Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

Already on GitHub? Sign in to your account

nik2img.py failing with mapnik2 stylesheet #936

Open
wetnun opened this Issue Oct 27, 2011 · 3 comments

Comments

Projects
None yet
2 participants

wetnun commented Oct 27, 2011

Here is the output from the console with the latest SVN checkout:

[root@ii83-2 (16:27:19) /local/node-tile-server]# nik2img.py -v -z 11 --mapnik-version=2 --no-open -f png256 osm.xml world.png
Step: 1 // --> Nik2img starting...
Step: 2 // --> Format: png256
Step: 3 // --> Loading mapfile...
Step: 4 // --> Loaded osm.xml...
Step: 5 // --> Setting Map view...
Step: 6 // --> Zoomed to estimated max extent: Box2d(-30056262.2592,-20037508.0028,30056262.2592,20037508.3428)
Step: 7 // --> Zooming to Zoom Level "11"
Step: 8 // --> Finished setting extents...
Loading map took... 0.7551 seconds
Step: 9 // --> SRS: +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs +over
Step: 10 // --> Map extent: Box2d(-14675.9093062,-63900.042106,14675.9093062,-44332.163031)
Step: 11 // --> Map long/lat bbox: Box2d(-0.131835936381,-0.57401424234,0.131835936381,-0.398239389714)
Step: 12 // --> Map center: Coord(0.0,-54116.1025685)
Step: 13 // --> Map long/lat center: Coord(0.0,-0.486126816027)
Step: 14 // --> Map scale denominator: 174713.206027
Step: 15 // --> Extent of all layers: Box2d(-20037508.0,-20037471.2051,20037508.0,19929239.0)
Step: 16 // --> Long/lat extent of all layers: Box2d(-179.999996921,-85.0511,179.999996921,84.9665122843)
Step: 17 // --> Long/lat center of all layers: Coord(0.0,-0.0422938578645)
Step: 18 // --> Layers intersecting map: [layer 7, layer 14, layer 21, layer 28, layer 35, layer 42, layer 49, layer 56, layer 63, layer 70, layer 77, layer 84, layer 91, layer 98, layer 105, layer 112, layer 119, layer 128, layer 148, layer 157, layer 166, layer 175, layer 184, layer 193]
Step: 19 // --> At current scale of '48.9196976875'...
Step: 20 // --> Layer 'layer 7' has 1 active rule(s) in styles: ['line style 4']
Active rules: 'rule 2'
Step: 21 // --> Layer 'layer 14' has 1 active rule(s) in styles: ['line style 11']
Active rules: 'rule 4'
Step: 22 // --> Layer 'layer 21' has 1 active rule(s) in styles: ['polygon style 15']
Active rules: 'rule 5'
Step: 23 // --> Layer 'layer 28' has 1 active rule(s) in styles: ['polygon style 22']
Active rules: 'rule 6'
Step: 24 // --> Layer 'layer 35' has 4 active rule(s) in styles: ['polygon style 29', 'line style 32']
Active rules: 'rule 7', 'rule 8', 'rule 13', 'rule 14'
Step: 25 // --> Layer 'layer 42' has 1 active rule(s) in styles: ['polygon style 36']
Active rules: 'rule 15'
Step: 26 // --> Layer 'layer 49' has 2 active rule(s) in styles: ['polygon style 43', 'line style 46']
Active rules: 'rule 16', 'rule 17'
Step: 27 // --> Layer 'layer 56' has 3 active rule(s) in styles: ['polygon style 43', 'line style 53']
Active rules: 'rule 16', 'rule 28', 'rule 29'
Step: 28 // --> Layer 'layer 63' has 1 active rule(s) in styles: ['line style 60']
Active rules: 'rule 32'
Step: 29 // --> Layer 'layer 70' is NOT visible
Step: 30 // --> Layer 'layer 77' has 21 active rule(s) in styles: ['line style 74']
Active rules: 'rule 258', 'rule 259', 'rule 260', 'rule 261', 'rule 262', 'rule 263', 'rule 264', 'rule 265', 'rule 266', 'rule 267', 'rule 268', 'rule 269', 'rule 270', 'rule 271', 'rule 272', 'rule 273', 'rule 274', 'rule 275', 'rule 276', 'rule 277', 'rule 278'
Step: 31 // --> Layer 'layer 84' is NOT visible
Step: 32 // --> Layer 'layer 91' has 21 active rule(s) in styles: ['line style 88']
Active rules: 'rule 532', 'rule 533', 'rule 534', 'rule 535', 'rule 536', 'rule 537', 'rule 538', 'rule 539', 'rule 540', 'rule 541', 'rule 542', 'rule 543', 'rule 544', 'rule 545', 'rule 546', 'rule 547', 'rule 548', 'rule 549', 'rule 550', 'rule 551', 'rule 552'
Step: 33 // --> Layer 'layer 98' is NOT visible
Step: 34 // --> Layer 'layer 105' is NOT visible
Step: 35 // --> Layer 'layer 112' has 1 active rule(s) in styles: ['line pattern style 110']
Active rules: 'rule 592'
Step: 36 // --> Layer 'layer 119' is NOT visible
Step: 37 // --> Layer 'layer 128' has 3 active rule(s) in styles: ['names']
Active rules: 'rule 610', 'rule 611', 'rule 612'
Step: 38 // --> Layer 'layer 148' has 27 active rule(s) in styles: ['shield style 144 (ref_content)', 'text style 145 (name)']
Active rules: 'rule 693', 'rule 694', 'rule 695', 'rule 696', 'rule 697', 'rule 698', 'rule 699', 'rule 700', 'rule 701', 'rule 702', 'rule 703', 'rule 704', 'rule 705', 'rule 706', 'rule 707', 'rule 708', 'rule 709', 'rule 710', 'rule 711', 'rule 712', 'rule 713', 'rule 714', 'rule 715', 'rule 716', 'rule 757', 'rule 758', 'rule 759'
Step: 39 // --> Layer 'layer 157' is NOT visible
Step: 40 // --> Layer 'layer 166' is NOT visible
Step: 41 // --> Layer 'layer 175' is NOT visible
Step: 42 // --> Layer 'layer 184' is NOT visible
Step: 43 // --> Layer 'layer 193' is NOT visible
Step: 44 // --> Starting rendering...
Rendering image took... 0.0927 seconds
Step: 45 // --> Finished rendering map to... world.png

You can see that at step 11 it gets weird, the bounding boxes are way off causing you get a useless image. I'll see about attaching my XML file for reference. I have a postgres setup with only London and Ukraine in it and using the standard boundary files that you get for any of the mapnik examples.

wetnun commented Oct 27, 2011

Since I can't attach things, I compressed and base64'd the file. You can extract it like this if you have Perl handy on a unix box: perl -MMIME::Base64 -ne 'print decode_base64($_)' < osm.xml.bas64 > osm.xml.gz && gunzip osm.xml.gz

H4sICMWiqU4AA29zbS54bWwuYnVnX3JlcG9ydADtnetz20iS4L/vX8HVh2t7TbXwJIk4y7E93dqd
jfB0d9i9t3cxM6GASFhGmyIVINW2+q+/Al+ixASqkKhXAtU3uqUligJ++UBmZVbW27+l94ObdPrl
tlg+LGbn0+V8WVyeFbc3r/zIG/qTYBj4/uuzwapYXZ69uS+Wv1/eZcV08Ca9HIXjiR+OB29unl7O
0/X1enXpfe+x18vFtbd9+W3/4rF8MXjz5dIv//WwyNmb7wZvFunstshnq8t/XzzM5+zfy+tZ9mk1
eLP8IyvO3v3LYPD24/pxng0W6V12eTbPF9ngPl2vs2IxWG1+4Pve5n3snR8eDm8sypfxJNn9iP3w
P/I5+613rxbL9eDVq7+vHxaLbP7Py+/WxUP23evXg3QxG7z82WO2Yj96/fZi98v7z/pb+u3jNJ1n
P2WL5V2+SNfL4l2UJMnbC+gn+996zy7+1+21f3y8u1nO8z+zYvApn7PrvZgv2a9dLJaz7HzNvnO+
ygpG4CK/S2+z1UWR5vPzr/ks+/5+cXs2uNjd8EV5x1U3n3iKbj5fnNxi7Hkeu3ngJ3XI/CBSzWyx
LO7SeRNqvj5qfhBjsJWaphjbXTbLH+6aYAv0KhtG2xL13BZpUSy/VnB7e7FxZUJOLQqqnNqoxq4/
57efv6aPjOfdkt0We7nn/ervy0W2+ZEv6M8CpQ5tezXndbjAe6+2TpF736sgYQDVdiYEYGtnNO6/
ib2M/Sp7mYRhb+1lEkb9tpdJGDt72djLzk68yudKPAGeKyAkoYd04CGf0pHgY/oI4GpdLL9k2+Ql
iOPhhP0vYalLiUggdpkAD5WjG2c2sPhC4K6DcDT04yb3DTxL8AL3Y+S9j9RKXMgqkmqrAJ4ezHnc
sKT1Njt4yLqYFvzZzrHKTC2r8PjecPd1DIjzS8FkGERj9hU00CfgYXOMasPDkSpJAU8lpUqlO2U3
T3ikVxf7B3hsXoXVrp+YRzwxrsMdIiwSB1QmkUdBAHRT7QIYP2CB29gb+kkorBxHj1pQbgKxWJsr
qoJ585DPZ/nidlBSXVUGVUlUz1Mwlaq8+slw94VWhbAyT/JPA8Kdic2ZuT2sSsucZncZ+8GjaOoY
tlQgL2Gi8oYjT1h/fCBWA29Ay/UHPstcoqHvNVS3I4FFlfJSarojfxh4Icu9ImH0gVrT5V2RCMtR
Jcyjp74K/3F0EXFYeRGnz8WdBX5N2T+22Su7nCy9EzXAlv4GvFvOLz0rsgoaLVDOhO65Q7ccnC5K
NZK1JXG5Pl7QWpaQivSO1OnqV1vNQkbLbaMdXcCAlTC0anUc1Wl01Va3ApwxtsvE9AEDFsTQutVx
VKcrWzKeiAhgSrJeBcCAlapWj8QOo2oZWSPTGSUpZfM1lQAdXhO6b4HMa1TZUBl69bmrEc+bxEPf
Z3fsiZc+Q7/+PoxYOeY+JKwltGmVk3gnIUezDJlT6UC9qFxREb8VztpsZKhOzr0XEdcwrnQNpxHc
SZ/Nap3dC7fTtCyElQ0R2y9xwQE1w9Ort/XiT6OcBvytKf1g7hwok4mIjcw9C9jluHL5OwSCmsN/
Jxqy63V6Vjk87Qi6Zn/5y8sC49Pb7ov8Lt0UPzifU/2OVTZdLma1H8LuZJ3XvqNsoMun2cs33Bel
dLLFtCx0sFfLov4d6e+n7zippmraPtKsYlpfQQTa/ZxeYPXiVCUslTqwPuykLkHqDRqF9QsdaPTs
p9ArpNk11w72rDpxPxM3GY8NdtU6YVYJ02pHDPb9OmEeHrxdc8RgF7IT9zNxk3HEYMezE2aVMK12
xGBrdQXcji8e+F7ZKhszfg3aj+FVJbX4TDgKDJwYXlnRBkeX4aHYwOsP1WzoZWwoLGCGjqNCxkzg
nZVt79lq7YdzOfF7tj9MRmGBt0OiqJDRfniDYtt7tlr7KwLo6si485FXMvRDBnI0brArUNSFyGZo
xrIQhIRjU4WE9Nlhc0Aj4fj0GBDFQAzBBoxPW6ChYjUj0QgUceNWGwNcK2l44xTiMgQbeKAHHg0Z
YxANSBE3brUxVKxXQ4uSXY/NxmOGbsSCXPEAdwQHuErpGTEpDBtu3KqUjTarw6DhBqzP0RCMxBBU
xmCUioJCxUbGvOATdcs2q/4Y7kwSvmUCcReGCm9lVBwKGdXnhZqoW7Za9St6QeDqbdejrYk/9CdR
9cgeCCAcrCrmZ8SgMHS4sahiOtpsDwOHG4y+hEMw5sJwASNRJBYqlgLNPZZx0zYbADTyuNlNE4i8
MFx4q6BNsJAxAF64ibxpqw2goqsaanvreOyF6Z+DBxirpUelTxQePayNjc1tl/DQ4Go09KIuFBV4
zi8GChkb4QeaiFu2WfWhU5ua3LL98RaKCm/FUxwKFdWHTnBqf8tWq37FdkRwE0LHgy2/nI2z/RLn
x+0aVYDPSPKCgcONRNXC0ZbkYNhwI9EXbOjFWygs8NEVKCpkzIQXY+Lu2Wrt55bVOfdsf8iFweJ7
vPXOBlioqL/v8QJN3E3brP9PZ/3VxF3bfapdD7oQ5Vnf4zaGyoZHpVbve/yAVB0am2v6vsePRo/I
EAy3UFB4W51EmdAxEG6E2fyO7dZ7bkG97o4JBFooKLxFTlEmZPTe54aWze/Yar333Ti9iqEg8p9l
lhxQg1kB9f3qCXxOTZq4OdJK4MbySYl4SOtA9TS/niuB/CCQtJ5UTwp0atKbB4YbHyglVSCtA9yW
Ke0DsyzBiRlB4wNnx6JpEnI/OFa89Qu5A7ooowKOqW1mpZ2NfnA4RaewSFo8I82q5ehAms9SHCop
s146/EBtPjHEB466lTY3yH57xQCTMVuG6qMVw4vbxGZmQBNpprz6pIrBTqSBiaYNEgdCkeZl3Ugb
W2hiqoyh3lE4pFFpHaFDmpR1o3dI09Q7soc0Kq2jfkiTEthlrXtMiS08EXv+feiAZzROSmaKgsXL
ESSPRSHNqvU8oe4+TVE8284hovo8xcCCD3JWN76FNCuBuUd6B1BYQhNVm4bPFVY2uII0Kv6MJYkD
L0iT4m4u0j0ogzRNXrVB7oAN0qj42YHEwRykSXF7krTPFbAEJ2qfLnwYqbp5BKRZcfdUSZ1jQBkV
/xhS7fMPSONUM0Ggk1bKPc5U7rQF0qgajRnoz4MUs14OH6+qaKM5aVC8rEDi/nTSnPgDtLRuayfN
ss1MBKoPTxQobjogbxM9aU5wj5HbHqUnKvCDGKMogfbxo37FebdOTySEPIS0oHpUh9OCdo8MQkpQ
PYej51qgJVglpChuVoeySJyQFlRP63Ba0JtnBrcL04Yd+EZ4hsMoKbdhNoDJK7Kq339PhZToHi1l
y3RUQHGbL23Ye08FZsuZD1TDg+akuOeTK993TwUUt+fSml33RoiiNljCB6fr33ZPiBivA1PPvntC
wLiNmNZsvCcEVcb0B6oPWRwx0YxB7dZ7QsC43ZkW7L03gxNTZoTPite5+Z4QK172oHr3PR1U8Knz
lm2/J4Sz3dwHsk9UFCte7qB6Az4hVNzuTCt24JsBitmAOeG1aGrYgk+IFn/3luo9+IRgcZs1rdiE
Twho2wkQZJ+qKFq8PEH9NnxCsLjz4SzYh0+nRJ3wR0Ao3ohPiBUvU1C9E58QKu6IOAu24hPC2W4G
BNWnKY4VP09QuxmfECr+mbMW7MY3E5tgdmQm3ONqlW/HJwSLu6tL9X58Qqz4h+RasCGfEM+WsyCo
PlAxsAKPezSv6i35hFhxO5aM78kns4QeeNxZEGo35RMixcsP1O7KJwSK25lkfFs+IZhtZkGQfYSi
SHETA6Ub8wmBgjuQ3L4pPbFBgBvhUOqJ3qWLwIMzIqcnEuIeQlpQPcjDaUG7ZwYdJfDbnqDaXdfa
eMtN4Lc8P5Wq+0GQanl6KlETRYCic3aqEaKYVv3At+TwVELE7Dg9lRAwblecBbtBzODEpLY+r96l
fDcIIVZKds5Yb6UoVAL9cBb0mZsBimgwDIK2hyKRtVQULX5PnOo+c0KwWnbFdddSUYl/oORkJOvt
FMeqXVccUSvFoSLRFWfG62F6IgLzXXGEYBnviiPEikRXHCGe5rvi6MAKjXfFEWJlf1ccnYQ/NNwV
R4iU2a44QqCqhxW7Orqeg3gQipLoT41CODVyeiLpCDAiWgAXhpwWyDnfjIgScGfF2dB1Y4Rn8xaJ
kFfvUt91Q4VUyynTRE20OahIuCvOeNeNEaKolohItDtOcdcNIWIKp03bbrQ4YNxuOQu6bszgxKS2
Ea/upbzrhhArXoec6q4bQqhaT4zrsJ1iWiOithPjyFoqilbbiXFUbRUFi8LEODqJf2x8YhwhVqYn
xhFCxe2Ns6HrxozXw9RcY27xS3nXDSFYvCxBedcNIVb89jjTxXw6eUTcZjAEWRNFkeI2xikt5hMC
VT0ZwZXnNIzv8XCa4puIudz4BGWelZIejOBakdMDCaPRKKmB8HGrRucXmiHavAI7UjMggoATQrAS
PWJV3QxDMqi4IwwtKBAaookKmEdKyl4EzBRHi5exKj+okRIsbpOcFWVCU0gx1ZyRotIXBXtF8eI1
zGk4CI4QrjG3bc6CYiGlpGKspARGwFpxtHg5g/IjpijB4rbK2VAyNOX9MLWdsZo6GAFrxeHiDkBX
foQNJVrcnjnjhUNKucVYQUGMgqGiWPGSBsXnY1BCVV0TcsUADXMIkKoSGoi/Jq5spMy7ktIDuG7k
9EDCDAlKasDt4LShfGiIaPM6z0RNSYyAE0KwEp2Grm7YCxlU3PZNC8qHhmiiAuaJkoIYATPF0VIy
Bd1+Q8XB4g44tKJ8aAoppr4zUVQOo2CvGF6JomnoBCwWhYvbQmdB+ZBSUpEoKYgRsFYcLSUT0e23
VRws/lnAFpQPTXk/TIUnUVMPI2CtOFxqBqPbb644WtxeOuPlQ0q5RaKgJEbBUFGsuIPR1Q4SpoMq
9EgcxhohiY4izct1oWf+PFZCsIwfyWonq7cXH9ePu5ebVztqc/aB7GPKbxxqeADV06TitBK2zu5h
SFBbQxChbvX8az5bf748C8QVAgjxT69ay0XH4hd9GkU34A21n5ST6JvrJHYQPUJMQCAsIiZ77jVE
292k2u7ggPdZYf2myGe32ZNDP34yHn62ezJWVLl3BfluVuR3bwCPXql5x+5BIOYZolYrF9FkuPtq
8Jzjj3hwioFq1bBV4PymPCfwZgLfOQFLBe7DaRRW1hX8ibjIOB76MctF4+AYII96sl1iivwG1MFk
SwV0c+5HH0wwGdMBU59p64MJb3WSSXPv14k4BRRFsOKjDKLBGAMDByzeaIOj8XmMgQPvXZJB5ylg
ImJ5zOkF4Yg5vaQBPzCXVYDP6IO1ORYwkdOAResjsjkWON2RweU4t6Bib+FwQzFo4K8CMH9QAtCg
xWHAKAvxuWA02hwGDLx7Qw6ZfSpOxOIwGXsARugK8NFauQqUhdwcLHav7wTwLgwZXI6WxoiYW+mq
tl8NAIIBuQp+ZiPKxlyUBdo8LnpDysZc4JKJFDDAllbLra1pQB6AAbl0eLSSt1BZjF0Lxe7ULaze
C35KpY91KPsdBNxLryAICuGUw6mKcXeoTwXguoZTAePOX58KVGzDgaRPuo7te5OyRZMhDRsg1VZi
DOHNO03FYMxp2Y4X3uzTFq82h2A73ordQaJ8aVW/K04WV8EV3iaEwmrQNWjDBe8UkoJLo6nrwhVV
7Bbi8aJWM6/YSqUg/47g/UINgZqzVH2g4L1CLUHps1F9oCqmbPNI0au0V0z8UFBsjeB5ZY2RmrNT
fahwaYk91XiNqCoGbPNZEavPa1ubiOBpZQ2B9mAdL8KlCdbU8PWBglvbuKTIVfUrZnwIBChNS7sx
PKKsKVFzz1J9pHDJgTWVf42kKmYZc1GR6gXQl0TE8GCyRjh7kJTGuLzAjn4BjZjg7rmXZcNNe0Uf
q4bWOx598VYM50ROU3qTmsQ1YzScBvQh54orxmgDwncNBuqKPTGnNiYmBddfANMdcbJgHF3XXrCj
WzHXWxCv6y6owMopwjWg2oPmghEniW5Bq4O9BSNeXyGMy7UWVALlVOKEePZgEWfE6fRDcergKs6I
17IHg3J9BTVIOWU4QaI9aCsYoZKRPnYVjHk9elWoXFNBBVBOFU6IZw8W7sao5KB/LQVjXoMeDMp1
FFQT5ZThxID2oKFgjEoJethPMOa15lWQcu0EME5OX54AzR4komNUNtC3ZoKxm62trYoMnMoQo85L
wZ7G0SLMmsB5kNMTBbVm0noCl4pkzIVRXpG2hXtZ1xuHzPmLH+cZTozNG7fe3ZU4/YR9Nam5oGSg
bAgiulDdPxlYOuTcJkE0ZmrpbHTSTJVNcMSWHC2i2TiLmZgasE5BN5vTVDaXHV9rs4YnooY0UTY/
El+Ro8wzUTjeHVdmsoUmJmNLFM6ExxWjSNNUloehCyy24MRUDhJlKRW6DEMap7LsCFddsIll0ygp
UZYV4WoQpFkK7VNzg1DJGJS29o9EaH+b0xwy7kOf5vD2xZmavGuLJDDLWkm7CZBUAwj8/i0di+KR
h5sRQ73qYLtUcPNoOlGHwG2EQlHGTbrsRGVCI2XchBvitQptbVqRhxuNQ7x6oZGvojmb1muwro00
kYc7AYB8hUMjYb3jOi3hqy1hjDy9Uz77xxeXO1Kvi2jbhhH5akaF2q7BGgEjJ4xSrp3oi9F8XCZH
upqika7QWXRuUBwRs9T32PbhSTNOcWh6HI2KA8+xNT6Y0BZBYNbhfNT0HVd+Ubo46qP267rqi1qh
oLYHu+JLM8ithp662osQ5AA1+9SVXkTxogYWucqLKF7knCNXeBEFjJqb6uou4oBR85Jc2UUUL2rK
kqu6iOJFZYyu6CLMFzesydVcRPnKH/NkvfLqC85Q+ZuruAjBDd1IJZNVGT+IMdoVtJuLinlEh/BM
JacoeqowhBQFPreT6vAtM+DLJTgGPhk14G5s8JP9Do/hnLD/JQ0XQZtKQPnYJxnxTKclYHZIFAlD
aMxU2ZAo6SUWOkxNjYoioaHNkxhls6IkVlAI4TQ3KoqAfiIW5yOFs6IkVkgIATU1Lsp+/cSkbJGy
eVESKyCEcBqbF2W/emJW1yN1A6MkVjgI8TQzNIqGcjYNliJl6ZG0CgYhmG6QUsdKDdpaCCJ4kpJT
HbIOBKUF8ElCVs7TIrNaFauZ3GS98wqH5aHnQcPmEQ3L3HG7oU2kYwodeBVOa7Je6fFbBppSxk1r
6m/RIFYyfsl+hdTWCxXj5i/1skYQK5qkZL86amvpj7GjlHpZEoiVDEayXh31JdgxbjJSLysAIzVD
jqzXRn0d9yPklKNeLviPFAwtsl8XtcWNI1wm08P1/ZEb0+OW93FPVHhOj9Mcqu4DpQTwCT02Dmsi
s6o0UjIXyHrPZe3a/qjVSCDS4YQOuupmAVmv8tpW9seoWUD9XdgfqxjuY786asvPxqjpPr1c1h+r
mdNjvzJqW9UfIwf19HJRf6xi7I71yqgvqx6j5u70ckl/rGSEjvW6qG9Ff4ybodPLBf2x/JE49mui
tnhxgspfericP3EzYUwu+Qe40VSlnmh+eE6UbTCUuRBphie08MWhqXzSi7SFLmNIm67BTJTtMZS4
TmOMZvMng7IthlLXGgwBRWTCE2XbDCVmy4QeSMoGsMjM+MzZe9OEZKJsAovMBI8QT2UjWKQlgXQe
RknNjFO3NZSiFmhbIE3U7LSznrCk9ggOXEv22RkhrK0an+C6U6mnLfqWCxPcvjz6iYy+ommC25lH
PrXR95zDbecjn+zoK28luN18/Ux/EtxmPtq5jcYnFjwlxTXTE9Ucbc8JdnOmu8U7mw7FHqoN1GVD
TbKh2FPRC2o/Xl2Pltgz30Da7Vwo9kyf9Nj1Rxyq59RlQuKAlRz22MlEKPZwXacuDxKjWzMz1PWv
Kc+VSuVCaFeivV0g9pSVY2WmRmZ4Nk90fGXHYUhPhowhbZrX+MpOxJCY+xij2fjJ4Cs8EUNiqmMI
KCJr8ZX1rEo+w57GA8k3diSG/TwxcbZv/5EYhJwnPKbF9VuR1QKUi8IVPHsZEOPKnT2OdnGzSHsZ
yga4WaQ9jVMDXMNnL4PQADlWtJcRZqBgSCgNUo0dlhsS6qLHAFWF62PwGKDKaf2NHQNUSa2foSNq
JEtfI0fUTJZeBo4hbsBKL+PGENUV2MOwMQSzEVfM1zV/3sNpim/C/ygfoCLD9EwRbR6ChhSGpxjE
2dyX0RifYgwpIjwLKQxQIeVESYxQMWn1jUM9dUNUpE1+pOREhXa5uTI0JT3AOKrIguPLyYRyEa7+
1dM4LcJVwHobhEW4IlhPI6wIN1ikr+FThBsS0svYKBJq0XM1VkJqgPIw5g9/oxMZoYphfQ2MkMWw
nsZFMaog1tOwKMZVxHoaFcWogRe9DIpiMDtxFURdo5OQqhKa8EHKKl5SZyUZIto8uIqVFbxkju4x
h7O5L1NY7pI5q8cUUkyQpqzgJXM4DyUnauzQAApEUcEegWMDCDnRkTs4wEV7pR5YcAoAmVBuhKuJ
9TROG2ErYj0NwkbYYfu9jLBGyJJYT8OnEXIKfi9jIzAbchVEwmqA8jCoqlhPIyNUUayngdEYWRLr
aVw0RhXFehoWjXE1sZ5GRWPUSPdeBkVjEmWhCEl0FGl/ZI5xCUxfabUaBdFhWG8vPq4fdy83r3bY
WG6Rsc8pv3E4Yg7ACqQ6ID+l/sxviQg6w4ajTkBsf+rhrb7pilnynPsG4nS8vP3YkE3UC7zKJO6X
+WK9swn/sGnyBNII7CvaPc3SrFhuWZWvZsybvHzeHb0jL+6XxfrooVek+XwXnq7Tdb5cgM4HYBJx
af1a3twRrnQ+X349X/6RFfP0/vLMPxt8yufsFi/mS/YRF4vlLDtfs++cl4FyVlywTOw2W13kLMlY
XQTRtyC6WG0+7WJdpItVeSMXu8u/3F389/eL27OSP1fvRmD/kWykDzflokq2KC94E/n3Ay28bAxS
PYYK6WLVG07IqkLbHiQjs8jXj5c7TWkCEgrIajiSN+cWqKBoTBQVZTNtgQzejwC4NmekdRihRdlK
in02UWhFVgxUPw0U7IjRGPVVTKhqHlwHmiXhj775I5kRDdiTYiBYdBI5SAReVdYeY5qUiFHfBKVP
EkJTshounzCURUmMaB3pA2l43VtzINxbT8LL3FDxs9PuA18ozZMWdjvOB85QHmg2Wld3omwLB+IH
3/xAaigI5ZV2BOf9EEBF95ANsbiVApDuesB+JDXBuJVA5Ws0lF2qjb17AhZubzIfaluJX76j4OWU
smJtK3HK12ZefU52aN0TrFBGaH7dW9FgFavIQ7miHaF0XyQAb/GwIZa2VAJwZaHFM5JXppS7st0D
ohMoP1S/kt0HsvBGFPPhdF/48/JEmWvXfeDJqyqqWKvuA1dLOjJ1N6vLj+xayEBRM2evmSru+uw1
WyvaQ3stASWdpb0mqrQFtS9khXYzjSq3+E0CIB/8++5PM9Sf8iK7PmiwZR3j2V1W3GaL6eOB1fHl
iqviJABStyMIn5er+3ydzgkA2F9qk5sH8qajm79Piy/54taGe9+G4vfpIoPsZHehTe4cyHCO75xd
YeldzN84R+jbC21y40AKcnTjq+nn5dI+bZ+z58AdE/LhvrfX2eS+gbC/gbMj0hX4LGOV5yOB8F7Q
R3aDG8a1QvvnRRxMN4g190vQvnsRv0SRlwR3Bm3Xb+XO7K9pS/NnYX3g29CfUQSHcGhhfaDcyKFR
RNbYo4X1wXUjj2Y/sGYuTSh1TYKq1DXx6sP3XqSuiVcfync6dU28+ni+u6lr4tVH451NXROvPqTu
auqaePWhsUtd69jVx8kudQWY+fXhsUtdX/Kqj4xd6voCV31c7FLXWnj1ga9LXUFo9YGyS11PgNUH
1y51BVPX+ePtcjG4T9cMyWKXxB6Wmk4hV7f4lxf0sCrn0E6ZMNmPHl90+M+zfPVQbGcBp9OTkyKe
fswsZfpZeOCXXz5HeMw3d/nr9iabwl8XWbY6/1NcE6FQpAJQF/jcFukf2WNazBoxAnedViKCbp/y
3YOtv0J3v9cNKndf5XluHvL5LF/cDnYuaFU51Dk5ih6gOxFqdtn8jed3N98PHvaGu6+m83e3vnO3
8Fc9lfrp8v/1/LzuUoLAGwbhhH1tZyCfnwvdQRBFwyAK2VerOwgqVy6P1m5qr8Njl779anUdSdV1
nC6l1D17TiykVguieFiOoJ6MhKdPQwsc0IU0vI7J0J/4Qz9oxbB6HPRxlKRBmFFYeSGCWuVHzDYn
wTDwKw5ZqbqQ1ec8m8/25hlFg1dF9umaRVLrbLF+XanrCbiNABoqvu/zY586zxa368//vAwEHbPI
kRcfN9d/PLLmj2U+O89mzPFenpXnKZwNPqXT7Hx79T9lv6f/52HwMV2sBn9ZzmeCA20+L4v8T8Yk
nZ9vgZ0HW0/+JAFvyP4fY88uML97uDuf5SwFXEzZZ/uex0SyYld3eZacDd79/YjwP5lcXtyBwJNx
lIC7zAXxhx3AH5rFD240EMQfdQB/ZBY/uCdBEH/cAfyxWfzguDNB/KMO4B+ZxQ/uWRDEP+4A/rFZ
/OAGB0H8kw7gn5jEP/bAne6C+JMO4E/M4gdXpIDTPV3Yr4I+uCImRt9F/a3pc3LeOvou6G9Nn5Py
1tF3MX9r+pyMt46+C/lb0+ckvHX0XcTfmj4n362j7wL+1vQ56W4dfRfvt6bPyXZ3h6a6aF8Be7BD
Qoi9i/Vbs+fkudXsXaTfmj0ny61m7+L81uw5OW41exflt2bPyXCr2bsYvzV7Tn5bzd5F+K3Zc7Lb
avYuvm/Nvk0tFwzxgWbwSOWIrp7mBm2KwGB60Be5Gc4r2lSPwdSiL3Izm5NAA/XatRz1RW5m8xlo
BmC7XqW+yM1sLgSNL2zX5NQXuZnNo6Dhi+26o/oiN7M5GDQ7sl1bVV/kZjZ/g2ZftqjP9EVoZpM3
aOhmi8JOX4RmNnODpn62qAj1RWiG0zbOMknDUlJfhGY4Z0P3HLiEzZjQoMGrLYpXfRGa2WwNGvza
ourVF6GZTdWg4bMtymV9EZrZPC2Uvl8ekI0fIwU3sllwZnO1UPpO+94Izmy+Fkrfo98bwZnN2ULp
u/t7IzizeVsofS5AbwRnOHeTPlGgN4IznL9Jn0XQG8GZzeEi6VMMeiM4fXlc1ci08v+vGcQIxZ27
CXz3cwakTNGXXxcv5r7ufzTN148vh5ruf/YHu2dGRfgYX9x4XoFxmL9l355N560S8/ILJKjP6Xx5
XqSz/IEpSnCQkM9efi3S+/Ov+Wz9+fJsFJciKz+Wyer5XxQwsRgaEvWCMg2IO1vZQQyj4eZ/+jhC
R3M8V2THUYQjNAnzxLJpoDRq1zXTtTX7V78cgK7kSAc1gvBkCmIETWLCOFjzFBt7BskgoUNGEB7W
gYSOH8G5WPMsDfrYETjpyIyPVXfGBAkfCx1vgvCx5ik2dg2RXJDQsScIH0sQpGTXUJdWNfOx5lka
9bF1eVXD/BRBUWCFh4pG1iVWDRPUfoOEDlTEZ6hmWZp8aoOnLGIyI2wfjjadfPrJ9kSWzZc2hQVP
Z8QkTp3jLFmfJeZVFqCucQ2GOUMnQGKifZX9e51wHHVpVZNsoHugJWt0XdrV5EmotJRJjXRVYXLN
fmt/klMYD16V360+wgkcu7Nf5UmzYrktRZevZsXyLnux2HP0jrwoz71/ueJTpPl8+4bDkb+Vb3i4
YS+us8W6KCu3wqc2dmO1DZzBI0EOsAjUgJ09MkBRTcXfKGCov0k24BMV7iNoqDZXwdh2V2E1aHgc
TTVn5wr24MAdT4LgnIkzgNDuI9BJOgNvgxncL1RF2Zn3Hhu4W0cImzNuhg/qXbQ4JZDWG6W3bu8f
d6Ueiy/22okPyug0JhIGxbExK6+dWSkTi478TsB9OfHA4oGyQwNJi2nxtHwoKRMPuMelfarjcIO4
4Tke8hIkhx3GDuWl2tMqJxxYOODEjbbJmIMNw8Znvs79oKFDebMdMZC2LkGr5QMOs1ASBGnl7U8s
5Q3OoFAaBTnuJXcoVbYhDHJeqJQOOCdCQRzkbKGkzUt8ZQdCjjqjDk5msCMSQjZVI1onbV6ui9pU
cJunYw54xMt+1awIOfARlAnbEAw58WzEg681OzeEwM1LgVWsCznsEdglbEU8hO2+H3csYgXHLqpZ
G3LEN8R5ebCC1SFHfkOe22Bsan3IyaeUT8yrHktbIXK8N7x5ybD0NaL+cRfZbRXxdluNwWWLQxvY
yekNz9zT6VzQ63m+eVfF2+6L/C4tTmbwQPNFq96xyqbLxWz3IfZtxvKheZ+lUAeb3YV3TK8vzxik
7OyoU3Z1n07zxe3lWeS1MrsxtCQC4XfcXnCDNjiDOufIvSAH7Vg+8RqO2gtqYD87WadLt929mQ4k
MlUAmlcl5KodbQRtaKiVoIN3vBG8odlXAo8FxxrBGlx76NLDhMRAPqM6AK1voJ8mDjcXNzTgC/84
ccC5wOsT2ybPEwebCxus73fpgUJiDKRZHajP65unJw53LW5oHlm7/MQBrwVen343TVAc7FrY9dl3
M2di+aROO4DXp99N3YlDLoAcGlKNcygO93PcIoXOmFvoHEEtALtYsrw+JqR5Wty+HHOx+9HqLp3P
X4agu5/dZQzInV31yKdvB14yDOJ46E8C8Xk9fktrGEEJ8nPKjtWeFZTbvlAtB2sPC6rUPrdRx2rP
CsrheEZI7Fg/04ihvI1ru91mLLWTbDyCEjWewTvADQBDyRnCS1h9Mp1ZwlA2hnESDnElYij7Qigx
sjig/RAQtYRFEq5RxEu4xuCO5aNKAnvvIl9vFiSmn5fL+csBg4cf36fFF5Y1vky/jt7A7mPbFA//
/PNydZ+v05ME7ukdn/Iiu67own+RHXYsPcQcc9I2bBrDTcdkFONEJ5xk95IFx3ATlOzBap1o96KF
y8L0RLt31k6ye8mCU9aqgRJ6OLbZwmxaKvDG8jqZaHouUYYKD1ATgqr4kUCZKrzVW4iqWm9MGSo4
/xt+EDqPrEUi8OSzKnk4b8wDOoG3ZXOBOk9cSRTeeM0l6rxwFVA4oQXSFeeDtcgDHsMNS8N5YC5O
eFgYB6fzv5U8OUkbzNN53yqc4JQvaLHJeV8t8uAkes+k4bwvFyc8sIuD03nfSp6cBA3m6bxvBc6k
ooJLbsW/2gHR7RQyohBdqdvWuNBua4TctpukK9Xe6keAU4cG6sDJzXEVK4MSaDPqz7Sr5iT2yEJX
P4Qh2SxaFHKtdEx0JcGp/jYv4PRDCtKdE2cZAVH36YcgJJsDZ/mhebHISQEhBc6iRdOKRj9kINkl
TTxOKbpxIaQfYpBqChOPU71uWj1xMkDIAD5WC73E3w8ZSHdHnFS6cWWgH2KQbAqcHLppOcHJACED
eFQ2vSXGRh6Syk5PA/oAdwTQ04dmvtopRKVCtOg9t9Mm6fpqznqCvDVnJwuuLKT3qjsxIMTgy+9w
d3LAyAG1suCMQa4QOEsLMtbYnBS4UkAtLThTkCsE1NKCMwXJUujl4gKVIUcG9KHF7nAnAjkiQLYG
OPxy8HNSeAlxsoNfCR+1fcHBVzLgbhxyBtxNQuhpwT0HBz7Dhv3yOhc+B8eeyUVWnKc6CesPmHiC
68C9AAe5e0Mq7M5+RMiPc+pEjeI73M1xRzVnSFhgLlYfbXf0cA+83cM9tEu69ac6NjQmJ4x2wuCc
+Njcs1EIey0QhkhsPAl4sXEELTL34LQdfxwPgzgop3PraxaMMAd99JUV6sSOvsLCHL7RV1aSztGg
sbvYDGJZB2l0iLHcFcio5hyN7p22YwBwDGSQHT5txwThmqMHu3jajgnENScWdvC0HcWERRKuxOcl
XHHF6QzNexnUtCrQGM3XNn33h7svfUFRDB/eYInYaZyUY0RucO+RbXKz+xwcI4KDdyDZJjirT7kx
Ijeos8idcmNaKi32DJGYK2sEKqeRiP4pNyaojjh7ecifcmMEKjxS1J1yY04inF06pE+5MQKUs+GG
9ik3Rohyds+QPuXGCFA4GXWn3JiSB2cjCuFTbozg5GwqoXzKjRGeqF0izvtW4YTSNXfKjTF5jDmJ
HuFTbozg5MxeoHzKjRGeqAmNzvtW4YQrp7at51s5YZOiuGnUS+0c5alB3nJbVcY0qqxWzgylJ2xd
4xuITW014mZbjGW00/dpFIZks2hRYrXSMdGVhI6hjB2UgmznNNEylbGDgpBrDhPOwkAfz58xIAXU
VEbnkiS7JE6RuIfnzxgwBU5duX/nzxiQAee0xP6dP2PEHXFS6R6eP2PAFDg5dP/OnzEgAyh5tm8B
0c7xzPSkDVfibZO2pXOgyYk7adHRbafFkfWzCWctoL9nxxiQhfQOcCcGjBjk9407OWDkgFoVcMYg
VwicZYE+nh1jQAqoZQFnCnKFgFoWcKYgWQodXBggMpDHhLRb7Kh2IpAhgsRDFu0dfjn41Z+g6OBX
wke1/Dv4rYaxvU8f2eVur3S+eT0+G6wK9pfe3BfL3y/vsmI6eJNejsLxxA/Hgzc3Ty/n6fp6vbr0
vvfY6+Xi2tu+/LZ/8Vi+GLz5cumX/3pgYlxd3g3eLNLZbZHPVpf/vniYz9m/l9ez7NNq8Gb5R1bs
Z79trvBndlnvynnfuxFx0e7KN9/fvu+ndJ2ulg/FNDuI4te0YD9fH26Lcc3O3l3Ml0x2F4vlLDtf
s++cr7KC/b2Lr8tiPru+WT4sZmmRZ6sLdtvTbLXKZtf3by8On1X56evHe/bpq8/pfXby9rcXzy/v
7cUGdwV4P7KXvO93Gn3gW4aePWgeb5eLPf242/QnVtMPAhT92U35f8/e3eYrEZzZap3fpevsmrnu
bLE+e/cpna9OyUK/ufuF88DzwnHsTYbnfpIESRAmw8O39t8R+UAWZLKP26hN+VLkV+6XBfuVOAoD
IdVJb0rN3P346b9XH6/eX/342+DfTn4y+I8Pv/ytPAVika2vl6u7652ITt/4P3+9+nA1uHnI57N8
cTv4r4+Dn//7/fvT9w0GP/z80+DVLrwY/NfPg1f7CGM4+G66nM8zFlewl0yJmJKs2JvKf83zm6I8
koO9PMTi7PUuMGSvnidJ0N/d/PfLhwG7mdnDKtv+6bx8vS7ydPfn70orKP9V+xFpViy/prurT5n1
lMnx6S/88uGnqw+Dv/y/wZ/Xy2LGxPDDxx+Hg/L0nrTI0sFPVx9/fM2+N5iym5znX4S0bmv+90w/
BBWc3Soztbv0/i79khUtXUYY2+0yklOXcfre+3TNbn//O6FX9ztHz+LQ+SPd/mhYaYSvfvzh41Xp
dH4eFOWj9NXBqv5t4Hub/14P/tft+n9fDgJv8Fv5vl3KIvZL/u53diubg6v37M/t2p8GVz//tLHb
MiEw5DLLU6GrfNRLH1dkU3aPpWO8vt3cd+nqbossW3zKs/nmX+UhP0wuj3UfmeWrhyI7+vOl/83X
08/li3WRTjffuV3OP11PmUmssr1HZd6xfCvzIEd/PmUOcf/9P9NW7rO8GBruMwqsdp/hyHm4rkZc
e+9xOTicKN+HgCVKrLa4KBQMPiJnmuRM88VDuMz/l3lRPvO+MsZFxbOWPWrPFun6oUjnZ9tfnTM7
ePqtMhliH1z925u3HbKTabrY5jZFmU7dpIsvh39AHwF5gI3Jbz7VfnuPR92w9xh4o7N3CfZ+MO8T
a97Q31rucxPaGguzmtWaPQXvNmHtxqpeV5vL5neEZGDWXkahZfZyZAMjIDN3NmA+4d6dlLs1jsNB
0swqXhxOvU2hvcqP3P53+pHr4mH7lLovmGTKpHT7SX6TT2Jx7iqbLstF9sfvtr8fNPz99f4c4O2v
h5xf3ywRRIfFAXbxy4LFyc2RPl33JrF+AeOIcyXz7+7S35cFEOCfXvB3d/mCvfXosssaa7aYCqxs
lLZaFfw8uyMW/OQs3V/vllkfFtN5ulrln/JssxhQRka7Zdzt1ZQRyjLd/OwghOGgFRjRZGcvtm2y
c/pbp99h0DZXfV1eMgGXP/Ysdvlj5/LNhT3PbPbTcrm+T9eb1b3y9c6sVuvsfrUxu2yWbSon21W8
3Tunj9N5Vr61JjaiZS0W92WMcY0ZzlpcgOQCJBcguQAJdvkTixvCJriGMOfyXYCkyFoS23r4jq1l
4qzFBUguQHIBkguQZLp82xqHj1x+guvZdi5ffoB0bEtbW3u9DW923yeg6b5nW8Pr8eYQz3WkOl2X
p+u+bd2Jz3S9trV7887nfd2+78rHBq2jSPP5U/TG/rEJv+4fto0UDzc7W5kzI1pf73++LrbtFelN
upgtF9vYbpavmJ7PthEZi5LK99Z1Xmz/MAmDs6058dBMuutaWtXZ3OHNpdSBdzpbU2pr+8YyoA34
l982rcAdbOf1rduzWF6dU/6Wyv+v5+c8/R8Ofvzlh/dMY69e7bR5OPC22rssimy6vj58+2hVhNnL
NCtXYkoV363CeC9+tF5+Xex+5L/40R/5fJ6We4a2qz/b9Y7wZIEGsM18sd5Z5vbDtr24u82Mm79Y
7mRM7+bZuny1/0NHz7XDh2+M9sVNHm1+KT/+WIHOz4V9ikymGzS+HDQSKFjhv5haAy4stK2jYM0c
xD5oDuPBq/JqX9dvpCxluP8NtzNB+xr74PFVuirFVu5g3CaaTFXy9cNMaD8ik17VouurZ3H7fj/1
IWS/ZiiLdFHO4qlcGj7ZH83+MSuWd5vV2TQvShjgfr/tRqWSwXEUI7rsugfw5BTKW9nerU2eYeuf
wTkktsU2UFYdAWtOT/9efS53lB7eGzF9ysrtoIvSBmt9yrETiqqdkPMsij3LPFvcrj9v/MrGrWz+
yQKFv/7w4fr91c//+dtfS5Fu7YuJdvdzkQrVyUf85eq3/7naxFWl3SfbSIL9ZBtLbDKYfThxpEUq
CoxNSoj8IiG3DFhV6JNYL1NU6Hoejj33vxtNePK+mwIilYqWH9sclMXOH9rczdBwAEXlRx6MufF4
Cs5HVg6vqL69D1f/efV/f73+cPXr+x9Yevjfv/569WGrg8xfvPr+NXMbV9/94x/+P779GPzj2w/e
/v9uZjt8t/kD5buvyy1z6+nnbCYSl7o5GW5OxtYdj+zYxssSeNgjj6JTj7xfeKlKlEeuM8G5b+e+
G7vvclRJuQChaUhc2wlxfR4P54+tbJd5sYQxBnroKz39OKzx9M59yyxxVi4+kE/shduIZLS5VlZP
6tN1Sg2ovnVbdI5dxiRw6bqL93oe72kffkV9cpWf2DaK59inJX7TunDimpOd++ut+4P68TqWAZYH
s9y/+5f/DwKGG+/IPgUA

Owner

springmeyer commented Oct 27, 2011

okay.

wetnun commented Oct 27, 2011

Per request.... http://wetnun.net/osm.xml for the same thing but no copy/paste required.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment