
© 2020 UCF Consortium 1

Manjunath Gorentla Venkata, UCF Collectives WG, Virtual F2F, May 2020

UCC API

© 2020 UCF Consortium 2

UCC: Unified Collective Communication Library

§ Highly scalable and performant collectives
for HPC, AI/ML and I/O workloads

§ Nonblocking collective operations that cover
a variety of programming models

§ Hardware collectives are a first-class citizen
• Well-established model and have demonstrated

to achieve performance and scalability
§ Flexible resource allocation model

• Support for lazy, local and global resource
allocation decisions

§ Support for relaxed ordering model
• For AI/ML application domains

§ Flexible synchronous model
• Highly synchronized collective operations
• Less synchronized collective operations

(OpenSHMEM and PGAS model)
§ Repetitive collective operations (init once

and invoke multiple times)
• AI/ML collective applications, persistent

collectives
§ Point-to-point operations in the context of

group
§ Global memory management

• OpenSHMEM PGAS, MPI, and CORAL2 (RFP)

Collective communication operations API that is flexible, complete, and
feature-rich for current and emerging programming models and runtimes.

© 2020 UCF Consortium 3

Experimental Implementations Exploring Various Features

§ Mellanox’s XCCL
§ Hierarchical collectives' approach to achieve

performance and scalability

https://github.com/openucx/xccl

§ Huawei’s XUCG
§ Reactive based approach

https://github.com/openucx/xucg

§ Learn from other implementations
• PAMI Collectives / IBM libcoll
• OMPI-X
• ADAPT
• HCOLL
• SHARP hardware

https://github.com/openucx/xccl
https://github.com/openucx/xccl

© 2020 UCF Consortium 4

Naming Conventions

§ All public functions to be prefixed with ”ucc” and will be defined in “ucc.h”
§ All public library constants are prefixed with UCC
§ All experimental functions to be prefixed with “xucc”

ucc_<class/object>_<action>_<subset>
• Example : ucc_lib_init, ucc_team_create, ucc_team_create_plan
• “create” / “destroy” creates and destroys the objects
• “init” / “finalize” initializes and finalizes the object
• “get” to be used for retrieving object attributes
• “nb” for non-blocking
• “nbr” for non-blocking with request

© 2020 UCF Consortium 5

Abstractions

1. Collective Library

2. Communication Context

3. Teams

4. Endpoints

5. Collective Operation

6. Task and task list

7. Plan

© 2020 UCF Consortium 6

Library: Initialization and finalize

ucc_init(ucc_lib_config_t ucc_config, ucc_lib_t *lib_obj);

ucc_finalize(ucc_lib_t lib_obj);

ucc_lib_get_attribs(ucc_lib_t ucc_lib, ucc_lib_attrib_t *lib_atrib)

Library object to be called - ucc_context_t (hold on to this idea for now)

© 2020 UCF Consortium 7

Library: Initialization and finalize

Semantics:
§ Library initialization and finalization allocate and release resources
§ All library resources are created and finalized during/after the initialization and finalization calls

respectively
§ No operations on the library are valid after the finalize operation
§ Library initialization is not a collective operation
§ No overlapping of Init and finalize call (i.e., Init – Init – Finalize – Finalize on a single thread is

invalid behavior)
§ We want to support the model where multiple Init / Finalize are supported (input from WG – Feb

26th)

© 2020 UCF Consortium 8

Library Initialization: Customizing library

typedef struct ucc_lib_config {
ucc_lib_config_mask_t mask;
ucc_lib_reproducibility reproducible;
ucc_lib_thread_mode thread_mode;
ucc_lib_usage_type_t requested_lib_usage;
ucc_collective_op_types_t requested_coll_types;
ucc_reduction_op_t requested_reduction_types;

} ucc_lib_config_t;

© 2020 UCF Consortium 9

Library Initialization: Customizing library

typedef enum {
UCC_HW_COLLECTIVES = 0,
UCC_SW_COLLECTIVES=1
REACTIVE = 2
SHARED_MEM = 3

} ucc_lib_usage_type_t;

© 2020 UCF Consortium 10

Library Initialization: Collective Operations

§ Why do you need this?
• Provide an interface for Users to convey the required functionality
- MPI implementations can request only MPI specific collective operations
- OpenSHMEM implementations (OSHMEM, OSSS-UCX, SOS) can request only OpenSHMEM specific collective

implementations
- AI-specific implementations can request only Reductions, Broadcast, and Barrier implementations
- OMPI can request required collective operations from UCC and use other non-UCC components

• Libraries can convey to the User what collectives are implemented.

• Implementations can tailor the library functionality for the usage scenario (initialize only components)

© 2020 UCF Consortium 11

Customize library for the Use Cases

§ MPI - meaning select all collective operations
§ OpenSHMEM/UPC - select all collective operations with sync model
§ For AI/ML models, we need reductions and broadcast

§ Parameters
• Collective Models – XUCG, XCCL, Hardware, Vendor
• Collective Operations – Allreduce, Barrier, Alltoall, Gather, Default (all)
• Synchronization Model - No Sync, Sync , Default (Sync)
• Priority

© 2020 UCF Consortium 12

Library Initialization: Collective Operations

How to express this? What is the right granularity?

§ Coarse-grained: Express at programming model abstraction
• MPI_MODEL, OPENSHMEM_MODEL, AI_MODEL (Not very standard)
• Cons: Limited expressibility

§ Fine-grained: Express at the fine-grained level of operations, datatype, programming model,
ordering
• Cons: A huge list that might be excessive (not required)

§ Strike a balance: Express it as a set of composeable choices
• Operations – Barrier, Reduce, Alltoall, Alltoallv …
• Reductions – SUM, PROD, MIN, MAX,
• Datatypes – Standard datatypes and Extended datatypes
- Standard datatypes – common set of standard datatypes available in programming models
- Extended datatypes – user defined datatypes

• Synchronization Model – Sync and No Sync (Entry and Exit)
• Ordering Model – Ordered Collectives or Unordered Collectives

© 2020 UCF Consortium 13

Questions

§ Should Init/finalize be a collective operation ?
• No it should be a local function (Feedback from WG Feb 26th)

§ How do we handle the race between multiple Init’s ?
§ Any missing configuration parameters for the initialization ?
§ Don’t freeze yet, we might require more as we discuss other abstractions
§ How do we pass configuration parameters ?

• 1) Environment variables 2) Configuration files and 3) Interface invocation
• Support all three options (Feedback from WG March 16th)
• Add API to read configuration from config files

© 2020 UCF Consortium 14

Library initialization, local resources abstraction
Manjunath Gorentla Venkata, UCF Collectives WG,
March 25th /April 1st, 2020/April 22nd, 2020

UCC API

© 2020 UCF Consortium 15

Abstractions

1. Collective Library

2. Communication Context

3. Teams

4. Endpoints

5. Collective Operation

6. Task and task list

7. Plan

© 2020 UCF Consortium 1616

Communication Context (1)

Semantics
§ Context is created by ucc_context_create(), a local operation
§ Contexts represents a local resource for group operations - injection queue, and/or network parallelism

• Example: software injection queues (network endpoints), hardware resources

§ Context can be coupled with threads, processes or tasks
• A single MPI process can have multiple contexts

• A single thread (pthread or OMP thread) can be coupled with multiple contexts

An object to encapsulate local resource and express network parallelism

ucc_context_create(ucc_lib_t lib_obj, ucc_context_config_t ctx_config, ucc_context_t
*comm_context);
ucc_context_destroy(ucc_context_t comm_context);
ucc_context_get_attrib(ucc_context_t ctx, ucc_context_attrib_t *ctx_attrib);

© 2020 UCF Consortium 1717

Communication Context (2)

Semantics:
§ Context can be bound to a specific core, socket, or an accelerator

• Provides an ability to express affinity
§ Context can participate in one or more multiple group operations

• Private context can participate in only one group operation (team)
• Shared context can participate in multiple group operations

§ Multiple contexts per team (from same thread) can be supported
• Software and hardware collectives

• Optimize for bandwidth utilization

An object to encapsulate local resource and express network parallelism

ucc_context_create(ucc_lib_t lib_obj, ucc_context_config_t ctx_config, ucc_context_t
*comm_context);
ucc_context_destroy(ucc_context_t comm_context);
ucc_context_get_attrib(ucc_context_t ctx, ucc_context_attrib_t *ctx_attrib);

© 2020 UCF Consortium 1818

The user can customize synchronization model, usage model, and context types.

Customizing Context

typedef struct ucc_context_config {
ucc_context_mask_type_t mask;
ucc_context_type_t ctx_type_t;
ucc_context_collective_sync_type_t sync_type;

} ucc_context_config_t;

© 2020 UCF Consortium 1919

Customize for resource sharing and utilization

Customizing Context : Context Type

EXCLUSIVE
§ The context participates in a single team

• So resources are exclusive to a single team
§ The libraries can implement it as a lock-free implementation

SHARED
§ The context can participate in multiple teams

• Resources are shared by multiple teams
§ The library might be required to protect critical sections

© 2020 UCF Consortium 20

Customizing Context : Synchronization Models (Updated)

§ NO_SYNC_ON_Entry: No synchronization on entry
• On entry, each process/thread can read/write to other processes/threads irrespective of they entered the

collective
• Use case: OpenSHMEM / UPC

§ NO_SYNC_ON _Exit: No synchronization on exit
• On exit, each process/threads can exit the collective irrespective of other processes/threads have completed

their reads and writes
- Provides guarantees about local completeness, not global state

• Use case/ Motivation: Broadcast, OpenSHMEM / UPC

§ NO_SYNC: No synchronization on entry or exit
• Can be expressed as NO_SYNC_ON_Entry | NO_SYNC_ON _Exit

§ SYNC_ON_BOTH: Synchronization on both entry and exit
• On entry, the processes/threads cannot read/write to other processes without ensuring all have entered the

collective
• On exit, the processes/threads may exit after all processes/threads have completed the reading/writing.

© 2020 UCF Consortium 21

No Sync Collective Operations: Buffer Ownership is a Local
Decision

Collective Invoked

Collective Completed

User

Library

PE 0

User

PE 1 PE 2 PE 3

Buffer
Ownership

© 2020 UCF Consortium 22

No Sync Collective Operations: Read and Write

Collective Invoked

Collective Completed

User

Library

PE 0

User

PE 1 PE 2 PE 3

Buffer
Ownership

Write

Read
PE 3

Write

Read/Write
Window

© 2020 UCF Consortium 23

Synchronized Collective Operations: Buffer Ownership

Collective Invoked

Collective Completed

Buffer
Ownership

User

Library

PE 0

User

PE 1 PE 2 PE 3

© 2020 UCF Consortium 24

Synchronized Collective Operations: Read and Write

Collective Invoked

Collective Completed

Buffer
Ownership

User

Library

PE 0

User

PE 1 PE 2 PE 3

Write

Read
PE 3

Read/Write
Window

© 2020 UCF Consortium 25

Creating Contexts : Design Choices

1. Local operation only

2. Collective operation only

3. Both local and collective

1. Same interface

2. Separate interfaces

© 2020 UCF Consortium 2626

Communication Context : Creating Context

Semantics:
§ The main distinction between the interfaces is that this can be either a local or collective operation

• When OOB is NULL, it is a local operation
• When OOB collective is provided, it is a collective operation.

• Resources cannot be decomposed into local and group resource
• Resources need to be created in a group operation (Switch-based Collectives, Connection-based transports)

WG Feedback : Preference was for a single interface with both collective and local operation
• Move ucc_context_coll_oob_t to config
• Rename config to params throughout

ucc_context_create(ucc_lib_t lib_obj, ucc_context_config_t ctx_config,
ucc_context_coll_oob_t *oob, ucc_context_t *comm_context);

Create operation as a collective operation

© 2020 UCF Consortium 27

Device Abstraction and Affinity

§ Device
• Every context is coupled with a device
• Device can be an HCA port, Memory, GPU Device, or combination of these devices

§ How do you bind context to a device ?
• Implicit model
- Library decides the affinity of the resources created

• Explicit model
- The user explicitly requests affinity to a certain device (HCA port or device)

© 2020 UCF Consortium 28

Explicit Model: Design and Usage

§ The flow:
• A process queries the UCC library for a list of supported devices (NICs - subset of those devices, need to

derive abstract interface for that)
• The process computes the distances from the GPU it is using and the NICs from the list. Finds the proper

NIC based on distances.
• The process modifies ucc_context_config data structure and specifies the selected NIC explicitly
• A proper UCC context is created.

Slide courtesy: Sergey Lebedev

© 2020 UCF Consortium 29

Open question : Explicit or Implicit model ?

§ Explicit Model
• Pros:
- Fine-grained control for the user
- Easier to support more use cases

• Cons:
- UCX does not provide interface for explicitly specifying the device

§ Implicit Model
• Pros:
- The burden is on the library, not user

• Cons:
- Limited expressibility

WG Feedback : Explore explicit model and propose to the WG

© 2020 UCF Consortium 30

Thank You The UCF Consortium is a collaboration between industry, laboratories, and
academia to create production grade communication frameworks and open
standards for data centric and high-performance applications.

© 2020 UCF Consortium 31

Abstractions

1. Collective Library

2. Communication Context

3. Teams

4. Endpoints

5. Collective Operation

6. Task and task list

7. Plan

© 2020 UCF Consortium 32

Team: Operations for creating teams

§ Created by processes, threads or tasks by calling ucc_team_create_post()
• A collective operation but no explicit synchronization among the processes or threads

§ Non-blocking operation and only one active call at any given instance.
§ Each process or thread passes local resource object (context)

• Achieve global agreement during the create operation

ucc_team_create_post(ucc_context_t context, ucc_team_config_t comm_config,
oob_collectives_t oob_collectives, uint64_t *my_ep, ucc_team_t *new_team);

ucc_team_test(team);
ucc_team_destroy(team);

© 2020 UCF Consortium 33

Team: Operations for creating teams

§ Implementations should be ready to create invoke and execute after the team creation operation
• Create global resources for group communication buffers
- Synchronization buffers for one-sided collectives
- Temporary buffers for reduction operations
- Scratch buffers for non-blocking operations
- Create connections if required
- Filter the available operations and algorithms

• Exchange resource information
• Agreement on the context configurations
• Agreement on the endpoints

© 2020 UCF Consortium 34

Team : Customizing team

Semantics:
§ Ordering : All team members must invoke

collective in the same order?
• Yes for MPI and No for TensorFlow and Persistent

collectives
§ Outstanding collectives

• Can help with resource management
§ Should Endpoints in a contiguous range ?
§ Datatype

• Can be customized for contiguous, strided, or non-
contiguous datatypes

§ Synchronization Model
• On_Entry, On_Exit, or On_Both – this helps with

global resource allocation

struct ucc_team_config_t {
ucc_team_config_mask_t mask;
ucc_post_ordering ordering;
uint64_t num_outstanding_collectives;
ucc_collective_sync_type_t sync;
ucc_ep_range_contig ep_range;
ucc_ep_flag in_out;
ucc_dt_type_t datatype;
ucc_mem_params_t mem_params;

}

© 2020 UCF Consortium 3535

Team : Query Operations

Semantics:
§ All attributes of the team are available via ucc_team_attrib_t

• Size, ordering, sync type, completion semantics, datatype, endpoints, and memory handles

§ All attributes of the team are available via ucc_team_attrib_t
• Size and Endpoints

An object to encapsulate local resource and express network parallelism

ucc_get_team_attribs(ucc_team_t ucc_team, ucc_team_attrib_t *team_atrib)
ucc_get_team_size(ucc_team_t ucc_team);
ucc_get_team_my_ep(ucc_team_t ucc_team, ucc_team_ep_t *ep);
ucc_get_team_all_eps(ucc_team_t ucc_team, ucc_team_ep_t *ep, uint64_t num_eps);

© 2020 UCF Consortium 3636

Team : Splitting teams

Semantics:
§ Split

§ Collective operation over the parent team
§ Collective operations over the child team or can be a local operation (interface in the later slides)

§ Provides flexible way to create a team
§ Supports regular as well as irregular team creation

§ Inherits configuration from the parent team
§ Thread model: One active split operation per process

ucc_team_create_from_parent(ucc_team_ep my_ep, int color, ucc_team_t parent_team,
ucc_team_t *new_ucc_team);

© 2020 UCF Consortium 37

Abstractions

1. Collective Library

2. Communication Context

3. Teams

4. Endpoints

5. Collective Operation

6. Task and task list

7. Plan

© 2020 UCF Consortium 38

Endpoint

§ Endpoint is an address for communication. It can be bound to the thread or process.
- Provides a way to address the UCC context (resources)
- Provides a globally addressable name for the contexts

Semantics
- A set of endpoints form the team
- The endpoint is an integer (uint64_t) representing the resource

- It can be provided as input (typically mapped from the programming model)
- It can be provided as output from team creation operation

© 2020 UCF Consortium 39

Endpoints as input and Output

§ Endpoint as an IN parameter
• User can pass rank/openshmem index as an endpoint.
• Ordering is established by the User
• User provides a hint about the endpoint range, whether it is ordered or not. This will provide a hint to

optimize for the user
• Library maintains the mapping between endpoint indexes and internal endpoints (UCP endpoints, hardware

indexes)

§ Endpoint as an OUT parameter
• The library will create a list of endpoints.
• The ordering of the endpoints is established by the library
• The library provides interfaces for the list of endpoints, my endpoint, and translation
• The User manages the mapping between the ranks and endpoints by doing an all gather above UCC

© 2020 UCF Consortium 40

Endpoints: Team create operations

ucc_create_team_from_ep_list(ucc_team_t parent_ucc_team, uint64_t *ep, uint64_t
num_eps, ucc_team_t *new_team);
ucc_create_team_from_ep_stride(ucc_team_t parent_ucc_team, uint64_t start_ep, uint64_t
stride, uint64_t num_eps, ucc_team_t *new_team);
ucc_team_add_endpoint(ucc_team_t parent_ucc_team, ucc_team_context_t
*team_context, uint64_t ep, ucc_team_t *new_team);

§ Team creation only with a collective operation on the newly created team
§ Support spawn semantics .i.e., supports adding an endpoint to the team
Endpoint based implementation is not explored yet in XCCL

© 2020 UCF Consortium 41

Endpoints: Team create operations

ucc_create_team_from_ep_list(ucc_team_t parent_ucc_team, uint64_t *ep, uint64_t
num_eps, ucc_team_t *new_team);
ucc_create_team_from_ep_stride(ucc_team_t parent_ucc_team, uint64_t start_ep, uint64_t
stride, uint64_t num_eps, ucc_team_t *new_team);
ucc_team_add_endpoint(ucc_team_t parent_ucc_team, ucc_team_context_t
*team_context, uint64_t ep, ucc_team_t *new_team);

Open questions:
§ Should team created by endpoints be a local operation ?
§ Light-weight team creation by passing the list of endpoints

• Enables lazy resource allocation
§ Should team created by endpoints be of different type ?

© 2020 UCF Consortium 42

Abstractions

1. Collective Library

2. Communication Context

3. Teams

4. Endpoints

5. Collective Operation

6. Task and task list

7. Plan

© 2020 UCF Consortium 43

Collective Operations : Building blocks (1)

ucc_collective_init(ucc_coll_op_args *coll_args, ucc_team_t team, ucc_coll_req
*coll_req);
ucc_collective_init_and_post(ucc_coll_op_args *coll_args, ucc_team_t team, ucc_coll_req
*request);

int ucc_collective_post(ucc_coll_req request)
int ucc_collective_test(ucc_coll_req request);
int ucc_collective_finalize(ucc_coll_req request);

© 2020 UCF Consortium 44

Collective Operations : Building blocks (2)

Semantics:
§ Collective operations : ucc_collective_init(…) and ucc_collective_init_and_post(…)
§ Local operations: ucc_collective_post, test, wait, finalize
• Initialize with ucc_collective_init(…)

• Initializes the resources required for a particular collective operation, but does not post the operation
§ Completion

• The test routine provides the status
§ Finalize

• Releases the resources for the collective operation represented by the request
• The post and wait operations are invalid after finalize

© 2020 UCF Consortium 45

Collective Operations : Building blocks (3)

ucc_collective_init(ucc_coll_op_args *coll_args, ucc_team_t team, ucc_coll_req
*coll_req);
ucc_collective_init_and_post(ucc_coll_op_args *coll_args, ucc_team_t team, ucc_coll_req
*request);
int ucc_collective_post(ucc_coll_req request)
int ucc_collective_test(ucc_coll_req request);
int ucc_collective_finalize(ucc_coll_req request);

§ Blocking collectives:
• Can be implemented with Init_and_post and test+finalize

§ Persistent Collectives:
• Can be implemented using the building blocks - init, post, test, and finalize

§ Split-Phase
• Can be implemented with Init_and_post and test+finalize

© 2020 UCF Consortium 46

Customizing Collective Operation (1)

§ Collective type, buffer information, and
reduction info
• Customize the operation

§ Synchronization type
• Same sync_type as context_config / comm_config.
• Valid to use the default (all synchronization) even

when context and config are configured as
on_entry, on_exit, or on_both but not vice versa

§ Collective Tag
• For unordered collectives

§ Root endpoint for root-based operations

typedef struct ucc_collective_op_arguments
{

ucc_collop_config_mask_t mask;
ucc_collective_type coll_type;
ucc_coll_buffer_info_t buffer_info;
ucc_collective_sync_type_t sync_type;
ucc_reduction_op reduction_info;
ucc_error_type_t error_type;
ucc_coll_tag_t coll_id;
uint64_t root_ep;

} ucc_coll_op_args_t;

© 2020 UCF Consortium 47

Customizing Collective Operation : Operations and Reductions (2)

enum ucc_collective_type {
Barrier,
Alltoall,
Alltoallv,
Broadcast,
Gather,
Allgather,
Reduce,
Allreduce,
Scatter,
FAN_IN,
FAN_OUT

}

enum ucc_reduction_op {
OP_MAX,
OP_MIN,
OP_SUM,
OP_PROD,
OP_AND,
OP_OR,
OP_XOR,
OP_MAXLOC,
OP_MINLOC

}

© 2020 UCF Consortium 48

Customizing Collective Operation (3): Buffer Information
§ src_buffer, src_len, dest_buffer, and

dest_len standard semantics

§ Flags
• Persistent
• Symmetric
• In-buffer

struct ucc_coll_buffer_info_t {
ucc_collbuf_config_mask_t mask;
void *src_buffer;
uint32_t *scounts;
uint32_t *src_displacements;
void *dst_buffer;
uint32_t *dst_counts;
uint32_t *dst_displacements;
size_t size;
int64 flags; /* in-buffer */
ucc_dt_type_t src_datatype;
ucc_dt_type_t dst_datatype;

}

© 2020 UCF Consortium 49

Customizing Collective Operation (4): Error Types

§ Local:
• There is no agreement on the errors reported to

the members
• If agreement is needed, it is the user

responsibility to achieve it

§ Global:
• All members return the same error

enum ucc_error_type {
LOCAL=0,
GLOBAL=1,

}

© 2020 UCF Consortium 50

Abstractions

1. Collective Library

2. Communication Context

3. Teams

4. Endpoints

5. Collective Operation

6. Task and task list

7. Plan

© 2020 UCF Consortium 51

Collective Groups

Collective groups are a group of ordered or un-ordered collective operations
Use Case:
§ Collective groups enable the implementation of hierarchical collectives

• It is well established that by tailoring the algorithm and customizing the implementation to various communication
mechanisms in the system can achieve higher performance and scalability

§ Combining computation + collective operation
§ Bundled collective operations

How to express groups of collectives?
§ Triggered Operations

• ○ Pros: Hardware Support
• ○ Cons: Expressing

§ Collective Schedules as DAGs
• ○ Pros: Highly Expressible (parallelism, dependencies)
• ○ Cons: Leveraging hardware trigger mechanism is tricky

§ Chained/List Collective Operations
• ○ Pros: Easy to program and implement
• ○ Cons: Expressing parallelism can be a bit awkward

© 2020 UCF Consortium 52

Collective Groups: Task and Task List

§ Collective groups are a group of ordered or un-ordered collective operations

§ Task: Represents a collective operation and its corresponding team
§ Task List: Represents a collective operation group executed either in order or unordered

Reduce Allreduce Bcast Reduce Bcast

Task1 Task2 Task3 Task1 Task2

Task list for Allreduce (leader process) Task list for Allreduce (non-leader process)

© 2020 UCF Consortium 53

Collective Groups: Operations to create and execute tasks

Semantics:
§ All task operations are local
§ ucc_create_coll_task() creates a task from collective arguments and team
§ ucc_create_task_list() creates either an ordered or unordered list of tasks
§ ucc_schedule_task_list() schedules the tasks to be executed either parallel(unordered) or serial(if ordered)

• All members of the team in the task are expected to execute the same collective operation; otherwise, the operation is
undefined.

• All task executions are non-blocking and asynchronous
§ ucc_complete_tasks() completes the execution of tasks in the task_list

ucc_create_coll_task(ucc_coll_op_args_t args, ucc_team_t team, ucc_coll_task_t *task);
ucc_create_task_list(int num_tasks, bool ordered, ucc_coll_task_t tasks[], ucc_coll_task_list
*task_list);
ucc_schedule_task_list(int priority, ucc_coll_task_t task_list, ucc_task_execution_t
*active_list);
ucc_complete_tasks(ucc_execution_t active_list);

© 2020 UCF Consortium 5454

Global memory management

Semantics:
§ Manages memory on each of member of the team
§ The constraints argument control the semantics

§ Example – symmetric, alignment
§ The hints provide information about usage (think about mbind)

§ Memory policy – local, shared,
§ Usage - atomics, counters, small message, large message, MPI windows

Use cases:
§ OpenSHMEM heaps, MPI Windows, PGAS models, and requirement for some RFPs (for example CORAL2)
§ Internal for collectives – sync buffers, temporary work buffers

ucc_global_mem_alloc(ucc_team_t team, size_t size, ucc_mem_constraints constraints,
ucc_mem_hints hints, ucc_global_mem_t *mem_handle);
ucc_global_mem_free(ucc_global_mem_t mem_handle, ucc_team_t team)
ucc_global_mem_get_attrib(ucc_global_mem_t mem, ucc_global_mem_attrib *attributes);

© 2020 UCF Consortium 55

Thank You The UCF Consortium is a collaboration between industry, laboratories, and
academia to create production grade communication frameworks and open
standards for data centric and high-performance applications.

