Permalink
Branch: master
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
65 lines (45 sloc) 1.52 KB

Prodotto di matrici

Descrizione

Dati due vettori di interi di dimensione s, il loro prodotto interno è il numero intero che si ottiene sommando i prodotti termine a termine degli elementi dei due vettori. Più formalmente, detti a e b i due vettori, si ha che il loro prodotto interno è Σᵤaᵤbᵤ (con u che va da 1 a s). Ad esempio, il prodotto interno dei vettori (3 0 4) e (2 1 5) è pari a 26 = 3 * 2 + 0 * 1 + 4 * 5.

Date due matrici A e B di numeri interi, rispettivamente di dimensione r x s e s x t, il loro prodotto è la matrice di interi C di dimensione r x t il cui elemento di posto *i*, *j* è dato dal prodotto interno dell'i-esima riga di A e della j-esima colonna di B. Più formalmente, per ogni i tra 1 e r e j tra 1 e t, si ha che cᵢⱼ = Σᵤaᵢᵤbᵤⱼ (con u che va da 1 a s). Ad esempio, il prodotto di

3 0 4
1 2 3

e

5 2
6 1
7 5

è pari a

43 26
38 19

dove, ad esempio, l'elemento di posto 1, 2 vale 26 essendo il prodotto interno della prima riga di A pari a (3 0 4) e della seconda colonna di B pari a (2 1 5).

Vincoli

I numeri coinvolti sono tali per cui le matrici A e B possono essere rappresentate in memoria e gli interi coinvolti possono essere rappresentati da variabili di tipo int.

Esempio

Eseguendo soluzione 2 3 2 e avendo

1 0 0
0 1 0
3 4
5 6
7 8

nel flusso di ingresso, il programma emette

3 4
5 6

nel flusso di uscita.