
Public

SMART CONTRACT AUDIT REPORT

for

MAPLE TOKEN

Prepared By: Shuxiao Wang

PeckShield
April 4, 2021

1/19 PeckShield Audit Report #: 2021-069

sxwang@peckshield.com

Public

Document Properties

Client Maple Labs
Title Smart Contract Audit Report
Target Maple Token
Version 1.0
Author Xuxian Jiang
Auditors Yiqun Chen, Xuxian Jiang
Reviewed by Shuxiao Wang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author Description
1.0 April 4, 2021 Xuxian Jiang Final Release

1.0-rc March 28, 2021 Xuxian Jiang Release Candidate
0.1 March 25, 2021 Xuxian Jiang First Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/19 PeckShield Audit Report #: 2021-069

Public

Contents

1 Introduction 4
1.1 About Maple Token . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 8
2.1 Summary . 8
2.2 Key Findings . 9

3 ERC20 Compliance Checks 10

4 Detailed Results 13
4.1 Accommodation of Non-ERC20-Compliant fundsToken 13
4.2 Inconsistency Between Document and Implementation 15
4.3 Consistency Between withdrawFunds() And withdrawFundsOnBehalf() 16

5 Conclusion 18

References 19

3/19 PeckShield Audit Report #: 2021-069

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the Maple Token
smart contract, we outline in the report our systematic method to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistency between smart contract
code and the documentation, and provide additional suggestions or recommendations for improve-
ment. Our results show that the given version of the smart contract exhibits no ERC20 compliance
issues or security concerns. This document outlines our audit results.

1.1 About Maple Token

Maple is a decentralized corporate credit market that aims to provide capital to institutional borrowers
through globally accessible fixed-income yield opportunities. In particular, liquidity pools are utilized
to aggregate funding from liquidity providers and are loaned out to earn interest. The pools are
professionally managed by pool delegates to provide as a sustainable yield source. And Borrowers

request capital from the Maple protocol and pay associated interest fee. The Maple token is the
protocol token of the Maple protocol. This audit covers the ERC20-compliance of the Maple token.

The basic information of Maple Token is as follows:

Table 1.1: Basic Information of Maple Token

Item Description
Issuer Maple Labs

Website https://maple.finance/
Type Ethereum ERC20 Token Contract

Platform Solidity
Audit Method Whitebox

Audit Completion Date April 4, 2021

In the following, we show the Git repository and the commit hash value used in this audit:

• https://github.com/maple-labs/maple-token.git (10d561f)

4/19 PeckShield Audit Report #: 2021-069

Public

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/maple-labs/maple-token.git (6903752)

1.2 About PeckShield

PeckShield Inc. [6] is a leading blockchain security company with the goal of elevating the security,
privacy, and usability of current blockchain ecosystem by offering top-notch, industry-leading ser-
vices and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [5]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk;

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

We perform the audit according to the following procedures:

5/19 PeckShield Audit Report #: 2021-069

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• ERC20 Compliance Checks: We then manually check whether the implementation logic of the
audited smart contract(s) follows the standard ERC20 specification and other best practices.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead of Transfer

Costly Loop
(Unsafe) Use of Untrusted Libraries
(Unsafe) Use of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Approve / TransferFrom Race Condition

ERC20 Compliance Checks Compliance Checks (Section 3)

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

To evaluate the risk, we go through a list of check items and each would be labeled with a severity
category. For one check item, if our tool does not identify any issue, the contract is considered safe

6/19 PeckShield Audit Report #: 2021-069

Public

regarding the check item. For any discovered issue, we might further deploy contracts on our private
testnet and run tests to confirm the findings. If necessary, we would additionally build a PoC to
demonstrate the possibility of exploitation. The concrete list of check items is shown in Table 1.3.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/19 PeckShield Audit Report #: 2021-069

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Maple Token. During the first phase of our
audit, we study the smart contract source code and run our in-house static code analyzer through
the codebase. The purpose here is to statically identify known coding bugs, and then manually verify
(reject or confirm) issues reported by our tool. We further manually review business logics, examine
system operations, and place ERC20-related aspects under scrutiny to uncover possible pitfalls and/or
bugs.

Severity # of Findings
Critical 0

High 0

Medium 0

Low 2

Informational 1

Total 3

Moreover, we explicitly evaluate whether the given contracts follow the standard ERC20 specifi-
cation and other known best practices, and validate its compatibility with other similar ERC20 tokens
and current DeFi protocols. The detailed ERC20 compliance checks are reported in Section 3. After
that, we examine a few identified issues of varying severities that need to be brought up and paid
more attention to. (The findings are categorized in the above table.) Additional information can be
found in the next subsection, and the detailed discussions are in Section 4.

8/19 PeckShield Audit Report #: 2021-069

Public

2.2 Key Findings

Overall, a minor ERC20 compliance issue was found and our detailed checklist can be found in Sec-
tion 3. Also, there is no critical or high severity issue, although the implementation can be improved
by resolving the identified issues (shown in Table 2.1), including 2 low-severity vulnerabilities, and 1
informational recommendation.

Table 2.1: Key Maple Token Audit Findings

ID Severity Title Category Status
PVE-001 Low Accommodation of Non-ERC20-Compliant

fundsToken
Business Logic Fixed

PVE-002 Informational Inconsistency Between Document and Imple-
mentation

Coding Practices Fixed

PVE-003 Low Consistency Between withdrawFunds() And
withdrawFundsOnBehalf()

Coding Practices Fixed

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for our detailed compliance checks and Section 4 for elaboration of reported issues.

9/19 PeckShield Audit Report #: 2021-069

Public

3 | ERC20 Compliance Checks

The ERC20 specification defines a list of API functions (and relevant events) that each token contract
is expected to implement (and emit). The failure to meet these requirements means the token
contract cannot be considered to be ERC20-compliant. Naturally, as the first step of our audit, we
examine the list of API functions defined by the ERC20 specification and validate whether there
exist any inconsistency or incompatibility in the implementation or the inherent business logic of the
audited contract(s).

Table 3.1: Basic View-Only Functions Defined in The ERC20 Specification

Item Description Status

name() Is declared as a public view function ✓

Returns a string, for example “Tether USD” ✓

symbol() Is declared as a public view function ✓

Returns the symbol by which the token contract should be known, for
example “USDT”. It is usually 3 or 4 characters in length

✓

decimals() Is declared as a public view function ✓

Returns decimals, which refers to how divisible a token can be, from 0
(not at all divisible) to 18 (pretty much continuous) and even higher if
required

✓

totalSupply() Is declared as a public view function ✓

Returns the number of total supplied tokens, including the total minted
tokens (minus the total burned tokens) ever since the deployment

✓

balanceOf() Is declared as a public view function ✓

Anyone can query any address’ balance, as all data on the blockchain is
public

✓

allowance() Is declared as a public view function ✓

Returns the amount which the spender is still allowed to withdraw from
the owner

✓

Our analysis shows that there is no ERC20 inconsistency or incompatibility issue found in the
audited Maple Token. In the surrounding two tables, we outline the respective list of basic view

-only functions (Table 3.1) and key state-changing functions (Table 3.2) according to the widely-

10/19 PeckShield Audit Report #: 2021-069

Public

Table 3.2: Key State-Changing Functions Defined in The ERC20 Specification

Item Description Status

transfer()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the caller does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring to zero address ✓

transferFrom()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token transfer status ✓

Reverts if the spender does not have enough token allowances to spend ✓

Updates the spender’s token allowances when tokens are transferred suc-
cessfully

✓

Reverts if the from address does not have enough tokens to spend ✓

Allows zero amount transfers ✓

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

✓

Reverts while transferring from zero address ✓

Reverts while transferring to zero address ✓

approve()

Is declared as a public function ✓

Returns a boolean value which accurately reflects the token approval status ✓

Emits Approval() event when tokens are approved successfully ✓

Reverts while approving to zero address ✓

Transfer() event
Is emitted when tokens are transferred, including zero value transfers ✓

Is emitted with the from address set to address(0x0) when new tokens
are generated

✓

Approval() event Is emitted on any successful call to approve() ✓

11/19 PeckShield Audit Report #: 2021-069

Public

adopted ERC20 specification. In addition, we perform a further examination on certain features
that are permitted by the ERC20 specification or even further extended in follow-up refinements and
enhancements (e.g., ERC777/ERC2222), but not required for implementation. These features are
generally helpful, but may also impact or bring certain incompatibility with current DeFi protocols.
Therefore, we consider it is important to highlight them as well. This list is shown in Table 3.3.

Table 3.3: Additional Opt-in Features Examined in Our Audit

Feature Description Opt-in
Deflationary Part of the tokens are burned or transferred as fee while on trans-

fer()/transferFrom() calls
—

Rebasing The balanceOf() function returns a re-based balance instead of the actual
stored amount of tokens owned by the specific address

—

Pausable The token contract allows the owner or privileged users to pause the token
transfers and other operations

—

Blacklistable The token contract allows the owner or privileged users to blacklist a
specific address such that token transfers and other operations related to
that address are prohibited

—

Mintable The token contract allows the owner or privileged users to mint tokens to
a specific address

—

Burnable The token contract allows the owner or privileged users to burn tokens of
a specific address

—

12/19 PeckShield Audit Report #: 2021-069

Public

4 | Detailed Results

4.1 Accommodation of Non-ERC20-Compliant fundsToken

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ERC2222

• Category: Business Logic [4]

• CWE subcategory: CWE-841 [2]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow
the specification or have additional functionalities beyond the specification. In the following, we
examine the transfer() routine and related idiosyncrasies from current widely-used token contracts.

In particular, we use the popular token, i.e., ZRX, as our example. We show the related code
snippet below. On its entry of transfer(), there is a check, i.e., if (balances[msg.sender] >= _value

&& balances[_to] + _value >= balances[_to]). If the check fails, it returns false. However, the
transaction still proceeds successfully without being reverted. This is not compliant with the ERC20
standard and may cause issues if not handled properly. Specifically, the ERC20 standard specifies the
following: “Transfers _value amount of tokens to address _to, and MUST fire the Transfer event.
The function SHOULD throw if the message caller’s account balance does not have enough tokens
to spend.”

64 f unc t i on t r a n s f e r (address _to , u in t _value) r e tu rn s (bool) {
65 // Default assumes totalSupply can’t be over max (2^256 - 1).
66 i f (b a l a n c e s [msg . sender] >= _value && ba l a n c e s [_to] + _value >= ba l a n c e s [_to]) {
67 ba l a n c e s [msg . sender] −= _value ;
68 ba l a n c e s [_to] += _value ;
69 Transfer (msg . sender , _to , _value) ;
70 re tu rn t rue ;
71 } e l s e { re tu rn f a l s e ; }
72 }
73
74 f unc t i on t r a n s f e rF r om (address _from , address _to , u in t _value) r e tu rn s (bool) {

13/19 PeckShield Audit Report #: 2021-069

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

Public

75 i f (b a l a n c e s [_from] >= _value && a l l owed [_from] [msg . sender] >= _value &&
ba l a n c e s [_to] + _value >= ba l a n c e s [_to]) {

76 ba l a n c e s [_to] += _value ;
77 ba l a n c e s [_from] −= _value ;
78 a l l owed [_from] [msg . sender] −= _value ;
79 Transfer (_from , _to , _value) ;
80 re tu rn t rue ;
81 } e l s e { re tu rn f a l s e ; }
82 }

Listing 4.1: ZRX.sol

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful. To
use this library you can add a using SafeERC20 for IERC20. Similarly, there is a safe version of
transferFrom() as well, i.e., safeTransferFrom().

In the following, we show the withdrawFunds() routine in the ERC2222 contract. If the USDT token is
supported as tokenAddress, the unsafe version of fundsToken.transfer(msg.sender, withdrawableFunds)

(line 181) may revert as there is no return value in the USDT token contract’s transfer() implemen-
tation (but the IERC20 interface expects a return value)!

174 /**
175 * @dev Withdraws all available funds for a token holder
176 */
177 f unc t i on withdrawFunds () pub l i c v i r t u a l o v e r r i d e {
178 uint256 withdrawab leFunds = _prepareWithdraw () ;
179
180 i f (w i thdrawab leFunds > uint256 (0)) {
181 r equ i r e (fundsToken . t r a n s f e r (msg . sender , w i thdrawab leFunds) , "FDT:

TRANSFER_FAILED") ;
182
183 _updateFundsTokenBalance () ;
184 }
185 }

Listing 4.2: ERC2222::withdrawFunds()

Recommendation Accommodate the above-mentioned idiosyncrasy with safe-version imple-
mentation of ERC20-related transfer(), transferFrom(), and approve().

Status The issue has been addressed by the following commit: 6903752.

14/19 PeckShield Audit Report #: 2021-069

https://github.com/maple-labs/maple-token/commit/6903752

Public

4.2 Inconsistency Between Document and Implementation

• ID: PVE-002

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: ERC2222

• Category: Coding Practices [3]

• CWE subcategory: CWE-1041 [1]

Description

The Maple token is the native governance token of the Maple protocol and it is designed to be a
FundsDistributionToken (FDT) token that inherits the ERC20 token standard and further implements
the ERC2222 token standard.

During the analysis of the token contract, we notice a specific misleading comment located at
line 213 of ERC2222::updateFundsReceived(). In particular, the preceding function summary indicates
that “the contract computes the delta of the previous and the new funds token balance”. However,
the implemented logic (line 208) indicates it is the delta of the new and the previous funds token
balance.

198 /**
199 * @dev Updates the current funds token balance
200 * and returns the difference of new and previous funds token balances
201 * @return A int256 representing the difference of the new and previous funds token

balance
202 */
203 f unc t i on _updateFundsTokenBalance () i n t e r n a l v i r t u a l r e tu rn s (int256) {
204 uint256 _prevFundsTokenBalance = fundsTokenBalance ;
205
206 fundsTokenBalance = fundsToken . ba lanceOf (address (t h i s)) ;
207
208 re tu rn int256 (fundsTokenBalance) . sub (int256 (_prevFundsTokenBalance)) ;
209 }
210
211 /**
212 * @dev Register a payment of funds in tokens. May be called directly after a

deposit is made.
213 * @dev Calls _updateFundsTokenBalance (), whereby the contract computes the delta of

the previous and the new
214 * funds token balance and increments the total received funds (cumulative) by delta

by calling _registerFunds ()
215 */
216 f unc t i on updateFundsRece i ved () pub l i c v i r t u a l {
217 int256 newFunds = _updateFundsTokenBalance () ;
218
219 i f (newFunds > 0) {
220 _d i s t r i b u t eFund s (newFunds . t oU in t256Sa f e ()) ;
221 }

15/19 PeckShield Audit Report #: 2021-069

Public

222 }

Listing 4.3: ERC2222::updateFundsReceived()

Recommendation Ensure the consistency between documents (including embedded comments)
and implementation.

Status The issue has been addressed by the following commit: 6903752.

4.3 Consistency Between withdrawFunds() And
withdrawFundsOnBehalf()

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ERC2222

• Category: Coding Practices [3]

• CWE subcategory: CWE-1041 [1]

Description

As mentioned in Section 4.2, the Maple token follows the ERC2222 token standard that allows the
token holders to be able to claim proportionate amounts of interest that have been paid over time.
Specifically, there are two related routines, i.e., withdrawFunds() and withdrawFundsOnBehalf(), that
can be used by token holders to withdraw all available funds, either directly by the token holders
themselves or indirectly on behalf of token holders.

Our analysis with these two routines shows certain unnecessary inconsistency. In particular, For
gas optimization purposes, the withdrawFunds() routine has implemented an enhancement that avoids
making the asset-transferring call if the transferred amount is 0. However, the same enhancement
has not been taken in the withdrawFundsOnBehalf() routine.

To elaborate, we show below the code snippet of ERC2222::withdrawFundsOnBehalf(). This routine
allows for withdrawing all available funds on behalf of a token holder. However, it also makes the
transfer request (line 193) even when the given withdrawableFunds is 0.

174 /**
175 * @dev Withdraws all available funds for a token holder
176 */
177 f unc t i on withdrawFunds () pub l i c v i r t u a l o v e r r i d e {
178 uint256 withdrawab leFunds = _prepareWithdraw () ;
179
180 i f (w i thdrawab leFunds > uint256 (0)) {
181 r equ i r e (fundsToken . t r a n s f e r (msg . sender , w i thdrawab leFunds) , "FDT:

TRANSFER_FAILED") ;

16/19 PeckShield Audit Report #: 2021-069

https://github.com/maple-labs/maple-token/commit/6903752

Public

182
183 _updateFundsTokenBalance () ;
184 }
185 }
186
187 /**
188 * @dev Withdraws all available funds for a token holder , on behalf of token holder
189 */
190 f unc t i on withdrawFundsOnBehal f (address u s e r) pub l i c v i r t u a l {
191 uint256 withdrawab leFunds = _prepareWithdrawOnBehal f (u s e r) ;
192
193 r equ i r e (fundsToken . t r a n s f e r (use r , w i thdrawab leFunds) , "FDT:TRANSFER_FAILED") ;
194
195 _updateFundsTokenBalance () ;
196 }

Listing 4.4: ERC2222::withdrawFunds() and ERC2222::withdrawFundsOnBehalf()

Recommendation Avoid the token transfer() call when the transferred amount is 0 in both
withdrawFunds() and withdrawFundsOnBehalf() routines.

Status The issue has been addressed by the following commit: 6903752.

17/19 PeckShield Audit Report #: 2021-069

https://github.com/maple-labs/maple-token/commit/6903752

Public

5 | Conclusion

In this security audit, we have examined the Maple Token design and implementation. During
our audit, we first checked all respects related to the compatibility of the ERC20 specification and
other known ERC20 pitfalls/vulnerabilities. We then proceeded to examine other areas such as
coding practices and business logics. Overall, although no critical or high level vulnerabilities were
discovered, we identified two low severity issues and an informational suggestion that were promptly
confirmed and fixed by the team. In the meantime, as disclaimed in Section 1.4, we appreciate any
constructive feedbacks or suggestions about our findings, procedures, audit scope, etc.

18/19 PeckShield Audit Report #: 2021-069

Public

References

[1] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[2] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[3] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[4] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[5] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[6] PeckShield. PeckShield Inc. https://www.peckshield.com.

19/19 PeckShield Audit Report #: 2021-069

https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Maple Token
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	ERC20 Compliance Checks
	Detailed Results
	Accommodation of Non-ERC20-Compliant fundsToken
	Inconsistency Between Document and Implementation
	Consistency Between withdrawFunds() And withdrawFundsOnBehalf()

	Conclusion
	References

