From 3e4d8f8c7ee383199ee3feb641d8a36ccd231ba3 Mon Sep 17 00:00:00 2001 From: Wenduo Zhou Date: Thu, 13 Feb 2014 15:51:03 -0500 Subject: [PATCH] Modified doc in wiki. Refs #8744. --- .../src/BackToBackExponentialPV.cpp | 49 ++++++++++++++++--- 1 file changed, 41 insertions(+), 8 deletions(-) diff --git a/Code/Mantid/Framework/CurveFitting/src/BackToBackExponentialPV.cpp b/Code/Mantid/Framework/CurveFitting/src/BackToBackExponentialPV.cpp index 29c97d9ac155..700b1e47d486 100644 --- a/Code/Mantid/Framework/CurveFitting/src/BackToBackExponentialPV.cpp +++ b/Code/Mantid/Framework/CurveFitting/src/BackToBackExponentialPV.cpp @@ -1,22 +1,55 @@ /*WIKI* -A back-to-back exponentialPV peakshape function is defined as: +A back-to-back exponential convoluted with pseudo-voigt peakshape function is defined as: -: I\frac{AB}{2(A+B)}\left[ \exp \left( \frac{A[AS^2+2(x-X0)]}{2}\right) \mbox{erfc}\left( \frac{AS^2+(x-X0)}{S\sqrt{2}} \right) + \exp \left( \frac{B[BS^2-2(x-X0)]}{2} \right) \mbox{erfc} \left( \frac{[BS^2-(x-X0)]}{S\sqrt{2}} \right) \right]. +:F(X) = I\cdot\Omega(X) -This peakshape function represent the convolution of back-to-back exponentialPVs and a gaussian function and is designed to +where + +:\Omega(X) = (1-\eta)N\{e^uerfc(y)+e^verfc(z)\} - \frac{2N\eta}{\pi}\{\Im[e^pE_1(p)]+\Im[e^qE_1(q)]\} + +---- + +: N = \frac{A\cdot B}{2(A+B)} + +---- +: H_G = \sqrt{8 \cdot \log(2)}\cdot S; +: H^5 = H_G^5 +2.69269H_G^4\cdot\gamma +2.42843H_G^3\gamma^2 +4.47163H_G^2\gamma^3 + 0.07842H_G\gamma^4 +\gamma^5 +: \eta = 1.36603\cdot \frac{\gamma}{H} - 0.47719 \cdot (\frac{\gamma}{H})^2 + 0.11116 \cdot (\frac{\gamma}{H})^3 + +---- + +: u = \frac{1}{2}A(A\cdot S^2+2(X-X_0)) +: y = \frac{A\cdot S^2+(X-X_0)}{\sqrt{2}S} +: v = \frac{1}{2}B(B\cdot S^2 - 2(X-X_0)) +: z = \frac{B\cdot S^2-(X-X_0)}{\sqrt{2}S} + +---- + +: p = A(X-X_0) + \frac{iA\cdot H}{2} +: q = -B(X-X_0) + \frac{iB\cdot H}{2} + +---- +:erfc(x) = 1-erf(x) = 1-\frac{2}{\sqrt{\pi}}\int_0^xe^{-u^2}du = \frac{2}{\sqrt{\pi}}\int_x^{\infty}e^{-u^2}du + +: E_1(z) = \int_z^{\infty}\frac{e^{-t}}{t}dt + + +This peakshape function represent the convolution of back-to-back exponential and a pseudo-voigt function and is designed to be used for the data analysis of time-of-flight neutron powder diffraction data, see Ref. 1. -The parameters A and B represent the absolute value of the exponentialPV rise and decay constants (modelling the neutron pulse coming from the moderator) -and S represent the standard deviation of the gaussian. The parameter X0 is the location of the peak; more specifically it represent -the point where the exponentialPVly modelled neutron pulse goes from being exponentially rising to exponentially decaying. I is the integrated intensity. +The parameters A and B represent the absolute value of the exponential rise and decay constants (modelling the neutron pulse coming from the moderator) +and S and \gamma represent the standard deviation of the gaussian and Lorentzian respectively. The parameter X_0 is the location of the peak; more specifically it represent +the point where the exponentially modelled neutron pulse goes from being exponentially rising to exponentially decaying. I is the integrated intensity. + +If the lorentzian \gamma goes to zero, then this peak profile is same as [[BackToBackExponential|Back to back exponential convoluted with Gaussian]]. -For information about how to convert Fullprof back-to-back exponentialPV parameters into those used for this function see [[CreateBackToBackParameters]]. +For information about how to convert Fullprof back-to-back exponential convoluted pseudo-voigt parameters into those used for this function see [[CreateBackToBackParameters]]. References 1. R.B. Von Dreele, J.D. Jorgensen & C.G. Windsor, J. Appl. Cryst., 15, 581-589, 1982 -The figure below illustrate this peakshape function fitted to a TOF peak: +The figure below illustrate this peakshape function fitted to a TOF peak when Lorentzian is equal to zero: [[Image:BackToBackExponentialWithConstBackground.png]]