
Public

SMART CONTRACT AUDIT REPORT

for

MAPLE LABS

Prepared By: Shuxiao Wang

PeckShield
May 2, 2021

1/42 PeckShield Audit Report #: 2021-061

sxwang@peckshield.com

Public

Document Properties

Client Maple Labs
Title Smart Contract Audit Report
Target Maple
Version 1.0.2
Author Xuxian Jiang
Auditors Xuxian Jiang, Huaguo Shi, Jeff Liu
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0.2 May 2, 2021 Xuxian Jiang Final Release (Amended #2)
1.0.1 April 12, 2021 Xuxian Jiang Final Release (Amended #1)
1.0 March 19, 2021 Xuxian Jiang Final Release
1.0-rc1 March 17, 2021 Xuxian Jiang Release Candidate #1
0.5 March 13, 2021 Xuxian Jiang Add More Findings #4
0.4 March 12, 2021 Xuxian Jiang Add More Findings #3
0.3 March 10, 2021 Xuxian Jiang Add More Findings #2
0.2 March 7, 2021 Xuxian Jiang Add More Findings #1
0.1 March 1, 2021 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/42 PeckShield Audit Report #: 2021-061

Public

Contents

1 Introduction 5
1.1 About Maple . 5
1.2 About PeckShield . 6
1.3 Methodology . 6
1.4 Disclaimer . 7

2 Findings 11
2.1 Summary . 11
2.2 Key Findings . 12

3 Detailed Results 14
3.1 Safe-Version Replacement With safeApprove(), safeTransfer() And safeTransferFrom() 14
3.2 Proper Effective Stake Date Calculation . 16
3.3 Inconsistency Between Document and Implementation 18
3.4 Suggested Adherence Of Checks-Effects-Interactions Pattern 19
3.5 Avoidance Of Zero Amount Transfer . 21
3.6 Improved Sanity Checks For System/Function Parameters 22
3.7 Better Handling of Privilege Transfers . 23
3.8 Possible Front-Running For Reduced Stake Requirements 24
3.9 Improved Precision By Multiplication And Division Reordering 26
3.10 Simplification of PoolLib::updateDepositDate() . 27
3.11 Timely updateFundsReceived() in Loan Management 28
3.12 Lack Of Proper Enforcement Of fundingPeriodSeconds 30
3.13 Redundant Code Removal . 32
3.14 Incompatibility with Deflationary/Rebasing Tokens 34
3.15 Bypass of lockupPeriod in Pool::withdraw() . 35
3.16 Suggested Addition of rescueToken() . 37
3.17 Potential Collusion Between PoolDelegate And Borrowers 37
3.18 Revisited Assumption on Trusted Governance . 38

3/42 PeckShield Audit Report #: 2021-061

Public

4 Conclusion 40

References 41

4/42 PeckShield Audit Report #: 2021-061

Public

1 | Introduction

Given the opportunity to review the Maple design document and related smart contract source code,
we outline in the report our systematic approach to evaluate potential security issues in the smart
contract implementation, expose possible semantic inconsistencies between smart contract code and
design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About Maple

Maple is a decentralized corporate credit market that aims to provide capital to institutional borrowers
through globally accessible fixed-income yield opportunities. In particular, liquidity pools are utilized
to aggregate funding from liquidity providers and are loaned out to earn interest. The pools are
professionally managed by pool delegates to provide as a sustainable yield source. And Borrowers

request capital from the Maple protocol by performing transparent and efficient financing entirely
on-chain. Pool delegates perform diligence and agree terms with Borrowers. To be qualified, pool
delegates are required to stake the protocol token, i.e., MPL, in their pools to cover defaults, aligning
their incentives with liquidity providers.

The basic information of Maple is as follows:

Table 1.1: Basic Information of Maple

Item Description
Issuer Maple Labs

Website https://maple.finance/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report May 2, 2021

5/42 PeckShield Audit Report #: 2021-061

Public

In the following, we show the Git repository of reviewed files and the commit hash value used
in this audit. Note that Maple assumes a trusted price oracle with timely market price feeds for
supported assets and the oracle itself is not part of this audit.

• https://github.com/maple-labs/maple-core.git (05ef95f)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/maple-labs/maple-core.git (d921a7c)

1.2 About PeckShield

PeckShield Inc. [20] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [19]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

6/42 PeckShield Audit Report #: 2021-061

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [18], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered

7/42 PeckShield Audit Report #: 2021-061

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

8/42 PeckShield Audit Report #: 2021-061

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

9/42 PeckShield Audit Report #: 2021-061

Public

comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

10/42 PeckShield Audit Report #: 2021-061

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Maple protocol. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logic, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 2

Medium 3

Low 8

Informational 5

Total 18

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

11/42 PeckShield Audit Report #: 2021-061

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 2 high-severity vulnerabil-
ities, 3 medium-severity vulnerabilities, 8 low-severity vulnerabilities, and 5 informational recommen-
dations.

Table 2.1: Key Maple Audit Findings

ID Severity Title Category Status
PVE-001 Low Safe-Version Replacement With safeAp-

prove(), safeTransfer() And safeTransfer-
From()

Coding Practices Fixed

PVE-002 Medium Proper Effective Stake Date Calculation Time and State Fixed
PVE-003 Informational Inconsistency Between Document and Imple-

mentation
Coding Practices Fixed

PVE-004 Low Suggested Adherence Of Checks-Effects-
Interactions Pattern

Time and State Fixed

PVE-005 Low Avoidance Of Zero Amount Transfer Coding Practices Fixed
PVE-006 Low Improved Sanity Checks Of System/Function

Parameters
Coding Practices Fixed

PVE-007 Informational Better Handling of Privilege Transfers Security Features Fixed
PVE-008 High Possible Front-Running For Reduced Stake

Requirements
Time and State Resolved

PVE-009 Low Improved Precision By Multiplication And Di-
vision Reordering

Numeric Errors Fixed

PVE-010 Low Simplification of Pool-
Lib::updateDepositDate()

Coding Practices Fixed

PVE-011 Low Timely updateFundsReceived() in Loan Man-
agement

Business Logic Fixed

PVE-012 Low Lack Of Proper Enforcement Of fundingPeri-
odSeconds

Business Logic Resolved

PVE-013 Informational Removal of Unused Code Coding Practices Fixed
PVE-014 Informational Incompatibility With Deflationary/Rebasing

Tokens
Business Logic Resolved

PVE-015 High Bypass of lockupPeriod in Pool::withdraw() Business Logic Fixed
PVE-016 Informational Suggested Addition of rescueToken() Business Logic Fixed
PVE-017 Medium Potential Collusion Between PoolDelegate

And Borrowers
Business Logic Resolved

PVE-018 Medium Revisited Assumption on Trusted Governance Security Features Resolved

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which

12/42 PeckShield Audit Report #: 2021-061

Public

may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

13/42 PeckShield Audit Report #: 2021-061

Public

3 | Detailed Results

3.1 Safe-Version Replacement With safeApprove(),
safeTransfer() And safeTransferFrom()

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [13]

• CWE subcategory: CWE-1126 [2]

Description

Though there is a standardized ERC-20 specification, many token contracts may not strictly follow the
specification or have additional functionalities beyond the specification. In this section, we examine
the approve() routine and possible idiosyncrasies from current widely-used token contracts.

In particular, we use the popular stablecoin, i.e., USDT, as our example. We show the related
code snippet below. On its entry of approve(), there is a requirement, i.e., require(!((_value != 0)

&& (allowed[msg.sender][_spender] != 0))). This specific requirement essentially indicates the need
of reducing the allowance to 0 first (by calling approve(_spender, 0)) if it is not, and then calling a
second one to set the proper allowance. This requirement is in place to mitigate the known approve()/

transferFrom() race condition (https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729).

194 /**
195 * @dev Approve the passed address to spend the specified amount of tokens on behalf

of msg.sender.
196 * @param _spender The address which will spend the funds.
197 * @param _value The amount of tokens to be spent.
198 */
199 f unc t i on approve (address _spender , u in t _value) pub l i c on l yPay l o adS i z e (2 ∗ 32) {

201 // To change the approve amount you first have to reduce the addresses ‘
202 // allowance to zero by calling ‘approve(_spender , 0)‘ if it is not
203 // already 0 to mitigate the race condition described here:

14/42 PeckShield Audit Report #: 2021-061

Public

204 // https :// github.com/ethereum/EIPs/issues /20# issuecomment -263524729
205 r equ i r e (! ((_value != 0) && (a l l owed [msg . sender] [_spender] != 0))) ;

207 a l l owed [msg . sender] [_spender] = _value ;
208 Approva l (msg . sender , _spender , _value) ;
209 }

Listing 3.1: USDT Token Contract

Because of that, a normal call to approve() with a currently non-zero allowance may fail. In the
following, we use the MapleTreasury::convertERC20() routine as an example. This routine is designed
to trigger default handling. To accommodate the specific idiosyncrasy, there is a need to approve()

twice (line 93): the first one reduces the allowance to 0; and the second one sets the new allowance.

85 f unc t i on convertERC20 (address a s s e t) i sGo v e r n o r pub l i c {
86 r equ i r e (a s s e t != fundsToken , "MapleTreasury:ASSET_EQUALS_FUNDS_TOKEN") ;

88 I G l o b a l s _g loba l s = I G l o b a l s (g l o b a l s) ;

90 uint256 a s s e tBa l a n c e = IERC20 (a s s e t) . ba lanceOf (address (t h i s)) ;
91 uint256 minAmount = U t i l . calcMinAmount (_globa l s , a s s e t , fundsToken ,

a s s e tBa l a n c e) ;

93 IERC20 (a s s e t) . approve (un iswapRouter , a s s e tBa l a n c e) ;

95 address un i swapAsse tForPath = _g loba l s . de f au l tUn i swapPath (a s s e t , fundsToken) ;
96 bool midd l eAs s e t = un i swapAsse tForPath != fundsToken && un i swapAsse tForPath !=

address (0) ;

98 address [] memory path = new address [] (m idd l eAs s e t ? 3 : 2) ;

100 path [0] = a s s e t ;
101 path [1] = midd l eAs s e t ? un i swapAsse tForPath : fundsToken ;

103 i f (m idd l eAs s e t) path [2] = fundsToken ;

105 uint256 [] memory returnAmounts = IUn i swapRoute r (un i swapRoute r) .
swapExactTokensForTokens (

106 a s s e tBa l ance ,
107 minAmount . sub (minAmount . mul (_g loba l s . maxSwapSl ippage ()) . d i v (10000)) ,
108 path ,
109 address (t h i s) ,
110 block . timestamp
111) ;

113 emit ERC20Convers ion (a s s e t , returnAmounts [0] , returnAmounts [path . l ength − 1]) ;
114 }

Listing 3.2: MapleTreasury::convertERC20()

Moreover, it is important to note that for certain non-compliant ERC20 tokens (e.g., USDT),
the transfer() function does not have a return value. However, the IERC20 interface has defined the

15/42 PeckShield Audit Report #: 2021-061

Public

transfer() interface with a bool return value. As a result, the call to transfer() may expect a return
value. With the lack of return value of USDT’s transfer(), the call will be unfortunately reverted.

Because of that, a normal call to transfer() is suggested to use the safe version, i.e., safeTransfer
(), In essence, it is a wrapper around ERC20 operations that may either throw on failure or return
false without reverts. Moreover, the safe version also supports tokens that return no value (and
instead revert or throw on failure). Note that non-reverting calls are assumed to be successful.
To use this library you can add a using SafeERC20 for IERC20. Similarly, there is a safe version
of approve()/transferFrom() as well, i.e., safeApprove()/safeTransferFrom(). We highlight that this
issue is present in a number of contracts, including CollateralLocker, LiquidityLocker, LoanLib, etc.

Recommendation Accommodate the above-mentioned idiosyncrasy about ERC20-related
approve()/transfer()/transferFrom().

Status The issue has been fixed by this commit: 78f46ce.

3.2 Proper Effective Stake Date Calculation

• ID: PVE-002

• Severity: High

• Likelihood: High

• Impact: Medium

• Target: StakeLocker, PoolLib

• Category: Business Logic [14]

• CWE subcategory: CWE-841 [10]

Description

The StakeLocker contract maintains a timestamp, i.e., the effective stake date, for each active staker.
This timestamp value is a weighted representation of the effective single stake date of the user based
on their stake amounts. This value is determined using the following equation:

c o e f f i c i e n t = stakeAmount /(c u r r e n t S t a k e + stakeAmount)
s takeDate = e x i s t i n gS t a k eDa t e + (block . timestamp − e x i s t i n gS t a k eDa t e) ∗ c o e f f i c i e n t

It should be highlighted that the calculation should be performed before the new stakeAmount is
transferred to be included in currentStake. However, this is not followed in current implementation.
To elaborate, we show below the implementation of two relevant routines, i.e., _transfer() and
_updateStakeDate(). Note the call to _updateStakeDate() (line 216) is made after the new stake
amount is transferred to the recipient (line 215).

206 /**
207 @dev Transfer StakerLockerFDTs.
208 @param from Address sending StakeLockerFDTs
209 @param to Address receiving StakeLockerFDTs

16/42 PeckShield Audit Report #: 2021-061

https://github.com/maple-labs/maple-core/commit/78f46cef2c802528ad7470b5919394a6eb8fad47

Public

210 @param amt Amount of FDTs to transfer
211 */
212 f unc t i on _t r an s f e r (address from , address to , uint256 amt) i n t e r n a l o v e r r i d e

canUnstake {
213 _whenProtocolNotPaused () ;
214 _isA l lowed (to) ;
215 super . _ t r a n s f e r (from , to , amt) ;
216 _updateStakeDate (to , amt) ;
217 }

Listing 3.3: StakeLocker :: _transfer()

156 /**
157 @dev Updates information used to calculate unstake delay.
158 @param who Staker who deposited BPTs
159 @param amt Amount of BPTs staker has deposited
160 */
161 f unc t i on _updateStakeDate (address who , uint256 amt) i n t e r n a l {
162 uint256 s tkDate = stakeDate [who] ;
163 i f (s tkDate == 0) {
164 s takeDate [who] = block . timestamp ;
165 } e l s e {
166 uint256 co e f = WAD. mul (amt) . d i v (ba lanceOf (who) + amt) ;
167 s takeDate [who] = stkDate . add (((block . timestamp . sub (s tkDate)) . mul (c o e f)) . d i v (

WAD)) ; // date + (now - stkDate) * coef
168 }
169 }

Listing 3.4: StakeLocker ::_updateStakeDate()

Recommendation Adjust the order inside the affected _transfer() routine. An example revision
is shown as follows:

206 /**
207 @dev Transfer StakerLockerFDTs.
208 @param from Address sending StakeLockerFDTs
209 @param to Address receiving StakeLockerFDTs
210 @param amt Amount of FDTs to transfer
211 */
212 f unc t i on _t r an s f e r (address from , address to , uint256 amt) i n t e r n a l o v e r r i d e

canUnstake {
213 _whenProtocolNotPaused () ;
214 _isA l lowed (to) ;
215 _updateStakeDate (to , amt) ;
216 super . _ t r a n s f e r (from , to , amt) ;
217 }

Listing 3.5: StakeLocker :: _transfer()

Status The issue has been fixed by this commit: 1a26e9c.

17/42 PeckShield Audit Report #: 2021-061

https://github.com/maple-labs/maple-core/commit/1a26e9c1e8fefb64ac047d6d93100eb956ca7fbe

Public

3.3 Inconsistency Between Document and Implementation

• ID: PVE-003

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple Contracts

• Category: Coding Practices [13]

• CWE subcategory: CWE-1041 [1]

Description

There are a few misleading comments embedded among lines of solidity code, which bring unnecessary
hurdles to understand and/or maintain the software.

A few example comments can be found in line 211 of ERC2222::updateFundsReceived(), line 164
of ExtendedFDT::updateFundsReceived(), and line 166 of BasicFDT::updateFundsReceived(). Using the
ERC2222::updateFundsReceived() routine as an example, the preceding function summary indicates
that “the contract computes the delta of the previous and the new funds token balance”. However,
the implemented logic (line 218) indicates it is the delta of the new and the previous funds token
balance.

209 /**
210 * @dev Register a payment of funds in tokens. May be called directly after a

deposit is made.
211 * @dev Calls _updateFundsTokenBalance (), whereby the contract computes the delta of

the previous and the new
212 * funds token balance and increments the total received funds (cumulative) by delta

by calling _registerFunds ()
213 */
214 f unc t i on updateFundsRece i ved () pub l i c v i r t u a l {
215 int256 newFunds = _updateFundsTokenBalance () ;
216
217 i f (newFunds > 0) {
218 _d i s t r i b u t eFund s (newFunds . t oU in t256Sa f e ()) ;
219 }
220 }

Listing 3.6: ERC2222::updateFundsReceived()

Moreover, the function summary of StakeLocker::canUnstake() is not accurate. The canUnstake()

allows for unstaking in the following two conditions: 1) the user is not Pool Delegate and the Pool is
in the Finalized state or 2) The Pool is in Initialized or Deactivated state. The current description
on the second condition is inaccurate.

44 /**
45 @dev canUnstake enables unstaking in the following conditions:
46 1. User is not Pool Delegate and the Pool is in Finalized state.
47 2. User is Pool Delegate and the Pool is in Initialized or Deactivated state.

18/42 PeckShield Audit Report #: 2021-061

Public

48 */
49 mod i f i e r canUnstake () {
50 r equ i r e (
51 (msg . sender != IPoo l (owner) . poo lDe l e ga t e () && IPoo l (owner) . p o o l S t a t e () == 1)

52 I Poo l (owner) . p oo l S t a t e () == 0 IPoo l (owner) . p o o l S t a t e () == 2 ,
53 "StakeLocker:ERR_STAKE_LOCKED"
54) ;
55 _;
56 }

Listing 3.7: StakeLocker :: canUnstake()

Recommendation Ensure the consistency between documents (including embedded comments)
and implementation.

Status The issue has been fixed by this commit: 45896c2.

3.4 Suggested Adherence Of Checks-Effects-Interactions
Pattern

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Time and State [15]

• CWE subcategory: CWE-663 [8]

Description

A common coding best practice in Solidity is the adherence of checks-effects-interactions principle.
This principle is effective in mitigating a serious attack vector known as re-entrancy. Via this
particular attack vector, a malicious contract can be reentering a vulnerable contract in a nested
manner. Specifically, it first calls a function in the vulnerable contract, but before the first instance
of the function call is finished, second call can be arranged to re-enter the vulnerable contract by
invoking functions that should only be executed once. This attack was part of several most prominent
hacks in Ethereum history, including the DAO [22] exploit, and the recent Uniswap/Lendf.Me hack [21].

We notice there is an occasion where the checks-effects-interactions principle is violated. Using
the Loan as an example, the makePayment() function (see the code snippet below) is provided to
externally call a token contract to transfer assets. However, the invocation of an external contract
requires extra care in avoiding the above re-entrancy.

Apparently, the interaction with the external contract (line 351) starts before effecting the update
on internal states (lines 356−363), hence violating the principle. In this particular case, if the external

19/42 PeckShield Audit Report #: 2021-061

https://github.com/maple-labs/maple-core/commit/45896c2

Public

contract has certain hidden logic that may be capable of launching re-entrancy via the same entry
function.

327 f unc t i on makePayment () ex te rna l {
328 _whenProtocolNotPaused () ;
329 _i sVa l i d S t a t e (S ta t e . Ac t i v e) ;
330 (uint256 t o t a l , uint256 p r i n c i p a l , uint256 i n t e r e s t ,) = getNextPayment () ;
331 paymentsRemaining−−;
332 _makePayment (t o t a l , p r i n c i p a l , i n t e r e s t) ;
333 }
334
335 /**
336 @dev Make the full payment for this loan , a.k.a. "calling" the loan. This

requires the borrower to pay a premium.
337 */
338 f unc t i on makeFul lPayment () pub l i c {
339 _whenProtocolNotPaused () ;
340 _i sVa l i d S t a t e (S ta t e . Ac t i v e) ;
341 (uint256 t o t a l , uint256 p r i n c i p a l , uint256 i n t e r e s t) = getFu l lPayment () ;
342 paymentsRemaining = uint256 (0) ;
343 _makePayment (t o t a l , p r i n c i p a l , i n t e r e s t) ;
344 }
345
346 /**
347 @dev Internal function to update the payment variables and transfer funds from

the borrower into the Loan.
348 */
349 f unc t i on _makePayment (uint256 t o t a l , uint256 p r i n c i p a l , uint256 i n t e r e s t) i n t e r n a l {
350
351 _checkVa l idTrans fe rFrom (l o anAs s e t . t r an s f e rF r om (msg . sender , address (t h i s) , t o t a l)

) ;
352
353 // Caching it to reduce the ‘SLOADS ‘.
354 uint256 _paymentsRemaining = paymentsRemaining ;
355 // Update internal accounting variables.
356 i f (_paymentsRemaining == uint256 (0)) {
357 p r i n c i pa lOwed = uint256 (0) ;
358 l o a nS t a t e = Sta t e . Matured ;
359 nextPaymentDue = uint256 (0) ;
360 } e l s e {
361 p r i n c i pa lOwed = pr i n c i pa lOwed . sub (p r i n c i p a l) ;
362 nextPaymentDue = nextPaymentDue . add (paymen t I n t e r v a l S e cond s) ;
363 }
364 . . .
365 }

Listing 3.8: Loan::makePayment()

In the meantime, we should mention that the supported tokens in the protocol do implement
rather standard ERC20 interfaces and their related token contracts are not vulnerable or exploitable
for re-entrancy. However, it is important to take precautions in making use of nonReentrant to block
possible re-entrancy. Note similar issues exist in other contracts, including Pool::deposit() and

20/42 PeckShield Audit Report #: 2021-061

Public

the adherence of checks-effects-interactions best practice is recommended in a number of related
routines, e.g., StakingRewards::stake(), Loan::unwind(), Pool::withdrawFunds() etc.

Recommendation Apply necessary reentrancy prevention by utilizing the nonReentrant modifier
to block possible re-entrancy.

Status The issue has been addressed by ensuring the proper vetting process in place so that
no re-entrancy-capable tokens will be introduced.

3.5 Avoidance Of Zero Amount Transfer

• ID: PVE-005

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [13]

• CWE subcategory: CWE-1041 [1]

Description

A common task in the Maple protocol is to manage the asset flow among different component
contracts (e.g., LiquidityLocker, FundingLocker, and StakeLocker). For gas optimization purposes,
there is no need to make the asset-transferring call if the transferred amount is 0.

To elaborate, we show below the code snippet of ERC2222::withdrawFunds(). This routine allows
a token holder to withdraw all available funds. However, it also makes the transfer request (line 180)
even when the given withdrawableFunds is 0.

174 /**
175 * @dev Withdraws all available funds for a token holder
176 */
177 f unc t i on withdrawFunds () pub l i c v i r t u a l o v e r r i d e {
178 uint256 withdrawab leFunds = _prepareWithdraw () ;

180 r equ i r e (fundsToken . t r a n s f e r (msg . sender , w i thdrawab leFunds) , "FDT:TRANSFER_FAILED
") ;

182 _updateFundsTokenBalance () ;
183 }

Listing 3.9: withdrawFunds()

Note the same issue is also present in other routines, including ERC2222::withdrawFundsOnBehalf()

and FDT::withdrawFunds().

Recommendation Avoid the token transfer() call when the transferred amount is 0.

Status The issue has been fixed by this commit: 04df2cf.

21/42 PeckShield Audit Report #: 2021-061

https://github.com/maple-labs/maple-core/commit/04df2cf

Public

3.6 Improved Sanity Checks For System/Function Parameters

• ID: PVE-006

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: MapleGlobals

• Category: Coding Practices [13]

• CWE subcategory: CWE-1126 [2]

Description

DeFi protocols typically have a number of system-wide parameters that can be dynamically configured
on demand. The Maple protocol is no exception. Specifically, if we examine the MapleGlobals contract,
it has defined a number of protocol-wide risk parameters, such as setInvestorFee and setTreasuryFee.
In the following, we show the corresponding routines that allow for their changes.

224 /**
225 @dev Adjust investorFee (in basis points). Only Governor can call.
226 @param _fee The fee , e.g., 50 = 0.50%
227 */
228 f unc t i on s e t I n v e s t o r F e e (uint256 _fee) pub l i c i sGo v e r n o r {
229 i n v e s t o r F e e = _fee ;
230 emit Globa l sParamSet ("INVESTOR_FEE" , _fee) ;
231 }
232
233 /**
234 @dev Adjust treasuryFee (in basis points). Only Governor can call.
235 @param _fee The fee , e.g., 50 = 0.50%
236 */
237 f unc t i on s e tT r e a su r yFe e (uint256 _fee) pub l i c i sGo v e r n o r {
238 t r e a s u r y F e e = _fee ;
239 emit Globa l sParamSet ("TREASURY_FEE" , _fee) ;
240 }

Listing 3.10: MapleGlobals:: setInvestorFee () and MapleGlobals:: setTreasuryFee()

These parameters define various aspects of the protocol operation and maintenance and need
to exercise extra care when configuring or updating them. Our analysis shows the update logic on
these parameters can be improved by applying more rigorous sanity checks. Based on the current
implementation, certain corner cases may lead to an undesirable consequence. For example, an un-
likely mis-configuration of investorFee may charge unreasonably high fee in the fundLoan() operation,
hence incurring cost to borrowers or hurting the adoption of the protocol.

Recommendation Validate any changes regarding these system-wide parameters to ensure they
fall in an appropriate range. If necessary, also consider emitting relevant events for their changes.

Status The issue has been fixed by this commit: b6b4946.

22/42 PeckShield Audit Report #: 2021-061

https://github.com/maple-labs/maple-core/commit/b6b4946

Public

3.7 Better Handling of Privilege Transfers

• ID: PVE-007

• Severity: Informational

• Likelihood: Low

• Impact: N/A

• Targets: MapleGlobals

• Category: Security Features [11]

• CWE subcategory: CWE-282 [4]

Description

Maple implements a rather basic access control mechanism that allows a privileged account, i.e.,
governor, to be granted exclusive access to typically sensitive functions (e.g., the setting of oracle and
fee parameters). Because of the privileged access and the implications of these sensitive functions,
the governor account is essential for the protocol-level safety and operation. In the following, we
elaborate with the governor account.

Within the governing contract MapleGlobals, a specific function, i.e., setGovernor(), is provided
to allow for possible governor updates. However, current implementation achieves its goal within
a single transaction. This is reasonable under the assumption that the _newGovernor parameter is
always correctly provided. However, in the unlikely situation, when an incorrect _newGovernor is
provided, the contract owner may be forever lost, which might be devastating for Maple operation
and maintenance.

As a common best practice, instead of achieving the governor update within a single transaction,
it is suggested to split the operation into two steps. The first step initiates the governor update
intent and the second step accepts and materializes the update. Both steps should be executed in
two separate transactions. By doing so, it can greatly alleviate the concern of accidentally transferring
the contract governor to an uncontrolled address. In other words, this two-step procedure ensures
that a governor public key cannot be nominated unless there is an entity that has the corresponding
private key. This is explicitly designed to prevent unintentional errors in the governor transfer process.

278 /**
279 @dev Set a new Governor. Only Governor can call.
280 @param _newGovernor Address of new Governor
281 */
282 f unc t i on s e tGove rno r (address _newGovernor) pub l i c i sGo v e r n o r {
283 r equ i r e (_newGovernor != address (0) , "MapleGlobals:ZERO_ADDRESS_GOVERNOR") ;
284 gove rno r = _newGovernor ;
285 emit G l oba l sAdd r e s s S e t ("GOVERNOR" , _newGovernor) ;
286 }

Listing 3.11: MapleGlobals::setGovernor()

23/42 PeckShield Audit Report #: 2021-061

Public

Recommendation Implement a two-step approach for governor update (or transfer): setGovernor

() and acceptGovernor().

Status The issue has been fixed by this commit: 963ca89.

3.8 Possible Front-Running For Reduced Stake Requirements

• ID: PVE-008

• Severity: High

• Likelihood: Medium

• Impact: High

• Target: Pool

• Category: Time and State [16]

• CWE subcategory: CWE-682 [9]

Description

Pool Delegates are in charge of managing the Pool’s liquidity. In order to open a Pool, the Pool

Delegate is required to be whitelisted by MapleDAO. After that, the Pool Delegate must stake at least
the minimum amount of BPTs required to meet the level of Pool coverage specified by MapleDAO.
Once the Pool has been finalized, the Pool Delegate can start earning a portion of the interest earned
using the pool capital as well as the investorFee (Section 3.6).

In the following, we show the Pool::finalize() routine, which can only be invoked by the approved
Pool Delegate to open the Pool. This routine ensures that the Pool Delegate has the required minimum
amount of BPTs staked in StakeLocker.

150 f unc t i on f i n a l i z e () ex te rna l {
151 _whenProtocolNotPaused () ;
152 _i sVa l i d S t a t e (S ta t e . I n i t i a l i z e d) ;
153 _i sVa l i dDe l e g a t e () ;
154 (, , bool s t ak eP r e s en t , ,) = g e t I n i t i a l S t a k eR e q u i r em e n t s () ;
155 r equ i r e (s t ak eP r e s en t , "Pool:INSUFFICIENT_STAKE") ;
156 poo l S t a t e = Sta t e . F i n a l i z e d ;
157 emit PoolStateChanged (poo l S t a t e) ;
158 }

Listing 3.12: Pool :: finalize ()

However, it comes to our attention that the pool share requirement is computed by calling bPool

.calcPoolInGivenSingleOut() (line 170). As the trading pool may be manipulated and an imbalanced
pool can be crafted to lead to a much smaller staking requirement from the (manipulated) assessment.

153 f unc t i on ge tPoo lSha r e sRequ i r ed (
154 address _bPool ,
155 address l i q u i d i t y A s s e t ,
156 address s t a k e r ,
157 address s t akeLocke r ,

24/42 PeckShield Audit Report #: 2021-061

https://github.com/maple-labs/maple-core/commit/963ca89

Public

158 uint256 l i q u i d i t yA s s e tAmoun tRequ i r e d
159) pub l i c view re tu rn s (uint256 , uint256) {
160
161 IBPool bPool = IBPool (_bPool) ;
162
163 uint256 tokenBalanceOut = bPool . g e tBa l ance (l i q u i d i t y A s s e t) ;
164 uint256 tokenWeightOut = bPool . ge tDenorma l i zedWeight (l i q u i d i t y A s s e t) ;
165 uint256 poo lSupp l y = bPool . t o t a l S u p p l y () ;
166 uint256 t o t a lWe i gh t = bPool . ge tTota lDenorma l i z edWe ight () ;
167 uint256 swapFee = bPool . getSwapFee () ;
168
169 // Fetch amount of BPTs required to burn to receive liquidityAssetAmountRequired
170 uint256 poo lAmount InRequ i red = bPool . c a l cPoo l I nG i v e nS i n g l eOu t (
171 tokenBalanceOut ,
172 tokenWeightOut ,
173 poo lSupp ly ,
174 to ta lWe igh t ,
175 l i q u i d i t yA s s e tAmoun tRequ i r e d ,
176 swapFee
177) ;
178
179 // Fetch amount staked in stakeLocker by staker
180 uint256 s t a k e rBa l a n c e = IERC20 (s t a k eLock e r) . ba lanceOf (s t a k e r) ;
181
182 re tu rn (poo lAmount InRequi red , s t a k e rBa l a n c e) ;
183 }

Listing 3.13: PoolLib :: getPoolSharesRequired()

It is important to emphasize this issue may occur in other contexts. Specifically, in a similar
sandwich-based attack against handleDefault()/exitswapExternAmountOut(), the protocol may gain
less or loss more due to manipulated trade price. For example, a malicious sandwich attack may
foil the above validation with minimum amount of BPTs to prevent the pool from being final-
ized. Also, a number of other routines, i.e., BPTVal()/getSwapOutValue()/getSwapOutValueLocker()/

getPoolSharesRequired(), are similarly affected due to the external DEX interaction.
Note that this is a common issue plaguing current AMM-based DEX solutions. Specifically, a

large trade may be sandwiched by a preceding sell to reduce the market price, and a tailgating buy-
back of the same amount plus the trade amount. Such sandwiching behavior unfortunately causes
a loss and brings a smaller return as expected to the trading user because the swap rate is lowered
by the preceding sell. As a mitigation, we may consider measuring the stability of involved pools or
relying on a trustworthy oracle. Nevertheless, we need to acknowledge that this is largely inherent
to current blockchain infrastructure and there is still a need to continue the search efforts for an
effective defense.

Recommendation Develop an effective mitigation to the above front-running attack to ensure
Pool Delegate is sufficiently staked before opening up a Pool.

25/42 PeckShield Audit Report #: 2021-061

Public

Status The issue has been fixed by this commit: ee820b1. The team also clarifies that the
Pool Delegate entity is trusted in current protocol design.

3.9 Improved Precision By Multiplication And Division
Reordering

• ID: PVE-009

• Severity: Low

• Likelihood: Medium

• Impact: Low

• Target: Multiple Contracts

• Category: Numeric Errors [17]

• CWE subcategory: CWE-190 [3]

Description

SafeMath is a widely-used Solidity math library that is designed to support safe math operations by
preventing common overflow or underflow issues when working with uint256 operands. While it
indeed blocks common overflow or underflow issues, the lack of float support in Solidity may
introduce another subtle, but troublesome issue: precision loss. In this section, we examine one
possible precision loss source that stems from the different orders when both multiplication (mul) and
division (div) are involved.

In particular, we use the DebtLocker::calcAllotment() as an example. This routine is used to
calculate the resulting allotment of a particular claim.

38 f unc t i on c a l cA l l o tmen t (uint256 newAmt , uint256 totalNewAmt , uint256 t o t a l C l a im)
i n t e r n a l pure re tu rn s (uint256) {

39 re tu rn newAmt . mul (WAD) . d i v (totalNewAmt) . mul (t o t a l C l a im) . d i v (WAD) ;
40 }

Listing 3.14: DebtLocker::calcAllotment()

We notice the calculation of the resulting allotment (line 39) involves mixed multiplication and
devision. For improved precision, it is better to calculate the multiplication before the division, i.e.,
newAmt.mul(totalClaim).div(totalNewAmt).mul(totalClaim). Similarly, the calculation of calcMinAmount
() in Util contract (lines 26−29) can be accordingly adjusted. Note that the resulting precision loss
may be just a small number, but it plays a critical role when certain boundary conditions are met.
And it is always the preferred choice if we can avoid the precision loss as much as possible. Note the
Util::calcMinAmount() routine can be similarly improved.

Recommendation Revise the above calculations to better mitigate possible precision loss.

Status The issue has been fixed by this commit: c24515a.

26/42 PeckShield Audit Report #: 2021-061

https://github.com/maple-labs/maple-core/commit/ee820b1
https://github.com/maple-labs/maple-core/commit/c24515a

Public

3.10 Simplification of PoolLib::updateDepositDate()

• ID: PVE-010

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: PoolLib, StakeLocker

• Category: Numeric Errors [17]

• CWE subcategory: CWE-190 [3]

Description

As mentioned in Section 3.9, SafeMath is a widely-used Solidity math library that is designed to support
safe math operations by preventing common overflow or underflow issues when working with uint256

operands. While it indeed blocks common overflow or underflow issues, the lack of float support in
Solidity may introduce the subtle, but troublesome issue of precision loss.

In the following, we show the PoolLib::updateDepositDate() routine. This routine is designed to
compute and update the effective deposit date for the depositing user. We notice that the current
implementation introduces the scaling factor WAD to compute an internal coefficient. However, by
better re-arrangement of the calculation order, we can avoid the use the scaling factor without any
precision loss.

361 /**
362 @dev Update the effective deposit date based on how much new capital has been

added.
363 If more capital is added , the depositDate moves closer to the current

timestamp.
364 @param depositDate Weighted timestamp representing effective deposit date
365 @param balance Balance of PoolFDT tokens of user
366 @param amt Total deposit amount
367 @param who Address of user depositing
368 */
369 f unc t i on updateDepos i tDate (mapping (address => uint256) s torage depos i tDate , uint256

balance , uint256 amt , address who) i n t e r n a l {
370 i f (d epo s i tDa t e [who] == 0) {
371 depo s i tDa t e [who] = block . timestamp ;
372 } e l s e {
373 uint256 depDate = depo s i tDa t e [who] ;
374 uint256 co e f = (WAD. mul (amt)) . d i v (balance + amt) ;
375 depo s i tDa t e [who] = (depDate . mul (WAD) . add ((block . timestamp . sub (depDate)) . mul (

c o e f))) . d i v (WAD) ; // depDate + (now - depDate) * coef
376 }
377 }

Listing 3.15: PoolLib :: updateDepositDate()

Specifically, the deposit date can be computed as follows:

361 /**

27/42 PeckShield Audit Report #: 2021-061

Public

362 @dev Update the effective deposit date based on how much new capital has been
added.

363 If more capital is added , the depositDate moves closer to the current
timestamp.

364 @param depositDate Weighted timestamp representing effective deposit date
365 @param balance Balance of PoolFDT tokens of user
366 @param amt Total deposit amount
367 @param who Address of user depositing
368 */
369 f unc t i on updateDepos i tDate (mapping (address => uint256) s torage depos i tDate , uint256

balance , uint256 amt , address who) i n t e r n a l {
370 i f (d epo s i tDa t e [who] == 0) {
371 depo s i tDa t e [who] = block . timestamp ;
372 } e l s e {
373 uint256 depDate = depo s i tDa t e [who] ;
374 uint256 dTime = block . timestamp . sub (depDate) ;
375 depo s i tDa t e [who] = depDate . add (dTime . mul (amt) . d i v (balance + amt)) ; //

depDate + (now - depDate) * (amt / (balance + amt))
376 }
377 }

Listing 3.16: PoolLib :: updateDepositDate()

Note a similar optimization is also present in StakeLocker::_updateStakeDate().

Recommendation Revise the aforementioned routines with an optimized version.

Status The issue has been fixed by this commit: 021912f.

3.11 Timely updateFundsReceived() in Loan Management

• ID: PVE-011

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Loan

• Category: Business Logic [14]

• CWE subcategory: CWE-841 [10]

Description

The Loan contract provides a number of core routines for supplying/borrowing users to interact with,
including unwind(), drawdown(), triggerDefault(), makePayment(), makeFullPayment(), and etc. To
facilitate the execution of each core routine, Maple adopts the FundsDistributionToken (FDT) as the
key for proper accounting and attribution. Note that FDT is compliant with ERC20 and additionally
implements the ERC2222 token standard.

During the entire lifecycle of a loan, there are five different states: Live, Active, Matured, Expired,
and Liquidated. In the following, we examine the unwind() routine that transitions the loan from Live

28/42 PeckShield Audit Report #: 2021-061

https://github.com/maple-labs/maple-core/commit/021912f

Public

to Expired.

191 /**
192 @dev If the borrower has not drawn down on the Loan past the drawdown grace

period , return capital to Loan ,
193 where it can be claimed back by LoanFDT holders.
194 */
195 f unc t i on unwind () ex te rna l {
196 _whenProtocolNotPaused () ;
197 _i sVa l i d S t a t e (S ta t e . L i v e) ;

199 // Update accounting for claim(), transfer funds from FundingLocker to Loan
200 e x c e s sRe tu rn ed += LoanLib . unwind (l oanAs se t , supe rFac to r y , f und ingLocke r ,

c r e a t edAt) ;

202 // Transition state to Expired
203 l o a nS t a t e = Sta t e . Exp i r ed ;
204 }

Listing 3.17: Loan::unwind()

The unwind() implements a rather straightforward logic by returning the capital to the loan

contract if the borrower has not drawn down on the loan past the drawdown grace period. However,
it also comes to our attention it does not timely updating the LoanFDT accounting with received
capital back to the loan. As a result, if a lender attempts to withdrawFunds(), the funds accounted
for may not reflect the just-returned capital.

Note the maple-token repository contains the MPL protocol token implementation that shares the
similar issue in the ERC2222::withdrawFunds() /ERC2222::withdrawFundsOnBehalf() routines.

Recommendation Timely invoke updateFundsReceived() whenever any fund is returned back
to loan from possible unwind(), drawdown(), and makePayment()/makeFullPayment(), or triggerDefault

(). An example revision to the above code snippet is shown below.

191 /**
192 @dev If the borrower has not drawn down on the Loan past the drawdown grace

period , return capital to Loan ,
193 where it can be claimed back by LoanFDT holders.
194 */
195 f unc t i on unwind () ex te rna l {
196 _whenProtocolNotPaused () ;
197 _i sVa l i d S t a t e (S ta t e . L i v e) ;

199 // Update accounting for claim(), transfer funds from FundingLocker to Loan
200 e x c e s sRe tu rn ed += LoanLib . unwind (l oanAs se t , supe rFac to r y , f und ingLocke r ,

c r e a t edAt) ;

202 updateFundsRece i ved () ;

204 // Transition state to Expired
205 l o a nS t a t e = Sta t e . Exp i r ed ;

29/42 PeckShield Audit Report #: 2021-061

Public

206 }

Listing 3.18: Loan::unwind()

Status The issue has been fixed by this commit: 84a1989.

3.12 Lack Of Proper Enforcement Of fundingPeriodSeconds

• ID: PVE-012

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Loan

• Category: Business Logic [14]

• CWE subcategory: CWE-841 [10]

Description

As mentioned in Section 3.11, during the entire lifecycle of a loan, there are five different states:
Live, Active, Matured, Expired, and Liquidated. We have so far examined the unwind() routine that
transitions the loan from Live to Expired. In the following, we examine another routine drawdown()

that transitions the loan from Live to Active.
To elaborate, we show below the drawdown() implementation. It comes to our attention that once

a loan is funded (i.e., in Live state), there is a time period called fundingPeriodSeconds that allows
the intended borrower to draw down on their loan. Our analysis shows that current implementation
does not enforce the logic in disallowing the loan drawdown after the fundingPeriodSeconds period
expires. Note that the fundingPeriodSeconds is specified when the loan contract is instantiated.

210 f unc t i on drawdown (uint256 amt) ex te rna l {
211 _whenProtocolNotPaused () ;
212 _isVa l i dBo r rowe r () ;
213 _i sVa l i d S t a t e (S ta t e . L i v e) ;
214 I G l o b a l s g l o b a l s = _g loba l s (s up e rFa c t o r y) ;

216 I Fund ingLocke r _fund ingLocker = IFund ingLocke r (f und i ngLocke r) ;

218 r equ i r e (amt >= requestAmount , "Loan:AMT_LT_MIN_RAISE") ;
219 r equ i r e (amt <= _getFund ingLockerBa lance () , "Loan:AMT_GT_FUNDED_AMT") ;

221 // Update the principal owed and drawdown amount for this loan.
222 p r i n c i pa lOwed = amt ;
223 drawdownAmount = amt ;

225 l o a nS t a t e = Sta t e . Ac t i v e ;

227 // Transfer the required amount of collateral for drawdown from Borrower to
CollateralLocker.

30/42 PeckShield Audit Report #: 2021-061

https://github.com/maple-labs/maple-core/commit/84a1989

Public

228 _checkVa l idTrans fe rFrom (c o l l a t e r a l A s s e t . t r a n s f e rF r om (borrower , c o l l a t e r a l L o c k e r ,
c o l l a t e r a lRequ i r edFo rDrawdown (amt))) ;

230 // Transfer funding amount from FundingLocker to Borrower , then drain remaining
funds to Loan.

231 uint256 t r e a s u r y F e e = g l o b a l s . t r e a s u r y F e e () ;
232 uint256 i n v e s t o r F e e = g l o b a l s . i n v e s t o r F e e () ;

234 address t r e a s u r y = g l o b a l s . map leTreasury () ;

236 f e ePa i d = amt . mul (i n v e s t o r F e e) . d i v (10000) ; // Update fees paid for
claim ()

237 uint256 t r easuryAmt = amt . mul (t r e a s u r y F e e) . d i v (10000) ; // Calculate amt to send
to MapleTreasury

239 _trans f e rFunds (_fundingLocker , t r e a s u r y , t r easuryAmt) ;
// Send treasuryFee directly to MapleTreasury

240 _trans f e rFunds (_fundingLocker , address (t h i s) , f e ePa i d) ;
// Transfer ‘feePaid ‘ to the this i.e Loan

contract
241 _trans f e rFunds (_fundingLocker , bor rower , amt . sub (t reasuryAmt) . sub (f e ePa i d))

; // Transfer drawdown amount to Borrower

243 // Update excessReturned for claim()
244 e x c e s sRe tu rn ed = _getFund ingLockerBa lance () ;

246 // Drain remaining funds from FundingLocker (amount equal to excessReturned)
247 r equ i r e (_fund ingLocker . d r a i n () , "Loan:DRAIN") ;

249 _emi tBa l anceUpda t eEven tFo rCo l l a t e r a l Locke r () ;
250 _emitBa lanceUpdateEventForFund ingLocker () ;
251 _emitBalanceUpdateEventForLoan () ;

253 emit BalanceUpdated (t r e a s u r y , address (l o anAs s e t) , l o anAs s e t . ba lanceOf (t r e a s u r y))
;

255 emit Drawdown (amt) ;
256 }

Listing 3.19: Loan::drawdown()

Recommendation Honor the fundingPeriodSeconds parameter that is specified when the loan

contract is instantiated and ensure the loan drawdown occurs within the given time period.

Status The issue has been resolved and the team clarifies that it is purposely not enforced in
the drawdown() function in the case that the funders wanted to give the borrower some extra time to
draw down.

31/42 PeckShield Audit Report #: 2021-061

Public

3.13 Redundant Code Removal

• ID: PVE-013

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Pool

• Category: Coding Practices [13]

• CWE subcategory: CWE-563 [7]

Description

Maple makes good use of a number of reference contracts, such as ERC20, SafeERC20, SafeMath, and
Pausable, to facilitate its code implementation and organization. For example, the Pool smart contract
has so far imported at least five reference contracts. However, we observe the inclusion of certain
unused code or the presence of unnecessary redundancies that can be safely removed.

For example, if we examine closely the Pool::constructor() implementation, there is an internal
helper routine for the instantiation of a new StakeLocker (line 125). This routine can be optimized
away.

85 cons t ruc to r (
86 address _poolDelegate ,
87 address _ l i q u i d i t yA s s e t ,
88 address _stakeAsset ,
89 address _slFacto ry ,
90 address _l lFac to r y ,
91 uint256 _stakingFee ,
92 uint256 _delegateFee ,
93 uint256 _l i qu i d i t yCap ,
94 s t r i n g memory name ,
95 s t r i n g memory symbol
96) PoolFDT(name , symbol) pub l i c {
97 r equ i r e (_g loba l s (msg . sender) . i s V a l i d L o anA s s e t (_ l i q u i d i t y A s s e t) , "Pool:

INVALID_LIQ_ASSET") ;
98 r equ i r e (_ l i q u i d i t yCap != uint256 (0) , "Pool:

INVALID_CAP") ;
99

100 // NOTE: Max length of this array would be 8, as thats the limit of assets in a
balancer pool

101 address [] memory tokens = IBPool (_stakeAsset) . g e tF i na lToken s () ;
102
103 uint256 i = 0 ;
104 bool v a l i d = f a l s e ;
105
106 // Check that one of the assets in balancer pool is liquidityAsset
107 whi le (i < tokens . l ength && ! v a l i d) { v a l i d = tokens [i] == _ l i q u i d i t y A s s e t ; i ++;

}
108
109 r equ i r e (v a l i d , "Pool:INVALID_STAKING_POOL") ;

32/42 PeckShield Audit Report #: 2021-061

Public

110
111 // Assign variables relating to liquidityAsset
112 l i q u i d i t y A s s e t = IERC20 (_ l i q u i d i t y A s s e t) ;
113 l i q u i d i t y A s s e t D e c im a l s = ERC20(_ l i q u i d i t y A s s e t) . d e c ima l s () ;
114
115 // Assign state variables
116 s t a k eA s s e t = _stakeAsset ;
117 s l F a c t o r y = _s lFac to r y ;
118 poo lDe l e ga t e = _poo lDe legate ;
119 s t a k i n gFe e = _stak ingFee ;
120 de l e g a t eF e e = _de legateFee ;
121 s up e rFa c t o r y = msg . sender ;
122 l i q u i d i t y C a p = _ l i q u i d i t yCap ;
123
124 // Initialize the LiquidityLocker and StakeLocker
125 s t a k eLock e r = c r e a t eS t a k eLo ck e r (_stakeAsset , _s lFacto ry , _ l i q u i d i t yA s s e t ,

_g loba l s (msg . sender)) ;
126 l i q u i d i t y L o c k e r = address (I L i q u i d i t y L o c k e r F a c t o r y (_ l l F a c t o r y) . newLocker (

_ l i q u i d i t y A s s e t)) ;
127
128 // Withdrawal penalty default settings
129 p r i n c i p a l P e n a l t y = 500 ;
130 pena l t yDe l a y = 30 days ;
131 l o c kupPe r i od = 90 days ;
132
133 emit PoolStateChanged (poo l S t a t e) ;
134 }
135
136 /**
137 @dev Deploys and assigns a StakeLocker for this Pool (only used once in

constructor).
138 @param _stakeAsset Address of the asset used for staking
139 @param _slFactory Address of the StakeLocker factory used for instantiation
140 @param _liquidityAsset Address of the liquidity asset , required when burning

_stakeAsset
141 @param globals IGlobals for Maple Globals contract
142 */
143 f unc t i on c r e a t eS t a k eLo ck e r (address _stakeAsset , address _slFacto ry , address

_ l i q u i d i t yA s s e t , I G l o b a l s g l o b a l s) p r i v a t e r e tu rn s (address) {
144 r equ i r e (IBPool (_stakeAsset) . i sBound (g l o b a l s . mpl ()) && IBPool (_stakeAsset) .

i s F i n a l i z e d () , "Pool:INVALID_BALANCER_POOL") ;
145 re tu rn I S t a k eLo ck e rFa c t o r y (_s lFac to r y) . newLocker (_stakeAsset , _ l i q u i d i t y A s s e t) ;
146 }

Listing 3.20: Pool ::constructor()

In particular, the validation of IBPool(_stakeAsset).getFinalTokens() (line 101) has already guar-
anteed the BPool is finalized. In other words, the validation on IBPool(_stakeAsset).isFinalized()

(line 144) becomes redundant and thus can be safely removed.

Recommendation Consider the removal of the redundant code with a simplified, consistent

33/42 PeckShield Audit Report #: 2021-061

Public

implementation.

Status The issue has been fixed by this commit: e80e0ef.

3.14 Incompatibility with Deflationary/Rebasing Tokens

• ID: PVE-014

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple Contracts

• Category: Business Logic [14]

• CWE subcategory: CWE-841 [10]

Description

In Maple, the Pool contract is designed to be the main entry for interaction with supplying users. In
particular, one entry routine, i.e., deposit(), accepts asset transfer-in and mints the corresponding LP

tokens to represent the depositor’s share in the lending pool. Naturally, the contract implements a
number of low-level helper routines to transfer assets into or out of Maple. These asset-transferring
routines work as expected with standard ERC20 tokens: namely the vault’s internal asset balances
are always consistent with actual token balances maintained in individual ERC20 token contract.

213 /**
214 @dev Liquidity providers can deposit liquidityAsset into the LiquidityLocker ,

minting FDTs.
215 @param amt Amount of liquidityAsset to deposit
216 */
217 f unc t i on d e p o s i t (uint256 amt) ex te rna l {
218 _whenProtocolNotPaused () ;
219 _i sVa l i d S t a t e (S ta t e . F i n a l i z e d) ;
220 r equ i r e (i sD epo s i tA l l owed (amt) , "Pool:LIQUIDITY_CAP_HIT") ;
221 r equ i r e (l i q u i d i t y A s s e t . t r a n s f e rF r om (msg . sender , l i q u i d i t y L o c k e r , amt) , "Pool:

DEPOSIT_TRANSFER_FROM") ;
222 uint256 wad = _toWad(amt) ;

224 Poo lL ib . updateDepos i tDate (depos i tDate , ba lanceOf (msg . sender) , wad , msg . sender) ;
225 _mint (msg . sender , wad) ;
226 _emitBalanceUpdatedEvent () ;
227 }

Listing 3.21: Pool :: deposit ()

However, there exist other ERC20 tokens that may make certain customizations to their ERC20
contracts. One type of these tokens is deflationary tokens that charge a certain fee for every transfer

() or transferFrom(). (Another type is rebasing tokens such as YAM.) As a result, this may not meet the
assumption behind these low-level asset-transferring routines. In other words, the above operations,

34/42 PeckShield Audit Report #: 2021-061

https://github.com/maple-labs/maple-core/commit/e80e0ef

Public

such as deposit(), may introduce unexpected balance inconsistencies when comparing internal asset
records with external ERC20 token contracts.

One possible mitigation is to measure the asset change right before and after the asset-transferring
routines. In other words, instead of expecting the amount parameter in transfer() or transferFrom()
will always result in full transfer, we need to ensure the increased or decreased amount in the pool
before and after the transfer() or transferFrom() is expected and aligned well with our operation.

Another mitigation is to regulate the set of ERC20 tokens that are permitted into Maple for
borrowing/lending. In fact, Maple is indeed in the position to effectively regulate the set of assets
that can be listed. Meanwhile, there exist certain assets that may exhibit control switches that can
be dynamically exercised to convert into deflationary.

Recommendation If current codebase needs to support deflationary tokens, it is necessary to
check the balance before and after the transfer()/transferFrom() call to ensure the book-keeping
amount is accurate. This support may bring additional gas cost. Also, keep in mind that certain
tokens may not be deflationary for the time being. However, they could have a control switch that
can be exercised to turn them into deflationary tokens. One example is the widely-adopted USDT.

Status This issue has been acknowledged by the team. And the team has a proper vetting
process in place to prevent deflationary/rebasing tokens from being listed in the protocol.

3.15 Bypass of lockupPeriod in Pool::withdraw()

• ID: PVE-001

• Severity: High

• Likelihood: High

• Impact: Medium

• Target: Pool

• Category: Business Logic [14]

• CWE subcategory: CWE-841 [10]

Description

By design, the Maple protocol will generate and collect fees that are attributed to liquidity providers
(LPs). Also, due to the fact that the interest earned by the Maple protocol is accrued in discrete large
payments of interest rather that steady streams of income, it is important to prevent any possibility
for malicious LPs to exploit the interest distribution mechanism in Pools.

With that, the Maple protocol requires LPs to go through a Pool Lockup Period that specifies if
a user has not waited a specified period of time after deposit, the user cannot withdraw. Note the
current protocol specifies 90 days as the Pool Lockup Period. For each LP account, the associated
lockup period is recorded as [depositDate[account], depositDate[account].add(lockupPeriod)].

35/42 PeckShield Audit Report #: 2021-061

Public

To elaborate, we show below the Pool::withdraw() routine that properly enforces the requirement
of require(depositDate[msg.sender].add(lockupPeriod)<= block.timestamp) (line 238). However, it
comes to our attention that the poolFDT token lacks the implementation to properly keep track of
the depositDate state when the token is being transferred! As a result, a LP can completely avoid
the lockup period by simply transferring the assets to another new account and withdrawing the
transferred funds from the new account without penalty!

233 f unc t i on withdraw (uint256 amt) ex te rna l {
234 _whenProtocolNotPaused () ;
235 uint256 wad = _toWad(amt) ;
236 uint256 fdtAmt = t o t a l S u p p l y () == wad && amt > 0 ? wad − 1 : wad ; // If last

withdraw , subtract 1 wei to maintain FDT accounting
237 r equ i r e (ba lanceOf (msg . sender) >= fdtAmt , "Pool:USER_BAL_LT_AMT") ;
238 r equ i r e (d epo s i tDa t e [msg . sender] . add (l o c kupPe r i o d) <= block . timestamp , "Pool:

FUNDS_LOCKED") ;
239
240 uint256 a l l o c a t e d I n t e r e s t = withdrawab leFundsOf (msg . sender) ;

// FDT accounting interest
241 uint256 r e c o g n i z e d L o s s e s = r e c o g n i z a b l e L o s s e sO f (msg . sender) ;

// FDT accounting losses
242 uint256 p r i P e n a l t y = p r i n c i p a l P e n a l t y . mul (amt) . d i v (10000) ;

// Calculate flat principal penalty
243 uint256 t o tP e n a l t y = ca l cWi thd rawPena l t y (a l l o c a t e d I n t e r e s t . add (p r i P e n a l t y

) , msg . sender) ; // Calculate total penalty
244
245 // Amount that is due after penalties and realized losses are accounted for.
246 // Total penalty is distributed to other LPs as interest , recognizedLosses are

absorbed by the LP.
247 uint256 due = amt . sub (t o tP en a l t y) . sub (r e c o g n i z e d L o s s e s) ;
248
249 _burn (msg . sender , fdtAmt) ; // Burn the corresponding FDT balance
250 r e c o g n i z e L o s s e s () ; // Update loss accounting for LP , decrement ‘

bptShortfall ‘
251 withdrawFunds () ; // Transfer full entitled interest , decrement ‘

interestSum ‘
252
253 i n t e r e s tSum = in t e r e s tSum . add (t o tP en a l t y) ; // Update the ‘interestSum ‘ with the

penalty amount
254 updateFundsRece i ved () ; // Update the ‘pointsPerShare ‘ using

this as fundsTokenBalance is incremented by ‘totPenalty ‘
255
256 // Transfer amt - totPenalty - recognizedLosses
257 r equ i r e (I L i q u i d i t y L o c k e r (l i q u i d i t y L o c k e r) . t r a n s f e r (msg . sender , due) , "Pool::

WITHDRAW_TRANSFER") ;
258
259 _emitBalanceUpdatedEvent () ;
260 }

Listing 3.22: Pool ::withdraw()

Recommendation Properly record the depositDate when a LP holder transfers the poolFDT

36/42 PeckShield Audit Report #: 2021-061

Public

token.

Status The issue has been fixed by this commit: b0b4815.

3.16 Suggested Addition of rescueToken()

• ID: PVE-016

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple Contracts

• Category: Business Logic [14]

• CWE subcategory: CWE-841 [10]

Description

By design, the Maple protocol has developed a number of lockers that hold various types of assets.
From past experience with current popular DeFi protocols, e.g., YFI/Curve, we notice that there is al-
ways non-trivial possibilities that non-related tokens may be accidentally sent to the pool contract(s).
To avoid unnecessary loss of Maple users, we suggest to add necessary support of rescuing tokens
accidentally sent to the contract. This is a design choice for the benefit of protocol users.

Recommendation Add the support of rescuing tokens accidentally sent to the contract.

Status This issue has been resolved and the team has implemented a rescueToken() solution
for Pool and Loan in the following commit: e01199c.

3.17 Potential Collusion Between PoolDelegate And Borrowers

• ID: PVE-017

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: LendingPoolConfigurator

• Category: Time and State [12]

• CWE subcategory: CWE-362 [6]

Description

The current protocol is designed with an implicit trust on the approved Pool Delegates. However,
there is still a need to properly verify the operations to protect user funds. Specifically, as mentioned
in Section 3.8, Pool Delegates are in charge of managing the Pool’s liquidity. In order to open a
Pool, the Pool Delegate is required to be whitelisted by MapleDAO. After that, the Pool Delegate must
stake at least the minimum amount of BPTs required to meet the level of Pool coverage specified

37/42 PeckShield Audit Report #: 2021-061

https://github.com/maple-labs/maple-core/commit/b0b4815
https://github.com/maple-labs/maple-core/commit/e01199c

Public

by MapleDAO. Once the Pool has been finalized, the Pool Delegate can start earning a portion of the
interest earned using the pool capital as well as the investorFee.

The Borrowers can request capital from the platform by instantiating a Loan contract with the
intended loan terms. As the manager of the pool, the Pool Delegate is supposed to perform due
diligence and agree terms with Borrowers. Once these loan terms are agreed between the Borrower

and the Pool Delegate, the Borrower can withdraw the requested funds for a fixed term, at a fixed
rate, and at a fixed collateralization level.

However, it brings up a possible collusion situation where the Borrower is an accomplice. In other
words, the Borrower can simply create a loan that attempts to request all funds available in the pool
and the loan request can then be funded by the Pool Delegate. Note in this collusion situation, by
current protocol design, the only stake for the Pool Delegate is the amount of BPTs required to meet
the level of Pool coverage (specified by MapleDAO). Moreover, though the total liquidity in the pool
may be limited by liquidityCap, this liquidityCap parameter can be adjusted by the Pool Delegate.

Recommendation Revise the current protocol design to defend against the above collusion
situation.

Status This issue has been resolved. As mentioned in Section 3.8, current protocol, by design,
considers Pool Delegates are trusted actors.

3.18 Revisited Assumption on Trusted Governance

• ID: PVE-018

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: MapleGolbals

• Category: Security Features [11]

• CWE subcategory: CWE-287 [5]

Description

In the Maple protocol, the governance account plays a critical role in governing and regulating the
system-wide operations (e.g., factory contract whitelisting, oracle addition, fee adjustment, and
parameter setting). It also has the privilege to regulate or govern the flow of assets for borrowing
and lending among the involved components, i.e., LiquidityLocker, FundlingLocker, and StakeLocker.

With great privilege comes great responsibility. Our analysis shows that the governance account is
indeed privileged. In the following, we show representative privileged operations in the Maple protocol.

278 /**
279 @dev Update the valid PoolFactory mapping. Only Governor can call.
280 @param poolFactory Address of PoolFactory
281 @param valid The new bool value for validating poolFactory

38/42 PeckShield Audit Report #: 2021-061

Public

282 */
283 f unc t i on s e tV a l i dPoo l F a c t o r y (address poo lFac to r y , bool v a l i d) ex te rna l i sGo v e r n o r {
284 i s V a l i d P o o l F a c t o r y [p oo l Fa c t o r y] = v a l i d ;
285 }

287 /**
288 @dev Update the valid PoolFactory mapping. Only Governor can call.
289 @param loanFactory Address of LoanFactory
290 @param valid The new bool value for validating loanFactory.
291 */
292 f unc t i on s e tVa l i dLoanFa c t o r y (address l o anFac to r y , bool v a l i d) ex te rna l i sGo v e r n o r {
293 i s V a l i d L o anFa c t o r y [l o anFa c t o r y] = v a l i d ;
294 }

296 /**
297 @dev Set the validity of a subFactory as it relates to a superFactory. Only

Governor can call.
298 @param superFactory The core factory (e.g. PoolFactory , LoanFactory)
299 @param subFactory The sub factory used by core factory (e.g.

LiquidityLockerFactory)
300 @param valid The validity of subFactory within context of superFactory
301 */
302 f unc t i on s e tVa l i dSubFac t o r y (address supe rFac to r y , address subFactory , bool v a l i d)

ex te rna l i sGo v e r n o r {
303 v a l i d S u b F a c t o r i e s [s up e rFa c t o r y] [subFac to ry] = v a l i d ;
304 }

Listing 3.23: Various Setters in MapleGlobals

We emphasize that the privilege assignment with various factory contracts is necessary and
required for proper protocol operations. However, it is worrisome if the governance is not governed
by a DAO-like structure. The discussion with the team has confirmed that the governance will be
managed by a multi-sig account.

We point out that a compromised governance account would allow the attacker to add a malicious
calculator or change other settings to steal funds in current protocol, which directly undermines the
assumption of the Maple protocol.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been confirmed and partially mitigated with a multi-sig account to
regulate the governance privileges.

39/42 PeckShield Audit Report #: 2021-061

Public

4 | Conclusion

In this audit, we have analyzed the Maple design and implementation. The system presents a unique,
robust offering as a decentralized non-custodial corporate credit market that aims to provide capital
to institutional borrowers through globally accessible fixed-income yield opportunities. The current
code base is well structured and neatly organized. Those identified issues are promptly confirmed
and fixed.

As a final precaution, we need to emphasize that Solidity-based smart contracts as a whole are
still in an early, but exciting stage of development. To improve this report, we greatly appreciate
any constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

40/42 PeckShield Audit Report #: 2021-061

Public

References

[1] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[2] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[3] MITRE. CWE-190: Integer Overflow or Wraparound. https://cwe.mitre.org/data/definitions/

190.html.

[4] MITRE. CWE-282: Improper Ownership Management. https://cwe.mitre.org/data/definitions/

282.html.

[5] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[6] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

(’Race Condition’). https://cwe.mitre.org/data/definitions/362.html.

[7] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[8] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[9] MITRE. CWE-682: Incorrect Calculation. https://cwe.mitre.org/data/definitions/682.html.

41/42 PeckShield Audit Report #: 2021-061

https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/282.html
https://cwe.mitre.org/data/definitions/282.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/682.html

Public

[10] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[11] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[12] MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/

361.html.

[13] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[14] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[15] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

[16] MITRE. CWE CATEGORY: Error Conditions, Return Values, Status Codes. https://cwe.mitre.

org/data/definitions/389.html.

[17] MITRE. CWE CATEGORY: Numeric Errors. https://cwe.mitre.org/data/definitions/189.html.

[18] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[19] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[20] PeckShield. PeckShield Inc. https://www.peckshield.com.

[21] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. https://medium.com/

@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09.

[22] David Siegel. Understanding The DAO Attack. https://www.coindesk.com/

understanding-dao-hack-journalists.

42/42 PeckShield Audit Report #: 2021-061

https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/389.html
https://cwe.mitre.org/data/definitions/189.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists

	Introduction
	About Maple
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Safe-Version Replacement With safeApprove(), safeTransfer() And safeTransferFrom()
	Proper Effective Stake Date Calculation
	Inconsistency Between Document and Implementation
	Suggested Adherence Of Checks-Effects-Interactions Pattern
	Avoidance Of Zero Amount Transfer
	Improved Sanity Checks For System/Function Parameters
	Better Handling of Privilege Transfers
	Possible Front-Running For Reduced Stake Requirements
	Improved Precision By Multiplication And Division Reordering
	Simplification of PoolLib::updateDepositDate()
	Timely updateFundsReceived() in Loan Management
	Lack Of Proper Enforcement Of fundingPeriodSeconds
	Redundant Code Removal
	Incompatibility with Deflationary/Rebasing Tokens
	Bypass of lockupPeriod in Pool::withdraw()
	Suggested Addition of rescueToken()
	Potential Collusion Between PoolDelegate And Borrowers
	Revisited Assumption on Trusted Governance

	Conclusion
	References

