
Dedaub
Security Technology for Smart Contracts

Maple Finance - Maple Core

Smart Contract Security Assessment

Date: Mar. 12, 2021

Abstract
Dedaub was commissioned to perform a security audit on Maple Finance’s core smart contracts

(maple-core). The audit was performed on commit 05ef95f with revisions subsequently checked

against the issues identified.

Four auditors worked on the task over the course of 8 working days. We reviewed the code in

significant depth, assessed the economics of the protocol and processed it through automated

tools. We also decompiled the code and analyzed it, using our static analysis (incl. symbolic

execution) tools, to detect possible issues.

Setting and Caveats
The code base is medium-size, at around 3.5KLoC (non-test, non-interface files). However, the

economic mechanisms behind the Maple Core protocol are complicated. We also account for

protocol composability issues and the economic risks these bring in this audit.

The audit focused on security, establishing the overall security model and its robustness and also

crypto-economic issues. Functional correctness (e.g., that the calculations are correct) was a

secondary priority. Functional correctness relative to low-level calculations (e.g., units) is generally

most effectively done through thorough testing.

Revisions post-audited-commit were inspected to the extent that they addressed issues identified

in this report. The development team should be aware that such revisions are audited with the

auditor having less context than during the original code audit. Therefore post-audited-commit

revisions are expected to be made with extreme care, relative to functionality unrelated to the

flagged issue that the revision intends to address.

2

Trust Model/Centralization Elements

[This section is included for context, although its contents should already be known to the commissioner
of an audit.]
There are significant centralization elements, but these are in accordance with a service that

offers under-collateralized loans. Much of the trust in the protocol is derived in the off-chain

world. E.g., users need to trust the protocol owner account and the vetting of loans performed by

the pool delegate. Borrowers are trusted because of real-world reputation and potential

consequences. A notable centralization element, however, is that, in this version of the code, there

is significant trust in the pool delegates. Pool delegates can subvert many of the checks and

balances if they act maliciously. For instance, there are at least two different flash-loan-based

attacks outlined below (present in the final, revised version of the code) that pool delegates can

perform.

Vulnerabilities and Functional Issues
This section details issues that affect the functionality of the contract. Dedaub generally

categorizes issues according to the following severities, but may also take other considerations

into account such as impact or difficulty in exploitation:

Category Description

Critical Can be profitably exploited by any knowledgeable third party attacker to drain a
portion of the system’s or user’s funds.

High Third party attackers may block the system or cause the system or users to lose
funds.

Medium Examples:
1) User or system funds can be lost when third party systems misbehave.
2) DoS, under specific conditions.

Low Examples:
1) Breaking important system invariants, but without apparent consequences.
2) Buggy functionality for trusted users where a workaround exists.
3) Security issues which may manifest when the system evolves.

Issue resolution includes “dismissed”, by the client, or “resolved”, per the auditors.

3

Critical Severity

Description Status

An attacker can cause the pool to burn BPTs at highly unfavorable rates, upon

handling a default.

Upon a loan default, a pool will claim the available loan funds--function claim

in Pool. Anyone can call this function and it will eventually invoke

handleDefault in PoolLib. This function burns BPT on Balancer using

exitswapExternAmountOut and passing it infinity as the BPT number to burn

(i.e., as many as needed to recover a certain amount of liquidityAsset). But

Balancer is an AMM, so its pricing can be manipulated inside a single

transaction via flash loan. Manipulation of the pool can yield profit for the

attacker, up to the value of BPTs being burned.

Resolved:
Functionality

limited to pool
delegates, in
revised code.

Pool
delegates

considered
trusted
actors.

4

High Severity

Description Status

Loan liquidation can be forced to suffer max slippage (10%). An attacker can

make the liquidation of collateral for a defaulting loan to be done at prices 10%

lower, via flash loan manipulation of the Uniswap pool.

Specifically, either anyone (after the extended grace period) or an LP provider

(after the grace period but during the extended grace period) can call

triggerDefault on a loan. This will eventually call triggerDefault in

LoanLib, which will swap the collateral for the loan asset on Uniswap. The

attacker can manipulate the Uniswap pool beforehand (e.g., via flash loan) so

that it is tilted and offers 10% lower prices for the collateral asset. 10%

slippage is accepted by the code (since the difference in exchange rates

between Uniswap and Chainlink oracles can be significant). However, the

scenario described is a predictable, repeatable attack.

Resolved:
Functionality
limited to LPs

with a large
percentage of
loan FDTs, in
revised code.

(Parameter
needs to be

set with care.)

A pool delegate can subvert the check that a pool is well-staked (performed in

Pool.finalize).

The pool delegate can take a flash loan and perform a Balancer manipulation

attack, so that the check getInitialStakeRequirements in finalize,

which calls the Balancer pool, succeeds. The value of the BPTs is checked

against real monetary values, so the caller can make BPTs temporarily appear

very expensive.

Dismissed:
Pool delegates

considered
trusted actors

in current
version of the

protocol.

Medium Severity

[No medium severity issues]

5

Low Severity

Description Status

Some ERC20 operations (transfer, transferFrom and approve) will fail, if the

underlying token is not fully compliant with the ERC20 standard, as it is possible

that they do not return a boolean value for the aforementioned operations to

indicate the success of the call (most notable exception is USDT).

It is recommended that the OpenZeppelin SafeERC20 wrappers be used for these

operations, to ensure compatibility with such tokens.

Resolved

MapleGlobals.isValidCalc should be defined as a view function. Resolved

No need for public withdrawFundsOnBehalf in FDT (really, Loan). Resolved

Several contract fields are only set during the contracts’ creation. They could use
the immutable modifier to reduce the gas costs of their uses.

● PremiumCalc: premiumBips
● LateFeeCalc: feeBips
● FDT: fundsToken
● MapleTreasury: mpl, fundsToken, uniswapRouter
● MapleGlobals: mpl
● Pool: stakingFee, delegateFee
● Loan: apr, termDays, paymentIntervalSeconds,

collateralRatio, fundingPeriodSeconds, createdAt
● ChainlinkOracle: assetAddress

Resolved

6

Other/Advisory Issues
This section details issues that are not thought to directly affect the functionality of the project,

but we recommend addressing.

Description Status

StakeLocker.canUnstake() relies on low-level constants of Pool. We suggest
refactoring the code to hide these, in order to improve readability.

Resolved

The depositDate calculation has mildly surprising consequences, especially
apparent in later stages of the protocol, when lockupPeriod < penaltyDelay.
The linear re-balancing of depositDate when funds are added loses information
and may serve as a counter-incentive to deposits. Example:

● lockupPeriod is 0, penaltyDelay is 1yr
● user deposited 10K USDC, a year ago. User’s depositDate is now - 1yr
● user deposits another 10K USDC. User’s depositDate becomes now -

6months
● user finds themselves in need of some cash. Withdraws 5K USDC and pays

penalty as if all 20K were deposited 6 months ago, although the user had
10K (i.e., more than what they are trying to withdraw) deposited a year
ago.

Dismissed

There are a few instances of local variables that are not being explicitly initialized
(assumed to be zero when first used):

● penalty in PoolLib.calcWithdrawPenalty
● Return value in BasicFDT._updateFundsTokenBalance
● losses in ExtendedFTD.recognizeLosses
● Return value in ExtendedFDT._updateLossesBalance

Dismissed

7

The contracts were compiled with the Solidity compiler v0.6.11 which has some

known minor issues (but relatively few, compared to earlier versions). We have

reviewed the issues and do not believe them to affect the contract. More

specifically, at the time of writing, there are 2 known compiler bugs associated

with the Solidity compiler v0.6.11:

● Copying an empty bytes or string array from memory to storage can

cause data corruption:

○ This could affect the name and symbol fields of several FDT tokens

(without leading to any exploits). However the fact that these

contracts are created using the appropriate factories with

generated names eliminates this issue.

● Direct assignments of storage arrays with an element size <= 16 bytes

(more than one values fit in one 32 byte word) are not correctly cleared if

the length of the newly assigned value is smaller than the length of the

previous one. (No such array is ever stored.)

Resolved

In LoanFactory.isValidGovernor,

LoanFactory.isValidGovernorOrAdmin, and

LoanFactory._whenProtocolNotPaused the revert messages refer to

PoolFactory.

Info

In PoolFactory._whenProtocolNotPaused and

LoanFactory._whenProtocolNotPaused the natspec comments are wrong.

Info

8

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json
https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json

Disclaimer
The audited contracts have been analyzed using automated techniques and extensive human

inspection in accordance with state-of-the-art practices as of the date of this report. The audit

makes no statements or warranties on the security of the code. On its own, it cannot be

considered a sufficient assessment of the correctness status of the contract. While we have

conducted an analysis to the best of our ability, it is our recommendation for high-value contracts

to commission several independent audits, as well as a public bug bounty program.

About Dedaub
Dedaub offers technology and auditing services for smart contract security. The founders, Neville

Grech and Yannis Smaragdakis, are top researchers in program analysis. Dedaub’s smart contract

technology is demonstrated in the contract-library.com service, which decompiles and performs

security analyses on the full Ethereum blockchain.

9

https://contract-library.com

