
has been added as a voting member as well.

Split Vote | Procs 1 & 2 concurrently propose reconfigs
1 Proposes Reconfig::Join(3)

Concurrently, 2 Proposes Reconfig::Join(4)

Voters notice the split vote and change their votes to
merge the competing Reconfigs

Voters form consensus over the reconfig set {J3, J4}

And finally both new members are onboarded.

BRB Membership | Forced Reconfigs
Forced reconfigurations are used to forcibly reconfigure network membership.

This occurs when a network is first created (genesis proc), or when the network
suffers a catastrophic failure where the network can no longer form super-majority.

Any new process who is onboarded will need to manually apply these forced
reconfigurations or onboarding will fail since the new process can not verify these
forced reconfigs from the history alone.

