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Abstract

The spread of an infectious disease is sensitive to the contact patterns in the population and to

precautions people take to reduce the transmission of the disease. We investigate the impact that

different mixing assumptions have on the spread an infectious disease in an age-structured

ordinary differential equation model. We consider the impact of heterogeneity in susceptibility and

infectivity within the population on the disease transmission. We apply the analysis to the spread

of a smallpox-like disease, derive the formula for the reproduction number, , and based on this

threshold parameter, show the level of human behavioral change required to control the epidemic.

We analyze how different mixing patterns can affect the disease prevalence, the cumulative

number of new infections, and the final epidemic size. Our analysis indicates that the combination

of residual immunity and behavioral changes during a smallpox-like disease outbreak can play a

key role in halting infectious disease spread; and that realistic mixing patterns must be included in

the epidemic model for the predictions to accurately reflect reality.
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1. Introduction

The spread of infectious diseases depends upon contact patterns among people in the

infected population. These contact patterns can help guide public health workers identify

people at high risk of contracting an infection and where an outbreak can be effectively
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intercepted. Mathematical disease transmission models can be useful tools in understanding

the complex dynamics between the population and disease transmission. The knowledge

gained from these models can help improve the effectiveness of intervention strategies in

slowing the spread.

A realistic model for the spread of an infectious diseases must take into account the

mechanism of its transmission including the pattern of mixing among the population, the

susceptibility within the population, the virulence of the infection, the probability of

transmission per contact, and the changes in behavior in the affected population in response

to an epidemic. The simplest mathematical models assume that the population mixes

homogeneously, where it is equally likely that the disease can be transmitted between any

two people, regardless of their age, where they live or work, or any other behavior traits that

the individuals might have.

The assumption of a homogeneously mixing population is often sufficient to obtain general

insights once an epidemic is well established in a population. However, there can be

significant differences in the early stages of an epidemic and in the final epidemic size. In

particular, homogeneous mixing can lead to an overestimation of the final epidemic size and

the magnitude of the interventions needed to stop an epidemic [52]. For example, before

smallpox was eradicated worldwide in the 1970s, smallpox vaccinations were routinely

administered to the population; therefore, more than half of the U.S. population has received

the smallpox vaccine, and recent studies have shown that some of these individuals may still

have partial protection against smallpox [2, 13]. Because the vaccine itself carries potential

health risks, the U.S. discontinued smallpox vaccinations in 1972 [7]. This protection should

greatly reduce the number of severe and fatal cases of disease expected in a potential

bioterrorist attack. Similarly, recent pertussis studies have shown that infection-acquired

immunity against pertussis disease wanes after 4–20 years and protective immunity after

vaccination wanes after 4–12 years [56]. Therefore, there are clear age-dependent

differences in susceptibility that must be taken into account when developing models that

will guide public health policy.

Mathematical models have demonstrated the importance of accounting for heterogenous

mixing patterns in the population by using mixing functions or mixing matrices defined in

compartmental and networks models [4, 26, 27, 30, 31, 35, 37, 57]. Techniques have been

developed to incorporate non-random mixing into epidemic models, including proportional

mixing (mixing between groups is proportional to the activity levels) [24, 46], restricted or

preferred mixing (some contacts are chosen within a group and the rest are chosen

proportionally) [34, 25, 46], and selective mixing (mixing between groups is based on

desirability, acceptability, ad availability) [26, 38]. Network epidemic models have been

used to investigate sequential partnership patterns [39], concurrency in relationships [39],

the impact of various social biases on the spread of epidemics [16, 50], and other topics

related to mixing [40]. Network and compartmental epidemic models have been used to

model several infectious diseases; however, very few models have incorporated the impact

of realistic mixing patterns in the presence of population heterogeneity.
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Age-dependent risks and residual protection have been mostly neglected in the mathematical

models proposed to guide response strategies for a smallpox outbreak [5, 14, 36, 41, 44],

although some mathematical models of the dynamics of smallpox have incorporated the

effects of residual immunity [23, 45]. Halloran et al. [23] used a stochastic simulation of

smallpox in a community of 2,000 people in their efforts to compare mass vaccination

versus ring vaccination under different scenarios. They concluded that ring vaccination

would be more effective in the presence of preexisting immunity. However, their model

divided the population into only two classes (with and without residual immunity), did not

consider age-dependent risks, heterogeneous mixing, and behavioral changes in response to

a disease outbreak. Nishiura et al. [45] used a deterministic model with a population of 1

million people to study the impact of long-lasting vaccine-induced immunity. They divided

the population into three classes (never vaccinated, one vaccination, two vaccinations) and

assumed homogeneous mixing; however, they did not incorporate age-dependent risks and

behavioral changes. They observed that an epidemic could be greatly affected by the

residual immunity within the population and that vaccination should be given in accordance

to immunity level. Similarly, the recent 2009 H1N1 pandemic showed age-dependent risk;

that is, people who received the 1976 swine flu vaccine had some protection against the

virus [43]. Because many vaccinations are highly correlated to a persons age, these studies

all support the need for models to incorporate age-dependent residual protection when

predicting the disease dynamics within a population.

Responses to an infectious disease in a community can reduce morbidity and mortality; for

example, significant changes in behavior among men who engage in sexual activity with

men have been credited with decreases in prevalence of HIV/AIDS and other sexually

transmitted diseases [22, 25, 28, 55]. Experiences with the severe acute respiratory

syndrome (SARS) epidemic in 2003 and most recently, the 2009 H1N1 pandemic indicate

that an outbreak of a deadly disease would generate dramatic behavioral changes [10, 47, 48,

17]. Del Valle et al. [11] used a deterministic model to study the effects of behavioral

changes during a smallpox outbreak. They demonstrated that behavioral changes can have a

dramatic impact in slowing an epidemic and reducing the total number of cases; however,

they used homogeneous mixing and differences in susceptibility based on age were not

incorporated.

We derived and age-structured model for transmission that combines the effects of age-

dependent residual immunity with age-dependent mixing. We then compare the results of

assuming different mixing patterns to determine the effects these assumptions have on the

size and duration of epidemics. In our simulations, we assume that the population is closed

(no immigration, births or natural deaths are considered, although we include disease-

induced death) and that there is only one disease in operation.

Our simulations quantify how the different mixing assumptions lead to differences in the

disease prevalence, the cumulative number of new infections, and the final epidemic size.

We verify that reducing the number of contacts in the population slows the spread of the

epidemic and observe that reducing the distribution of contacts also reduces the spread. That

is, if people mix with a much smaller subset of the overall population, then the transmission

rates are reduced.
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We also quantify how the residual immunity to smallpox reduces the final epidemic size.

We also observe that the age groups with high susceptibility are less affected by the mixing

assumptions than those with less susceptibility. One implication of this result is that if

smallpox vaccination becomes necessary, the smallpox vaccine should be given first to the

most susceptible population groups. Defining the basic reproductive number, , allows us

to quantify the level of behavioral change required to control an epidemic. This can help

guide public health officials in persuading the population to change their behavior by

reducing their number of contacts or changing their contact patterns.

2. The mathematical model

2.1. Differential equations

We formulate the transmission dynamics model for a single outbreak of smallpox in a

heterogeneously mixing population. We divide the population into three main

epidemiological classes, susceptible (S), infected (I) and recovered (R) [29]. These classes

are further divided into age groups with heterogeneous mixing, different susceptibilities, and

infectiousness based on age and residual immunity from previous vaccinations. The

infectious class is further divided into infectious stages, which allows us to take into account

the differences in infectivity for diseases such as smallpox, i.e., latent or incubation period,

prodromal period, and symptomatic or infectious period. We apply the model to a smallpox

outbreak, and assume that the course of the outbreak is short compared with the life of an

individual, therefore, births, aging, and natural deaths are not included.

For our multi-group susceptible-infected-recovered (SIR) model with staged progression

[29], we consider 91 age groups (n = 91) with 1-year intervals: 1, 2, 3, …, 90, 91 and 3

infection stages (m = 3; exposed (no symptoms), prodromic (early symptoms), and

infectious (symptomatic)). Each 1-year interval corresponds to age groups, for example,

group 1 corresponds to infants up to 1 year of age, group 2 corresponds to children between

1 and 2 years of age, and so on, except for group 91, which corresponds to all people aged

over 90 years of age. Using the transfer diagram in Figure 1, we arrive at the following

nonlinear system of differential equations:

(1)

where λi(t) is the force of infection (defined later in (3)); ωik is the relative rate of disease

progression for a person in age group i and infection stage k; and μik is the disease-induced

relative death rate for age group i in infectious stage k. We define the total population size of

each group i as

(2)
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We define λi as the relative rate at which the susceptible population in age group i is

infected and progresses to stage Ii1. We calculate this as the sum of the rate of disease

transmission from each infected subgroup, Ijk, to the susceptible group, Si. This means that a

susceptible person in group i can be infected by an infected person in any group or infection

stage. That is,

(3)

Here, λijk is the rate of disease transmission from the infected people Ijk in stage k of age

group j to the susceptible individuals in age group i. We define λijk in (3) as the product of

the number of contacts per unit time that each individual in age group i has with age group j,

γij; the probability of disease transmission per contact between an infected in group j and a

susceptible in group i (which is the product of the susceptibility αi of someone in Si, the

infectivity ξjk, and the probability of transmission Pij (defined later in (5)) based on the

average duration of contacts between age groups i and j); and the proportion of contacts with

the infected subgroup. That is,

(4)

where we assume that the probability function Pij follows a Poisson distribution given by

(5)

where Tij is the average duration of a contact of an individual from age group i with

someone from age group j, and ζ is the mean number of transmission events per unit time

(set in our simulations to 3 events per day [12]).

Summing over all the infection stages gives the force of infection from all infected

individuals to the susceptible people in group i. Multiplying λi(t) by the number of

susceptible individuals in age group i as in (1) gives the rate of change of new infected

people in group i.

2.2. The basic reproduction number, 

The basic reproduction number is defined as the average number of secondary cases

produced by one infected individual during the infected individual's entire infectious period

assuming a fully susceptible population. In an epidemic model, the magnitude of 

determines whether or not an epidemic occurs. Typically, there is no epidemic if , but

there is an epidemic if . In a simple SIR model, where γ is the average number of

contacts per unit time per individual, β the probability of transmitting the infection per

contact, τ the mean duration of the infection period, and the basic reproduction number can

be expressed by the following intuitive formula:
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(6)

However, since we are working with heterogeneous population, we use the “next-generation

operator” approach [54] to find an expression for the basic reproduction number . Note

that we use a broad definition of susceptible individuals here that include partially

susceptible individuals from prior vaccine campaigns. This is reasonable because we are not

modeling current vaccination strategies that would create a separate vaccinated immune

class; and all individuals in the population are susceptible, albeit with differential

susceptibility.

We compute  by linearizing system (1) around the disease-free steady state and by

identifying conditions that guarantee growth in the infected classes. The disease-free steady

state has I11, I12, I13, I21, I22, I23, …, I91,1, I91,2, I91,3 equal to zero and positive values for

the equilibrium number of susceptible individuals each group,  for 1 ≤ i ≤ n. We denote

the total equilibrium population of group i by . The resulting 273 dimensional linearized

system is of the form , where

The matrix, F, has nonzero entries in every column of rows 1, 4, 7, etc. and all zeros in rows

2, 3, 5, 6, 8, 9, etc. The entries in the 3 columns 3(j − 1) + 1, 2, 3 of row 1 + 3(i − 1) are

(7)

The V matrix is block diagonal with 3 × 3 blocks of the form

(8)

which has an inverse of the form

(9)

with

(10)
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These qjk factors are the proportion of infected individuals in the j age group that reach stage

k. FV−1 has zeros in the rows 2, 3, 5, 6, 8, 9, etc., so the eigenvectors must also have zeros in

these rows 2, 3, 5, 6, 8, 9, etc. Thus, we can consider the 91 × 91 matrix consisting of the

rows 1 + 3(i − 1) and columns 1+3(j−1) of FV−1. This matrix E = FV−1 will have ij entries

given by

(11)

The basic reproduction number  is the largest eigenvalue of the matrix E = FV−1 [54]. We

cannot obtain an explicit form of the  for our general model (1). Therefore,  is

estimated numerically for a given set of parameter values and initial population size for the

different mixing assumptions.

2.3. Contact patterns

The pattern of contacts between different age groups plays an essential role in determining

the spread of disease. Several theoretical studies have developed mixing functions to

account for heterogeneous mixing patterns [34, 6, 27]; however, very few studies have

developed functions that mimic empirical studies [21]. In this paper, we use mixing patterns

based on both empirical and theoretical studies to determine the impact that different mixing

functions have on disease spread. Our study makes use of four different mixing models that

we refer as normal mixing, reduced mixing, proportional mixing, and segregate mixing.

The force of infection λi is the relative rate at which susceptible people of age i acquire

infection. In homogeneous mixing, a person's contacts are randomly distributed among all

others in the population. One immediate implication of this assumption is that the force of

infection is the same for all ages. However, in real populations the mixing in a population is

heterogeneous and contacts are not random. For heterogeneous mixing, the forces of

infection reflect the age-related changes in the degree of mixing and contact, within and

among age groups, which are important factors for understanding disease spread.

Furthermore, changes in behavior can alter the contact patterns in the population, which are

also key in understanding disease spread.

We used the average number of contacts γij, the susceptibility αi, the infectivity ξjk, and the

probability of transmission Pij matrices to estimate the transmission rate βij for each mixing

assumption. Here βij is defined as the transmission rate between a susceptible of age i with

people in age j, which is the product of the average number of contacts, the susceptibility,

the infectivity, and the probability of disease transmission; that is, βij = γij × αi × ξjk × Pij.

2.3.1. Normal mixing—Definition 2.1. Normal mixing reflects the preferential mixing

between the ages on a normal (typical) day in the absence of disease. The mixing function is

generated from simulations based on empirical studies for the population of Portland,

Oregon [12].
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In normal mixing, the transmission matrix is estimated from empirical studies described in

Del Valle et al. [12]. In short, we generated a synthetic population with demographic

distributions drawn from census data and assigned activity patterns based on household

travel surveys. From these two sets of information and land use data, we computed which

individuals are together at the same location at the same time. The simulation keeps track of

every single individual on a second-by-second basis and is therefore able to determine the

contacts, including identities of those in contact, the location, the duration of the contact,

and the nature of the activity where the contact took place. We calculated the total number

of contacts, Cij, generated over a typical day, and evaluated the average number of contacts,

γij, per person.

The normal contact matrix is formed by two blocks of mixing and a weak coupling between

parents and their children. Glasser et al. [21] recently developed a function that can mimic

the mixing patterns observed in these empirical studies.

2.3.2. Reduced mixing—Definition 2.2. For reduced mixing, we scaled the normal

mixing matrix, described above, by multiplying it by a factor, 0 ≤ x < 1, to account for a

reduction in the number of contacts.

People will make changes in behavior (e.g. reduce their number of contacts) in response to

knowledge of an epidemic. These changes will not only reduce the number of contacts of the

entire population, but also change the mixing patterns in the population. For example, if

schools close, as a preventive measure to control an epidemic, the contact patterns of school

children will change from children of their own age to their parents or family members.

For simplicity in the reduced mixing model, we incorporated behavioral changes by

reducing the total number of contacts generated in the population, by multiplying the contact

matrix Cij by a desired factor, x. This approach keeps the same distribution of mixing in the

population, while reducing the total number of contacts. In the numerical simulations

presented here, we reduced the number of contacts by half.

While recognizing the crude introduction of behavioral changes into this model, this

approach will serve as the foundation for later models that include validated behavioral

changes in response to an outbreak. Note that the original version of the empirical studies

presented here did not incorporate behavioral changes; however, new versions of the

simulation now incorporate age-dependent behavior changes [53].

2.3.3. Proportional mixing—Definition 2.3. For proportional homogenous mixing, a

potential contact is randomly selected from the entire population of Portland, which implies

a greater probability of meeting people whose populations are larger.

We assume people in each age group behave the same way when selecting a contact, but

have biases between age groups. In other words, mixing within each age group is assumed to

be homogeneous but there is heterogeneous mixing among the age groups.

Models with varying populations must ensure that as the relative size of each group changes,

the number of contacts between each group changes accordingly. One constraint on
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dynamically changing the number of contacts between groups is that the total number of

contacts between two groups must be symmetric; that is, the total number of contacts

between group i and group j must be equal to the total number of contacts between group j

and group i. In multi-group models where an attempt is made to directly control the number

of contacts formed between age groups, these balance conditions are usually artificially

enforced, or the average number of contacts per individual per unit time is assumed to be

constant.

Here, we use the heterogenous mixing approach developed in [27] to maintain the detailed

balance for mixing between the age groups as their populations change. We present the

proportional contact matrix, with the element in the ith row and jth column represented by

dij. Thus, dij is the expected (desired) distribution of contacts that one has as a function of

age, that is, dij is the preference that a person of age i has for contacts with a person of age j.

The contact matrix need not be symmetric (i.e., dij ≠ dji, when i ≠ j), but the probability of

contact forming is symmetric since djidij = dijdji. Also, we note that there is no constraint on

 dij, which may be less than or greater than one.

We define ai to be the preferred number of social contacts per unit time for a person in age

group i. Assuming no preferences, the probability that a contact is with a person from age

group j is  where Nj is the total population size of age group j defined

in (2). This also characterizes the availability of contacts in age group j. Hence, the

probability of a contact forming between individuals from age group i and age group j is

.

We denote the total number of contacts per unit time of people in age group i with people in

age group j by Cij,

(12)

Thus, the balance constraints are automatically satisfied as a natural consequence of the

model. As the population size can change, the number of contacts with people in group j that

one individual in group i can expect to have at time t is then,

(13)

and the total number of contacts that an individual in group i has at time t is,

(14)
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Definitions and units of the contact parameters are summarized in Table 1.

To compare the proportional mixing matrix with the normal contact matrix, we matched the

total of contacts of the proportionally mixing population with the total number of contacts of

the normal mixing population as described in [12]. The adequate transmission rate matrix βij

(Figure 3) is consistent with the age distribution of the population; that is, there are well-

defined regions (shown by different colors) of adequate contacts, which are due to the age

distribution of the population.

In general, the population is more likely to have adequate contacts with people from the age

groups with larger sizes (35–45 years) than with people from the age groups with smaller

sizes (> 55 years), which is consistent with what we would expect for a proportionally

mixing population.

2.3.4. Segregate mixing—Definition 2.4. For segregate mixing, we assume that people

mix with people of the same age only.

We defined dij = 1 if i = j and dij = 0 otherwise. That is, each age group will have the same

number of contacts but all their contacts will be with their own age group. Even though this

type of mixing may not be realistic, this assumption allows us to determine whether the

number of contacts or the heterogeneous mixing among the population are driving the

epidemic.

3. Parameter estimation

The smallpox infection period is divided into three phases: exposed or incubation period,

prodromal period, and infectious period. The incubation period for smallpox has been

reported to be from 7 to 19 days, but the most common reported range is 10 to 14 days with

a mean of 12 days [18, 49, 51]. Thus the latent phase has a relative rate of ωi1 = 1/12.

Afterward, smallpox patients experience a prodromal phase with symptoms such as fever,

malaise, prostration, headache, backache, and vomiting. This period lasts for 2 to 4 days

with a mean of 3 days [8, 18]. Therefore, the prodromal relative rate is ωi2 = 1/3. Data on

previous outbreaks show that patients have very low infectivity during the prodromal phase

[14, 19, 42]. We assume that during both the exposed period and the prodromal period,

individuals are non-infectious. Patients remain contagious for a period of approximately 14

to 17 days with a mean of 16 days [18, 32, 33]. Hence, we set the relative rate in the

infectious phase as ωi3 = 1/16 and the relative infectivity as 1. Once these patients recover,

they have complete, permanent immunity.

The United States discontinued smallpox vaccinations in 1972 because the vaccine itself

carries potential health risks [7]. Therefore, more than half of the U.S. native population has

received the smallpox vaccine, and recent findings have shown that these individuals may

still have partial protection against smallpox [2, 13]. Therefore, we assume that all

individuals born after 1972 are completely susceptible to smallpox. Thus, the relative

susceptibility of people between the ages of 1 and 40 is set to 1. We assume that individuals

between the ages of 41 and 65 have partial immunity to smallpox and thus the relative

susceptibility is set to 0.3 [13]. Furthermore, we assume that people between the ages of 66
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and 80 have a relative susceptibility of 0.7, and people between the ages of 81 and above

have a relative susceptibility of 0.9 due to their age-dependent risk of infection [13].

The relative death rate of smallpox varies, but is reported to be about 30% among

unvaccinated individuals [18, 32, 33]. The fraction in the model that die from smallpox is

μi3/(ωi3 + μi3); setting this equal to 0.3 yields μij = 0.0268. Smallpox deaths usually occurred

18 days or more after the onset of symptoms [32]. Therefore, we assume that the relative

death rate for each infected stage is 0, 0, and 0.0268, respectively.

Recent estimates on the transmission of smallpox indicate that one infected person may

infect three to six others [20]. Therefore, we set ζ = 3 so that  would equal 3 for both the

normal and proportional mixing matrices. However, for the reduced contact matrix, we

multiplied the normal matrix by 0.5, resulting in  equal to 1.5. Notice that by reducing the

number of contacts by half,  was also cut by half. This result provided an estimate of how

much people must reduce their contacts in order to halt an epidemic. For example, if the

number of contacts were reduced to less than one third, there would be no epidemic because

 would be less than one. For the segregate matrix, we used the normal contact matrix and

grouped all the entries for each age group into the diagonal. This process resulted in

different values of  for each age group.

4. Results

We used a differential equation solver designed for multi-group SIR models with staged

progression developed by Chitnis et al. [9] to examine the impact that the four mixing

assumptions have on the final epidemic size and final susceptible population size for our

model. All simulations assumed initial conditions of only susceptible individuals except for

one infected individual in each age group in the incubation phase. We used the baseline

parameters in Table 2 in our simulations and the synthetic population of Portland, Oregon,

as the initial population for each age group.

Table 3 summarizes the results of the epidemic size and final susceptible population size for

the four mixing assumptions. The final epidemic size includes both the total number of

recovered cases (shown in Figures 4, 5, 6, and 7) and the total number of people who died

from the disease (not included in figures but given by D = N – (S + I)) at 120, 360, and 1,000

days after the introduction of smallpox into the population). One column in Table 3

identifies the basic reproduction number  for each mixing assumption. The final day

column represents the day when the number of cases reaches 99% of the final epidemic size,

which is a measure of the length of the smallpox outbreak.

The first entry in Table 3 shows the simulations results for normal mixing. With normal

mixing, we obtained a cumulative total of 1,321,590 smallpox cases after 1,000 days and a

final day of 324 days. However, when we assumed reduced mixing, which resulted in a

smaller number of contacts per day, the number of cases was reduced to 866,580 and the

final day was prolonged to 841 days. When proportional mixing is used, the number of

smallpox cases increases to 1,429,660 and a final day is shorten to 280. The reason why the

epidemic is shorten is because the mixing is assumed to be random so more people contract
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the disease faster. For segregate mixing, the number of smallpox cases further decreases to

1,207,470, but the final day is prolonged to 1,325. The total susceptible, recovered and

disease prevalence for all mixing assumptions described in Table 3 are shown in Figures 4,

5, 6, and 7.

The differences in susceptibility of the different age groups causes the different age groups

to be affected differently by the epidemic. Figure 8 shows the cumulative numbers of

recovered cases, the susceptible population, and disease prevalence for age groups i = 20,

50, 65, and 85 for a normally mixing population. Age groups between 1 and 40 resemble the

distributions shown in Figure 8, part A. Because the under 40 population has no residual

immunity, they are affected by the disease than the rest of the population. Age groups

between 41 to 61 and 66 to 71 resemble the distributions shown in Figure 8, part B, even

though they had different susceptibilities. Age groups between 62 to 65 and 72 to 81

resemble the distributions shown in Figure 8, part C; notice that these age groups are the

least affected by the disease. Finally, age groups between 82 and 91 resemble the

distributions shown in Figure 8, part D.

When the mixing among the population is reduced based on assumed behavioral changes,

the number of total cases decreases dramatically. The cumulative numbers of recovered

cases, the susceptible population, and the disease prevalence for some age groups are shown

in Figure 9. Notice that the combination of residual immunity and behavioral changes plays

a key role in halting the spread of the epidemic. In Figure 9, part A resembles the

distributions of age groups 1–40; part B resembles the distributions of age groups 41–65;

part C resembles the distributions of age groups 66–80; and part D resembles the

distributions of age groups 81–91.

When proportional mixing is assumed, all age groups are affected accordingly to their

assumed susceptibility (Figure 10). Figure 10, part A resembles the distributions of age

groups 1–40; part B resembles the distributions of age groups 41–65; Part C resembles the

distributions of age groups 66–80; and Part D resembles the distributions of age groups 81–

91. Since for segregate mixing  is different for all age groups, the epidemic curves vary

drastically for all age groups (Figure 11). Age groups between 1 and 40 are still the most

affected (as seen with previous mixing assumptions) due to their lack of residual immunity

(Figure 11, part A). Most age groups manage to maintain a large number of susceptible

individuals at the end of the epidemic because of their present residual immunity (Figure 11,

part B & D). However, there are a few age groups (> 60 years old) that avoid infection due

to their  being less than unity (Figure 11, part C).

5. Discussion

Assuming that a population is mixing homogeneously and has a homogenous susceptibility

to a disease can often provide general insights into how a disease will spread. However,

heterogenous differences in the susceptibility of a population and the contact mixing

patterns within a population both affect the transmission of infectious diseases. When the

population mixing patterns are correlated to the partial immunity of a population to an
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infectious disease, then including more realistic contact patterns within a population can lead

to more accurate estimates of the effect of residual immunity on disease spread.

We investigated the impact of different mixing assumptions on outcomes related to

epidemic spread in the presence of population heterogeneity. Four mixing scenarios were

discussed: normal, reduced, proportional, and segregate mixing. Our results confirm and

quantify the epidemiological picture proposed in previous works; that mixing assumptions

have a great influence in the overall behavior of epidemic spreading and that residual

immunity can play a key role in halting an epidemic such as smallpox.

We used an agent-based simulation model to generate mixing matrices and an age-structure

differential equation model to model the spread of an infectious disease. Agent-based

models are computational expensive and typically require a long time to run; however, they

can include more detail than differential equation models. In contrast, differential equation

models can run on a personal computer and are typically fast, but do not have the

heterogeneity that agent-based models have. Although, the differential equation model

stratified the population by age groups, we still assume homogeneous mixing patterns within

each age group. This assumption will lead to different results than an agent-based model,

which treats each person as an individual;. the homogeneous assumption will most likely

over estimate the spread of a disease and lead to worse epidemics.

The numerical simulations in Section 4 show that proportional mixing, results in a greater

number of new infections than does non-random mixing, even in the presence of residual

immunity. With normal mixing, the total number of cases decreases and the final susceptible

population size is larger. When moderate behavioral changes are introduced, the total

number of cases is further reduced, compared to the normal mixing, and the final susceptible

population size increases. We also observed that the disease affected specific age groups

differently based on their assumed immunity and their mixing patterns within the

population; that is, age groups with less residual immunity are more affected than age

groups with higher immunity. One implication of these results is that those without prior

smallpox vaccination should be vaccinated, if a smallpox vaccination campaign becomes

necessary. Furthermore, we observed that for normal mixing, the probability of disease

transmission among children is higher due to the frequency of their contacts; however, for

proportional mixing, the probability of disease transmission is higher among young adults.

We studied an instance of segregate mixing to determine some of the factors that are driving

the epidemic. Our results suggest that the heterogeneous mixing patterns have a greater

impact on spreading the epidemic than does the number of contacts. Furthermore, we found

that for this system,  is proportional to the average number of contacts. Therefore, we can

estimate the necessary reduction in contacts required to stop an epidemic.

Although parameter values were estimated using data, there is still uncertainty associated

with their values. Consistent with other studies, we found that all the simulation results are

highly sensitive to the number of index cases (initial infections) [11], the level of residual

immunity assumed to be present in the population [45], and the value of the reproduction

number [11] (results not shown here). We also found that the model is slightly sensitive to
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changes in the relative infectivity of the prodromal phase [19] (results not shown here). We

also found that normal and reduced mixing populations were more sensitive to variations in

the size and age distribution of the initially infected population than proportional mixing

model [57] (results not shown here).

Our reduced behavior change model is unrealistic because of its simplicity. We reduced the

number of all contacts by 50% to illustrate the importance that behavioral changes can have

on the spread of an epidemic. In a real epidemic, the behavioral changes will not only reduce

the number of contacts and intensity but will change the structure of the contact network.

Because the model predictions are so sensitive to assumptions about the behavioral changes,

these changes must be much better understood so they can be accurately included in the

models. More data is needed to understand and predict the changes in behavior that a

population will undertake in the presence of disease and uncertainty.

Another limitation of our study is the lack of intervention strategies. We were interested in

investigating the effects of different mixing assumptions, therefore, for simplicity we did not

include intervention strategies such as isolation, quarantine, and vaccination. Nevertheless,

one must be aware that in the presence of a deadly disease like smallpox, many intervention

strategies will take place that will further decrease the spread of the disease.

We conclude that for simulations of infectious diseases to be useful in guiding public health

policy, they must consider the impact of heterogeneous mixing, residual immunity and

behavioral changes. Residual immunity within the population as well as behavioral changes

implemented in the affected population can greatly affect the final epidemic size and reduce

the number of vaccinations needed during an outbreak. It is critically important to know the

level of immunity in real populations from epidemiological studies and predict how the

population will respond in the presence of an epidemic. The exact structure of the contact

patterns in the general population is, to a large extent, still unknown; therefore, more

research is needed to increase our understanding of the impact of human contact networks

and human behavior on the spread of infectious diseases, and to assess the implications of

this for the planning of public health policy.
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Figure 1.
Schematic relationship for the multi-group SIR model with staged progression with 91 age groups and 3 infection stages. The

arrows that connect the boxed groups represent movement of individuals from one group to an adjacent one. Susceptible

individuals Si of age i are infected at a rate, λi, and then progress through various infection stages at rates of disease progression,

ωij, before entering the recovered state. Infected individuals die from the disease at a rate, μij.

Del Valle et al. Page 18

Math Biosci Eng. Author manuscript; available in PMC 2014 April 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
The total number of proportional contacts between age group i and j. The contact rates are defined by the elements of the n × n

matrix, Cij, where Cij represents the total number of proportional contacts of all people of age i with people of age j per day.

Note that the contacts between age group i and j is the same as between age group j and i, resulting in a symmetric graph.

Del Valle et al. Page 19

Math Biosci Eng. Author manuscript; available in PMC 2014 April 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Transmission rate matrix βij estimated using a proportionally mixing population. The transmission rate matrix is the average

number of adequate contacts between a susceptible of age i with people of age j. Notice that the probability of transmission is

determined by the size of the population in each age group.
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Figure 4.
Normal Mixing Epidemic: Solutions of the multi-group SIR model with staged progression for a normally mixing population.

The figure shows the total susceptible (S), infected (I), and recovered (R) populations for a period of 500 days.
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Figure 5.
Reduced Mixing Epidemic: Solutions of the multi-group SIR model for a population that reduces the number of contacts by 50%

(reduced mixing). The smallpox outbreak starts much slower than the normal mixing population model (Figure 4) and the peak

of the epidemic is delayed almost 200 days. Note that the epidemic is show for the first 800 days.
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Figure 6.
Proportional Mixing Epidemic: Solutions of the multi-group SIR model for a proportionally mixing population start slightly

faster than the model with normal mixing and the final epidemic size is larger.
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Figure 7.
Segregate Mixing Epidemic: Solutions of the multi-group SIR model for a segregate mixing population where people mix

primarily with others their own age. There is an extremely rapid early burst of new infections, followed by a smaller delayed

second epidemic. Note that this plot is for the first 1000 days of the epidemic.

Del Valle et al. Page 24

Math Biosci Eng. Author manuscript; available in PMC 2014 April 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 8.
Solutions of the multi-group SIR model with stage progression for a normal contact matrix for age groups 20 (A), 50 (B), 65

(C), and 85 (D). Notice the impact that partial immunity has on the final epidemic size on age groups < 41 years of age. The

epidemic takes o faster in this age group and nearly all of the people are eventually infected. Because in a real epidemic there

would certainly be significant behavior changes, this prediction illustrates why the behavior changes must be included before

any model predictions are used to guide policy.
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Figure 9.
Solutions of the multi-group SIR model with stage progression for a reduced contact matrix for age groups 20 (A), 50 (B), 65

(C), and 85 (D). Notice the impact that partial immunity has on the final epidemic size on age groups < 41 years of age.
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Figure 10.
Solutions of the multi-group SIR model with stage progression for a proportional contact matrix for age groups 20 (A), 50 (B),

65 (C), and 85 (D). Notice the impact that partial immunity has on the final epidemic size on age groups < 41 years of age.
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Figure 11.
Solutions of the multi-group SIR model with stage progression for a segregate contact matrix for age groups 20 (A), 50 (B), 65

(C), and 85 (D). Notice the impact that partial immunity has on the final epidemic size on age groups < 41 years of age.
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Table 1

Parameter definitions and units used to describe the contact patterns.

Parameter Description Units

ζ Mean number of transmission events per unit time Time−1

dij Desired distribution of contacts between age i and age j 1

aij Preferred number of contacts per person per unit time Time−1

Cij Total number of contacts per unit time People/Time

γ ij Average number of contacts per person per unit time Time−1

Pij Probability of disease transmission per contact 1
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Table 2

Parameter definitions and values that fit the cumulative number of cases for the model.

Parameter Description Units Baseline Ref.

N Initial population size 1 1,615,860 [12]

I i1 Initial infected population 1 91 Sec. 6

α i Susceptibility of a person in Si for i = 1, ..40 1 1 [13]

α i Susceptibility of a person in Si for i = 41, …, 65 1 0.3 [13]

α i Susceptibility of a person in Si for i = 66, …, 80 1 0.7 [13]

α i Susceptibility of a person in Si for i = 81, …, 91 1 0.9 [13]

ξ ik Relative infectivity 1 k = (0, 0, 0.1)∀i [14, 42]

ω ik Relative rates of disease progression Day−1 k = (1/12, 1/3, 1/16)∀i [18]

μ ik Relative death rate Day−1 k = (0, 0, 0.0268)∀i [18]
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Table 3

Cumulative smallpox cases at 120, 360, and 1,000 days for different mixing assumptions. Reducing the

number of contacts by 50% (reduced mixing) decreases the final size for epidemic (normal mixing) by about

35%. and that the segregate mixing model epidemic takes off much faster than the other mixing assumptions.

Although the normal and a proportional mixing models have the same , the epidemic infects more people

when there is proportional mixing.

Mixing Matrix
Total Cases at

Final cases Final day
a

120 days 360 days 1,000 days

Normal 3 33,460 1,317,460 1,321,590 1,321,590 324

Reduced 1.5 1,060 54,460 866,580 866,580 841

Proportional 3 56,760 1,429,100 1,429,660 1,429,660 280

Segregate 152,960 786,760 1,207,470 1,241,710 1325

a
Days from infection of index cases until outbreak is controlled (when the number of cases reaches 99% of the final epidemic size).
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