
Crosswalking

Processing MARC in XML Environments
with MARC4J

Bas Peters

Crosswalking: Processing MARC in XML Environments
with MARC4J
by Bas Peters

Published 2007
Copyright © 2007 by Bas Peters

First edition

ISBN 978-1-84753-028-8

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. These trademarked names may appear in this book. We use the names in an editorial fashion only
with no intention of infringing on the trademark; therefore you will not see the use of a trademark symbol with
every occurrence of the trademarked name.

While every precaution has been taken in the preparation of this book, the author and publisher assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

Table of Contents
Preface ... xiii

What You Should Already Know ... xiii
Organization of This Book ... xiv
Conventions Used in This Book .. xv

Typographic Conventions .. xv
Icons ... xv

Getting the Software ... xvi
Getting Examples from This Book .. xvi
Acknowledgments .. xvi

1. Reading Data ... 1
MARC Formats ... 1
Introducing MARC4J ... 3
The Record Object Model ... 8
Creating and Updating Records ...14
Reading MARCXML Data ...18
Reading MODS Data ...23
Implementing MarcReader ..27

2. Writing Data ...33
Writing MARC Data ...33
Writing MARCXML Data ..35
Performing Character Conversions ..37
Writing MODS Data ...42

3. MARC4J and JAXP ..45
JAXP Overview ..45
Writing To a DOM Document ..47
Formatting Output with Xerces ...50
Compiling Stylesheets ...52
Chaining Stylesheets ...56
Creating a Dublin Core Writer ...59

4. Indexing with Lucene ..69
Introduction ...69
Installation ...69
Index Configuration ..69
Creating an Index ...74
Searching ...76

5. Putting It All Together ...83
Introduction ...83
Setting Up the Environment ..83
Implementing the Controller ...91
Building the Index ..98

v

Implementing the SRU Operation .. 100
Adding the Explain Operation ... 112

A. MARC4J API Summary .. 117
The org.marc4j Package ... 117

MarcReader .. 117
MarcWriter .. 117

The org.marc4j.marc Package .. 118
Record ... 118
Leader ... 119
VariableField .. 121
ControlField ... 121
DataField ... 122
Subfield ... 122
MarcFactory ... 123

The org.marc4j.converter Package .. 124
CharConverter ... 124

The org.marc4j.util Package ... 125
The org.marc4j.lucene Package .. 125

MarcIndexWriter .. 125
The org.marc4j.lucene.util Package .. 126

RecordUtils .. 126
QueryHelper .. 127

B. Command-line Reference .. 129
MARC to XML ... 129
XML Back to MARC .. 131
Indexing MARC with Lucene .. 132

References .. 135

Crosswalking

vi

List of Figures
1.1. MARCXML Record ...18
1.2. MODS Record ..23
3.1. Stylesheet Chain Output ..59
4.1. Luke Overview Tab ..76
5.1. Project Folder Structure ...84
5.2. SRU Project in Eclipse ...91
B.1. Indexing Schema .. 133

vii

viii

List of Tables
4.1. Default Indexing Schema ...70
5.1. Query Examples ... 102

ix

x

List of Examples
1.1. Reading MARC Data .. 5
1.2. A Check Agency Program ...13
1.3. Add Electronic Location ..15
1.4. Remove Local Fields ...16
1.5. Reading MARCXML Data ...20
1.6. Reading MARCXML from an InputSource ..22
1.7. Reading MODS Data ...25
1.8. MarcReader Implementation ...28
1.9. Driver for PersonalNamesReader ...30
2.1. Write MARC in ISO 2709 Format ...34
2.2. Write MARC in MARCXML Format ...35
2.3. Convert MARC-8 to UCS/Unicode ...39
2.4. Convert MARC to MARCXML ..40
2.5. Write MODS Data ...42
3.1. Writing Output To a DOM Document ..48
3.2. Formatting Output with the Xerces Serializer ...51
3.3. Reading MODS from Multiple Files ...54
3.4. Stylesheet Chain ...57
3.5. Output Dublin Core Title Element ...61
3.6. Dublin Core Writer ...63
3.7. Driver for DublinCoreWriter ...66
4.1. Creating an Index ...74
4.2. Searching the Index ...76
4.3. Searching the Index and Retrieving Records ...79
5.1. Basic Log4j Configuration ..85
5.2. The Ant Build File ...86
5.3. The Controller Class ..92
5.4. The Base Operation Class ..93
5.5. The UnsupportedOperation Class. ...95
5.6. Diagnostic Record ...96
5.7. The Deployment Descriptor ...97
5.8. The SearchGateway Class .. 100
5.9. JUnit Test for Gateway .. 103
5.10. The SearchRetrieveOperation Class .. 104
5.11. Method Implementation .. 104
5.12. The Dublin Core Stylesheet .. 106
5.13. The Updated Method .. 109
5.14. JSP Template for the Explain Response ... 113
5.15. The ExplainOperation Class ... 114

xi

xii

Preface
This concise book is for library programmers who want to learn to use MARC4J to
process MARC (Machine Readable Cataloging) data. MARC4J is an open source
software library for working with MARC records in Java™, a popular platform
independent programming language. The MARC format was originally designed to
enable the exchange of bibliographic data between computer systems by providing a
structure and format for the storage of bibliographic records on half-inch magnetic tape.
Though today most records are transferred by other media, the exchange format has not
changed since its first release in 1967 and is still widely used worldwide. At the same
time, there is a growing interest in the use of XML in libraries, mainly because the web is
moving towards a platform- and application-independent interface for information
services, with XML as its universal data format.

MARC4J is designed to bridge the gap between MARC and XML. The software library
has built-in support for reading and writing MARC and MARCXML data, thus
providing a programming environment for crosswalking: take records in one
bibliographic format as input and output these records in a different format. MARC4J
also provides a pipeline to enable MARC records to go through further transformations
using XSLT to convert MARC records to MODS (Metadata Object Description Schema),
Dublin Core or any other bibliographic format. This feature is particularly useful since
there is currently no agreed-upon standard for XML in library applications.

Although MARC4J can be used as a command-line tool for conversions between MARC
and XML, its main goal is to provide an Application Programming Interface (API) to
develop any kind of Java program or servlet that involves reading or writing MARC
data. The core piece is a MARC reader that hides the complexity of the MARC record by
providing a simple interface to extract information from MARC records. Support for
XML is implemented using the standard Java XML interfaces as specified in Sun's Java
API for XML Processing (JAXP). By limiting itself to the JAXP API, MARC4J is XML
processor-independent and easy to integrate in applications that build on industry
standards such as SAX (Simple API for XML), DOM (Document Object Model) or XSLT.

What You Should Already Know
This book assumes that you are interested in developing Java applications that involve
MARC data or one of the MARC related XML standards like MARCXML or MODS. You
have a basic understanding of a MARC format like MARC 21 or UNIMARC and are
familiar with the basics of XML and related standards like XML Namespaces and XSLT.
Working with MARC4J does not require exceptional skills in Java programming. The
API is designed to be easy to learn and easy to use and this book provides numerous
examples. If you have no experience with the Java programming language at all, you
should start with getting familiar with the basic concepts of the language. The Tutorials

xiii

and Online Training section on the Sun Developer Network (SDN) provides some good
introductory tutorials on the Java programming language.

Organization of This Book
This book is divided into the following chapters:

Chapter 1, Reading Data
Chapter 1 provides a short introduction about MARC formats and then focuses on
reading MARC and MARCXML data. This chapter also explains how to create and
update records and how to pre-process the input to convert MODS to MARC.

Chapter 2,Writing Data
Chapter 2 concentrates on the details of writing MARC and MARCXML data and
how to post-process the output to convert MARC to MODS.

Chapter 3,MARC4J and JAXP
Chapter 3 explores integration with some important Java XML API's including JAXP,
SAX and DOM. It demonstrates how to write the result to a DOM document, how to
format XML output using a dedicated XML serializer, how to build pipelines using
XSLT and how to use the SAX interface as an alternative to XSLT.

Chapter 4, Indexing with Lucene
Chapter 4 concentrates on indexing and searching MARC data with Apache Lucene
using the MARC4J Lucene API.

Chapter 5, Putting It All Together
Chapter 5 focuses on building an SRU Search/Retrieve web application using the
various MARC4J interfaces and classes to process MARC data and using Lucene for
indexing and searching.

Appendix A,MARC4J API Summary
Appendix A provides a summary of the core MARC4J interfaces and classes.

Appendix B, Command-line Reference
Appendix B documents the command-line programs included in the MARC4J API.

Organization of This Book

xiv

Conventions Used in This Book
The following conventions are used in this book.

Typographic Conventions

method()
Used for method names.

class, interface or package
Used for names identifying classes, interfaces and packages.

element, attribute
Used for XML mark-up.

command
Used for commands.

parameter
Used for replaceable items in code and text.

file
Used for file and directory names.

Icons
Note

This icon designates a note relating to the surrounding text.

Tip

This icon designates a helpful tip relating to the surrounding text.

Warning

This icon designates a warning relating to the surrounding text.

Conventions Used in This Book

xv

Getting the Software
You can download a MARC4J distribution at http://marc4j.tigris.org. On the project
home page you can find a direct link to the latest release. You can also find links to
MARC4J distributions on the Documents & Files page. A link to this page can be found
in the Project Tools menu. The latest version at the time of this writing was MARC4J
2.3.1. The download includes Javadoc documentation, source code and two JAR files:
marc4j.jar and normalizer.jar. Add both files to your CLASSPATH environment
variable.

Note

Starting from release 2.0, MARC4J was completely rebuilt. The 2.0 and later
releases are not compatible with older versions of MARC4J. The event based
parser in the older versions is replaced by an easier to use interface that uses a
simple iterator over a collection of MARC records.

MARC4J requires Java 2 Standard Edition (J2SE) 1.4 or later because it requires the
java.util.regex package to provide support for regular expressions. Some classes
contained in this package are used by the find()methods introduced in MARC4J
version 2.1. The J2SE distribution already contains the JAXP and SAX2 compliant XML
parser and XSLT processor required by MARC4J, but you can use a different
implementation.

Getting Examples from This Book
Most of the examples from chapter 1, 2 and 3 are available in the package
org.marc4j.samples of the MARC4J distribution. Look in the src directory in the
distribution for the Java source code. The SRU Search/Retrieve web application from
chapter 5 is available for download from the Documents & Files section of the MARC4J
project site (http://marc4j.tigris.org).

Acknowledgments
The first published version of MARC4J was released in February 2002 as James (Java
MARC Events). The name of the library changed to MARC4J when the project was
accepted by Tigris.org, an open source community for Software Engineering Tools
hosted by Collabnet. Originally the library provided an event based parser like the SAX
(Simple API for XML) interface, but for release 2.0 the parser was rewritten to provide an
easier to use interface.

Getting the Software

xvi

http://marc4j.tigris.org

A problem with open source software is that you do not exactly know who your users
are. I received questions and bug fixes from developers from all over the world.
Although MARC has been declared dead several times, this shows that the standard is
still used in many countries. At the same time a growing number of libraries are
migrating their bibliographic data to other environments to transform their call-number
lookup systems into 21st century resource discovery systems. MARC4J has proved to be
a helpful tool in these environments.

I'd like to thank all the contributors who helped me to improve MARC4J. I haven't been
involved in library programming in recent years, but I am still committed to continue
development of MARC4J, although it is sometimes difficult to find time.

This book contains many references to the Library of Congress, the agency that
maintains most of the standards implemented by MARC4J, but neither this book nor the
MARC4J software is by any means affiliated with this institution.

Acknowledgments

xvii

xviii

Chapter 1. Reading Data
MARC Formats

MARC records consist of structure, markup and content. These components are specified
in MARC formats. The first MARC format was developed by the Library of Congress in
the sixties for the exchange of bibliographic data using half-inch magnetic tape. Work on
the standard was directed towards the development of an international standard, but
most countries have since developed national formats. To enable the exchange of
bibliographic records between national agencies, the UNIMARC standard was
developed. The first UNIMARC edition was published in 1977. Since 1997 the national
formats used by the United States (USMARC), Canada (CANMARC) and the United
Kingdom (UKMARC) are merged into the MARC 21 standard.

The structure of all MARC records is based on an exchange format for bibliographic
records as specified in the ANSI/NISO Z39.2 and ISO 2709:1996 standards. The markup
and content is different for the different national formats and reflects the standards used
related to cataloging like cataloging rules, classification scheme's and subject headings.
Since all MARC formats use the same structure, MARC4J should have no problem
reading them. The examples in this book are based on the MARC 21 format.

The structure of a MARC record is pretty straightforward, but it is not human-readable.
It consists of a byte stream with four building blocks:

Leader
The leader is a fixed length field of 24 characters containing record processing
information like the record length, the status of the record, the type of material being
cataloged and the base address of data. The base address of data is the starting
position for the variable fields.

Directory
The directory immediately follows the leader and provides an index to the fields. For
each field the directory provides an entry containing the field identifier or tag (three
digits), the field length (four digits) and the starting position (five digits). The
directory is terminated by a field separator. The following example is a single
directory entry:

245007800172

1

In this example a variable field identified by tag 245 has a length of 78 characters and
starts at character position 172 relative to the base address of data.

Variable Fields
The variable fields containing the actual record content follow after the directory.
There are three kinds of variable fields:

• control number field (a special control field identified by tag 001)

• control fields (identified by tags 002 through 009)

• data fields (identified by tags 010 through 999)

Each variable field is terminated by a field separator. The control number field
should always be the first field. Control fields contain only data, but the structure of
a data field is slightly more complex. A data field can contain indicators and
subfields. Indicators are single character data elements that can contain additional
data for a field. In MARC 21, for example, fields with title information use an
indicator for the number of non-filing characters to enable a computer program to
ignore articles. A subfield is identified by a single character, called a data element
identifier or subfield code, preceded by a subfield delimiter.

The example which follows represents a data field for tag 245 (title statement). The
dollar sign represents a subfield delimiter. The two digits following the tag are the
indicator values. The first indicator indicates that a title added entry is to be
generated from this field and the second indicator specifies the number of non-filing
characters. This field has two subfields. Subfield $a contains the title proper and
subfield $c the statement of responsibility.

245 10$aSummerland /$cMichael Chabon.

Record Terminator
The record terminator is the final character of the record.

The MARC4J API is not a full implementation of the ANSI/NISO Z39.2 or ISO 2709:1996
standard. The standard is implemented as it is used in the different MARC formats. The
MARC4J parser assumes that there are 2 indicators and that the subfield code length is 2.
Subrecords are not supported.

The use of MARC4J is not limited to records in ISO 2709 format. MARC4J can handle all
kinds of bibliographic XML formats, like MODS and Dublin Core, through MARCXML
that serves as an intermediary format. It is also possible to implement the interfaces used
for reading and writing data to provide support for other bibliographic formats.

MARC Formats

2

Introducing MARC4J
For reading MARC data, MARC4J provides implementations of an interface called
MarcReader. This interface has two methods that provide an iterator to read MARC
data from an input source:

hasNext()
Returns true if the iteration has more records, false otherwise.

next()
Returns the next record in the iteration as a Record object.

If you are familiar with the Java Collections Framework you might have used iterators.
When you have a List in Java, you can access the items on the list through an
Iterator that can be obtained from the List object:

Iterator i = list.iterator();
while (i.hasNext()) {

Object item = i.next();
// do something with the item object

}

Tip

It is recommended to have the Java 2 Standard Edition (J2SE) documentation at
hand when programming with MARC4J. MARC4J uses standard Java language
features where possible, making it an easy API to work with for Java developers.
The J2SE documentation is available on Sun's Developer Network (SDN) site.

MARC4J provides two classes that implement MarcReader:

MarcStreamReader
An iterator over a collection of MARC records in ISO 2709 format.

MarcXmlReader
An iterator over a collection of MARC records in MARCXML format.

Introducing MARC4J

3

Let's start with reading MARC records in ISO 2709 format. To do this you need to import
three MARC4J classes:

import org.marc4j.MarcReader;
import org.marc4j.MarcStreamReader;
import org.marc4j.marc.Record;

The MarcReader interface and the MarcStreamReader class are required to read
MARC data. The Record interface provides an in-memory representation of a MARC
record. To read MARC data you need an input stream to read records from, for example
one that reads input from a local file:

InputStream in = new FileInputStream("summerland.mrc");

You can instantiate an InputStream using a File object:

File file = new File("/Users/bpeters/Documents", "summerland.mrc");
InputStream in = new FileInputStream(file);

Once you have an input stream, you can initialize the MarcReader implementation:

MarcReader reader = new MarcStreamReader(in);

It is possible to read directly from a URL using the java.net.URL class:

URL url = new URL(
"http://www.loc.gov/standards/marcxml/Sandburg/sandburg.mrc");

MarcReader reader = new MarcStreamReader(url.openStream());

After instantiating a MarcReader implementation, you can start reading records from
the input stream:

Introducing MARC4J

4

while (reader.hasNext()) {
Record record = reader.next();

}

If you want to examine the records, you can write each record to standard output using
the toString()method:

System.out.println(record.toString());

Example 1.1, “Reading MARC Data” shows the complete program. It reads records from
a file summerland.mrc located in the current directory and writes each record to
standard output using the toString()method.

Example 1.1. Reading MARC Data

import org.marc4j.MarcReader;
import org.marc4j.MarcStreamReader;
import org.marc4j.marc.Record;
import java.io.InputStream;
import java.io.FileInputStream;

public class ReadMarcExample {

public static void main(String args[]) throws Exception {

InputStream in = new FileInputStream("summerland.mrc");
MarcReader reader = new MarcStreamReader(in);
while (reader.hasNext()) {

Record record = reader.next();
System.out.println(record.toString());

}

}

}

Introducing MARC4J

5

When you compile and run this program, it will write each record in tagged display
format to standard output, like this:

LEADER 00714cam a2200205 a 4500
001 12883376
005 20030616111422.0
008 020805s2002 nyu j 000 1 eng
020 $a0786808772
020 $a0786816155 (pbk.)
040 $aDLC$cDLC$dDLC
100 1 $aChabon, Michael.
245 10$aSummerland /$cMichael Chabon.
250 $a1st ed.
260 $aNew York :$bMiramax Books/Hyperion Books for Children,$cc2002.
300 $a500 p. ;$c22 cm.
520 $aEthan Feld, the worst baseball player in the history of the game,
finds himself recruited by a 100-year-old scout to help a band of
fairies triumph over an ancient enemy.

650 1$aFantasy.
650 1$aBaseball$vFiction.
650 1$aMagic$vFiction.

Note

The record for Summerland by Michael Chabon is used as an example throughout
this book. The cataloging agency is the Library of Congress.

When instantiating a MarcStreamReader, it is possible to add the character encoding
as an argument. MARC4J reads ISO 2709 records as binary data, but data elements in
control fields and subfields are converted to String values. When Java decodes a byte
array to a String, it needs a character encoding. The default encoding used by
MarcStreamReader is ISO 8859-1 (Latin 1). Most character encodings used in MARC
formats are 8-bits encodings, like ISO 8859-1, but encodings such as MARC-8 are not
directly supported by Java. When parsing MARC 21 data, MarcStreamReader tries to
detect the encoding from the character coding scheme in the leader (character position 9).
If the value is 'a', UTF-8 is used, otherwise the reader uses the default encoding. You can
always override the default encoding when instantiating a MarcStreamReader using a
Java encoding name:

// decode data elements as UTF-8
MarcReader reader = new MarcStreamReader(in, "UTF8");

Introducing MARC4J

6

// decode data elements as Latin-2
MarcReader reader = new MarcStreamReader(in, "ISO8859_2");

// decode data elements as KOI8-R, Russian
MarcReader reader = new MarcStreamReader(in, "KOI8_R");

It is not required to read records from an input stream using a while() loop. If you
know that your input data only contains a single record, you can simply read the record
using the next()method:

MarcReader reader = new MarcStreamReader(input);
Record record = reader.next();
System.out.println(record.toString());

You can check for a record using an if statement:

MarcReader reader = new MarcStreamReader(input);

if (reader.hasNext()) {
Record record = reader.next();
System.out.println(record.toString());

} else {
System.err.println("Reader has no record.");

}

This can be useful when a different class reads each single record as a byte stream. You
can then create a ByteArrayInputStream using the constructor that takes a byte array
as a parameter and use that to initialize the MarcReader implementation. Let's assume
that we have a byte array bytes containing the byte stream for a single record in ISO 2709
format. The following listing shows how you can create a Record instance from this
byte array:

// we have a byte array called bytes
InputStream in = new ByteArrayInputStream(bytes);

MarcReader reader = new MarcStreamReader(in);
if (reader.hasNext()) {

Record record = reader.next();

Introducing MARC4J

7

System.out.println(record.toString());
} else {

System.err.println("Reader has no record.");
}

When a MarcReader implementation encounters a parse error, a MarcException is
thrown by the reader. This is an unchecked exception that you are not required to catch.
If however you want to recover errors in your application, you can add exception
handling by adding a try and catch block to your code:

try {
MarcReader reader = new MarcStreamReader(input);
Record record = reader.next();
System.out.println(record.toString());

} catch (MarcException e) {
System.err.println("exception thrown");

}

The Record Object Model
The Record interface is the root of the record object model implemented by MARC4J. It
provides access to the leader and variable fields. You can use it to read, add, move or
remove data elements contained in the leader and variable fields. The record object
model is implemented in the org.marc4j.marc package. The core interfaces are
Record, Leader, VariableField, ControlField, DataField and Subfield. This
section covers the most important interfaces and methods the record object model
provides. Check Appendix A,MARC4J API Summary for a complete overview.

The following method returns the leader:

Leader leader = record.getLeader();

The Leader interface provides access to all the leader values. While the Leader
represents mostly MARC structural information, some character positions provide
useful bibliographic information. The method getTypeOfRecord(), for example,
identifies the type of material being cataloged, such as language material, cartographic
material, musical sound recording, or computer file.

The Record Object Model

8

There are several methods available to retrieve variable fields. The method
getVariableFields() returns all variable fields as a List object, but in most cases
you will use methods that provide more control. The following method returns all
control fields:

// returns fields for tags 001 through 009
List fields = record.getControlFields();

And this method returns all data fields:

// returns fields for tags 010 through 999
List fields = record.getDataFields();

Both ControlField and DataField are sub-interfaces of the VariableField
interface that provides access to the tag through the getTag()method. For control
fields MARC4J does not provide you with the level of detail you might expect. You can
retrieve the data using the getData()mehod. To retrieve specific data elements at
character positions, you need to use some standard Java. This is because MARC4J is
designed to handle different MARC formats like MARC 21 and UNIMARC. To retrieve a
data element in a control field, such as the language of the item, you can do something
like this:

// get control field with tag 008
ControlField field = (ControlField) record.getVariableField("008");
String data = field.getData();

// the three-character MARC language code takes character positions 35-37
String lang = data.substring(35,38);
System.out.println("Language: " + lang);

For the Summerland record used in Example 1.1, “Reading MARC Data”, this code would
produce the following output:

Language: eng

The Record Object Model

9

MARC4J provides two methods to read the control number. Use the method
getControlNumberField() to retrieve the ControlField instance for tag 001, or
use getControlNumber() to retrieve the control number as a String object.

The code listing that demonstrated how to retrieve the language also showed how you
can retrieve variable fields for a given tag using the getVariableField(String
tag)method. There are several methods to retrieve specific fields. Use
getVariableField(String tag) to retrieve the first field occurrence for a given
tag:

DataField title = (DataField) record.getVariableField("245");

Use getVariableFields(String tag) to retrieve all occurrences:

List subjects = record.getVariableFields("650");

You can add multiple tag values using a String array as an argument:

String[] tags = {"010", "100", "245", "250", "260", "300"};
List fields = record.getVariableFields(tags);

These methods return instances of VariableField, so if you need to access methods
that are specific to the ControlField or DataField interface, you need to cast the
instance of VariableField to the specific subclass:

// cast a variable field to a control field
ControlField field = (ControlField) record.getVariableField("008");

// cast a variable field to a data field
DataField field = (DataField) record.getVariableField("245");

Where the ControlField interface requires only one method to retrieve the data
element, the DataField interface is slightly more complex, since it has indicators and
subfields. You can retrieve the indicators using the getIndicator1() and
getIndicator2()methods. Subfields are represented by the Subfield interface. The

The Record Object Model

10

Subfield interface has a getCode()method to retrieve the subfield code and a
getData()method to retrieve the data element.

The following code listing retrieves the title information field and writes the tag,
indicators and subfields to standard output:

DataField field = (DataField) record.getVariableField("245");

String tag = field.getTag();
char ind1 = field.getIndicator1();
char ind2 = field.getIndicator2();

System.out.println("Tag: " + tag + " Indicator 1: " + ind1 +
" Indicator 2: " + ind2);

List subfields = field.getSubfields();
Iterator i = subfields.iterator();

while (i.hasNext()) {

Subfield subfield = (Subfield) i.next();
char code = subfield.getCode();
String data = subfield.getData();

System.out.println("Subfield code: " + code +
" Data element: " + data);

}

For the Summerland record, this would produce the following output:

Tag: 245 Indicator 1: 1 Indicator 2: 0
Subfield code: a Data element: Summerland /
Subfield code: c Data element: Michael Chabon.

The DataField interface also provides methods to retrieve specific subfields:

// retrieve the first occurrence of subfield with code 'a'
Subfield subfield = field.getSubfield('a');

The Record Object Model

11

// retrieve all subfields with code 'a'
List subfields = field.getSubfields('a');

The following listing uses getSubfield(char code) to retrieve the title proper. It
then removes the non-sort characters:

// get data field 245
DataField field = (DataField) record.getVariableField("245");

// get indicator 2
char ind2 = field.getIndicator2();

// get the title proper
Subfield subfield = field.getSubfield('a');
String title = subfield.getData();

// remove the non sorting characters
int nonSort = Character.digit(ind2, 10);
title = title.substring(nonSort);

In addition to retrieving fields by tag name, you can also retrieve fields by data element
values using the find()methods. The search capabilities are limited, but they can be
useful when processing records. This method call retrieves all fields that contain the text
'Chabon':

List fields = record.find("Chabon");

You can add a tag value to limit the result to a particular tag. The following example
limits the fields that are searched to the title statement:

List fields = record.find("245", "Summerland");

You can add multiple tag values using a String array. To find 'Graham, Paul' in main
or added entries for a personal name:

The Record Object Model

12

String tags = {"100", "600"};
List fields = record.find(tags, "Graham, Paul")

The find()method is also useful if you need to retrieve records that meet certain
criteria, such as a specific control number, title words or a particular publisher or subject.
Example 1.2, “A Check Agency Program” shows a complete example. It checks if the
cataloging agency is DLC. It also shows how you can extend the find capabilities to
specific subfields. This feature is not directly available in MARC4J, since it is easy to
accomplish using the record object model together with the standard Java API's.

Example 1.2. A Check Agency Program

import java.io.InputStream;
import java.io.FileInputStream;
import org.marc4j.MarcReader;
import org.marc4j.MarcStreamReader;
import org.marc4j.marc.Record;
import org.marc4j.marc.DataField;
import java.util.List;

public class CheckAgencyExample {

public static void main(String args[]) throws Exception {

InputStream input = new FileInputStream("file.mrc");

MarcReader reader = new MarcStreamReader(input);
while (reader.hasNext()) {

Record record = reader.next();

// check if the cataloging agency is DLC
List result = record.find("040", "DLC");
if (result.size() > 0)

System.out.println("Agency for this record is DLC");

// it is not possible to specify a subfield code
// so to check if it is the original cataloging agency
DataField field = (DataField)result.get(0);
String agency = field.getSubfield('a').getData();

The Record Object Model

13

if (agency.matches("DLC"))
System.out.println("DLC is the original agency");

}
}

}

By using find() you can also implement search and replace functionalities to batch
update records that meet certain criteria. You can use Java regular expressions. Check
the java.util.regex package for more information and examples about pattern
matching.Mastering Regular Expressions by Jeffrey E.F. Friedl is an excellent book if you
want to learn more about regular expressions. It also covers the java.util.regex
package.

Creating and Updating Records
You can use the record object model to create or update records. This is done using the
MarcFactory. This class provides a number of helper methods to create instances of
Record, Leader, ControlField, DataField and Subfield implementations. The
following listing demonstrates some of the features MarcFactory provides by creating
a minimal level record from scratch. It contains the control number field and a single
data field holding the title proper and statement of responsibility.

// create a factory instance
MarcFactory factory = MarcFactory.newInstance();

// create a record with leader
Record record = factory.newRecord("00000cam a2200000 a 4500");

// add a control field
record.addVariableField(factory.newControlField("001", "12883376"));

// create a data field
DataField dataField = factory.newDataField("245", '1', '0');
dataField.addSubfield(factory.newSubfield('a', "Summerland /"));
dataField.addSubfield(factory.newSubfield('c', "Michael Chabon."));

// add the data field to the record
record.addVariableField(dataField);

Creating and Updating Records

14

The main purpose of the MarcFactory class is to enable you to update existing records.
In Example 1.3, “Add Electronic Location” it is used to add an electronic location to the
Summerland record.

Example 1.3. Add Electronic Location

import java.io.InputStream;
import java.io.FileInputStream;
import org.marc4j.MarcReader;
import org.marc4j.MarcStreamReader;
import org.marc4j.marc.DataField;
import org.marc4j.marc.MarcFactory;
import org.marc4j.marc.Record;

public class AddLocationExample {

public static void main(String args[]) throws Exception {

InputStream in = new FileInputStream("summerland.mrc");

MarcFactory factory = MarcFactory.newInstance();

MarcReader reader = new MarcStreamReader(in);
while (reader.hasNext()) {

Record record = reader.next();

DataField field = factory.newDataField("856", '4', '2');

field.addSubfield(factory.newSubfield('3',
"Contributor biographical information"));

field.addSubfield(factory.newSubfield('u',
"http://en.wikipedia.org/wiki/Michael_Chabon"));

record.addVariableField(field);

System.out.println(record.toString());
}

}

}

Creating and Updating Records

15

In this example, the MarcFactory instance is used to create the DataField and the
two subfields containing the data elements for the electronic location. The new data field
is then added to the Record instance. When you compile and run this program, it will
write the Summerland record to standard output with the new field containing the
reference to the biographical information about the author:

LEADER 00714cam a2200205 a 4500
001 12883376
005 20030616111422.0
008 020805s2002 nyu j 000 1 eng
020 $a0786808772
020 $a0786816155 (pbk.)
040 $aDLC$cDLC$dDLC
100 1 $aChabon, Michael.
245 10$aSummerland /$cMichael Chabon.
250 $a1st ed.
260 $aNew York :$bMiramax Books/Hyperion Books for Children,$cc2002.
300 $a500 p. ;$c22 cm.
520 $aEthan Feld, the worst baseball player in the history of the game,
finds himself recruited by a 100-year-old scout to help a band of
fairies triumph over an ancient enemy.

650 1$aFantasy.
650 1$aBaseball$vFiction.
650 1$aMagic$vFiction.
856 42$3Contributor biographical information$uhttp://en.wikipedia.org/
wiki/Michael_Chabon

Since one of the design goals of the record object model was to keep the interface as
simple as possible, there are no specific methods to execute such operations as removing
fields based on particular conditions. This means that you have to write such methods
yourself. Example 1.4, “Remove Local Fields” removes all local fields (tags 9XX) from the
record read from the input stream. It will first write the original record to standard
output and then the updated record without the local fields.

Example 1.4. Remove Local Fields

import java.io.InputStream;
import java.io.FileInputStream;
import java.util.Iterator;
import java.util.List;

Creating and Updating Records

16

import java.util.regex.Matcher;
import java.util.regex.Pattern;
import org.marc4j.MarcReader;
import org.marc4j.MarcStreamReader;
import org.marc4j.marc.DataField;
import org.marc4j.marc.Record;

public class RemoveLocalFieldsExample {

public static void main(String args[]) throws Exception {

InputStream in = new FileInputStream("summerland.mrc");

Pattern pattern = Pattern.compile("9\\d\\d");

MarcReader reader = new MarcStreamReader(input);
while (reader.hasNext()) {

Record record = reader.next();

System.out.println(record.toString());

List fields = record.getDataFields();

Iterator i = fields.iterator();
while (i.hasNext()) {

DataField field = (DataField) i.next();
Matcher matcher = pattern.matcher(field.getTag());
if (matcher.matches())

i.remove();
}

System.out.println(record.toString());
}

}
}

A regular expression is used to match all tags that start with a 9 followed by two digits:

Pattern pattern = Pattern.compile("9\\d\\d");

Creating and Updating Records

17

The getDataFields()method returns the List instance that holds the DataField
objects for the record, so you can directly manipulate this list using the Iterator class.
Each tag in the list of data fields is matched against the pattern. If there is a match, the
field is removed from the list using the Iterator.remove()method:

Matcher matcher = pattern.matcher(field.getTag());
if (matcher.matches())

i.remove();

You can directly manipulate the List objects returned by the getControlFields()
and getDataFields()methods, but you cannot directly manipulate the List object
returned by the getVariableFields()method. You can use the method
removeVariableField(VariableField) in these cases.

Reading MARCXML Data
Until now we have been processing MARC data in ISO 2709 format, but you can also
read MARC data in MARCXML format. The MARC 21 XML schema was published in
June 2002 by the Library of Congress to encourage the standardization of MARC 21
records in XML environments. The schema was developed in collaboration with OCLC
and RLG after a survey of schema's that were used in various projects trying to bridge
the gap between MARC and XML, including a MARCXML schema developed by the
OAI (Open Archives Initiative) and the one used in early releases of MARC4J. The
MARCXML schema is specified in a W3C XML Schema and provides lossless conversion
between MARC ISO 2709 and MARCXML. As a consequence, information in a
MARCXML record enables recreation of a MARC ISO 2709 record without loss of data.
Figure 1.1, “MARCXML Record” shows the record for Summerland by Michael Chabon in
MARCXML:

Figure 1.1. MARCXML Record

<?xml version="1.0" encoding="UTF-8"?>
<collection xmlns="http://www.loc.gov/MARC21/slim">
<record>
<leader>00714cam a2200205 a 4500</leader>
<controlfield tag="001">12883376</controlfield>
<controlfield tag="005">20030616111422.0</controlfield>
<controlfield tag="008">020805s2002 nyu j 0

00 1 eng </controlfield>

Reading MARCXML Data

18

<datafield tag="020" ind1=" " ind2=" ">
<subfield code="a">0786808772</subfield>

</datafield>
<datafield tag="020" ind1=" " ind2=" ">
<subfield code="a">0786816155 (pbk.)</subfield>

</datafield>
<datafield tag="040" ind1=" " ind2=" ">
<subfield code="a">DLC</subfield>
<subfield code="c">DLC</subfield>
<subfield code="d">DLC</subfield>

</datafield>
<datafield tag="100" ind1="1" ind2=" ">
<subfield code="a">Chabon, Michael.</subfield>

</datafield>
<datafield tag="245" ind1="1" ind2="0">
<subfield code="a">Summerland /</subfield>
<subfield code="c">Michael Chabon.</subfield>

</datafield>
<datafield tag="250" ind1=" " ind2=" ">
<subfield code="a">1st ed.</subfield>

</datafield>
<datafield tag="260" ind1=" " ind2=" ">
<subfield code="a">New York :</subfield>
<subfield code="b">Miramax Books/Hyperion Books for

Children,</subfield>
<subfield code="c">c2002.</subfield>

</datafield>
<datafield tag="300" ind1=" " ind2=" ">
<subfield code="a">500 p. ;</subfield>
<subfield code="c">22 cm.</subfield>

</datafield>
<datafield tag="520" ind1=" " ind2=" ">
<subfield code="a">Ethan Feld, the worst baseball player in the

history of the game, finds himself recruited by a 100-year-old scout
to help a band of fairies triumph over an ancient enemy.</subfield>
</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="a">Fantasy.</subfield>

</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="a">Baseball</subfield>
<subfield code="v">Fiction.</subfield>

</datafield>
<datafield tag="650" ind1=" " ind2="1">
<subfield code="a">Magic</subfield>

Reading MARCXML Data

19

<subfield code="v">Fiction.</subfield>
</datafield>

</record>
</collection>

As you can see the markup and content are still the same. The variable fields have tags
and the data fields have indicators and subfields identified by a code. The only
difference from the record in ISO 2709 format is that the MARCXML record is structured
using XML markup. There is even data present that has no meaning outside the ISO 2709
format, like the record length and the base address of data in the leader. A MARCXML
record is more readable than a record in ISO 2709 format, but it is still not very user
friendly, because it uses the numeric tags instead of language-based elements, like for
example title or subject. It is not the goal of MARCXML to provide a markup that is end
user oriented. The only purpose of MARCXML is to bridge the gap between MARC and
XML. Where ISO 2709 is an exchange format, MARCXML is an intermediary format.

Reading MARCXML data is not different from reading MARC data in ISO 2709 format,
but the MARCXML reader provides some additional XML related features. Example 1.5,
“Reading MARCXML Data” is similar to Example 1.1, “Reading MARC Data”, but now
reading a file containing records in MARCXML format.

Example 1.5. Reading MARCXML Data

import org.marc4j.MarcReader;
import org.marc4j.MarcXmlReader;
import org.marc4j.marc.Record;
import java.io.InputStream;
import java.io.FileInputStream;

public class ReadMarcXmlExample {

public static void main(String args[]) throws Exception {

InputStream in = new FileInputStream("summerland.xml");

MarcReader reader = new MarcXmlReader(in);

while (reader.hasNext()) {
Record record = reader.next();
System.out.println(record.toString());

Reading MARCXML Data

20

}
}

}

When you compile and run this program, it will write each record in tagged display
format to standard output:

LEADER 00714cam a2200205 a 4500
001 12883376
005 20030616111422.0
008 020805s2002 nyu j 000 1 eng
020 $a0786808772
020 $a0786816155 (pbk.)
040 $aDLC$cDLC$dDLC
100 1 $aChabon, Michael.
245 10$aSummerland /$cMichael Chabon.
250 $a1st ed.
260 $aNew York :$bMiramax Books/Hyperion Books for Children,$cc2002.
300 $a500 p. ;$c22 cm.
520 $aEthan Feld, the worst baseball player in the history of the
game, finds himself recruited by a 100-year-old scout to help a
band of fairies triumph over an ancient enemy.

650 1$aFantasy.
650 1$aBaseball$vFiction.
650 1$aMagic$vFiction.

Instead of using an instance of InputStream, you can create a MarcXmlReader using
an instance of InputSource. The InputSource class is part of the SAX (Simple API
for XML) interface. It has several constructors to provide input data to the underlying
XML parser that is used to create Record objects from the MARCXML document. The
following list summarizes the most important features:

InputSource(String)
Use this constructor to provide data from a fully qualified URI, including http://,
file:// or ftp://.

InputSource(java.io.Reader)
Use this constructor to provide pre-decoded data to the parser. The parser will
ignore the character encoding in the XML declaration.

Reading MARCXML Data

21

InputSource(java.io.InputStream)
Use this constructor to provide binary data to the parser. The parser will then try to
detect the encoding from the binary data or the XML declaration.

InputSource.setEncoding(String)
Use this method to specify the character encoding of the XML data that is provided
to the parser.

Example 1.6, “Reading MARCXML from an InputSource” reads data from a given
HTTP address using a MarcXmlReader constructor that takes an instance of
InputSource as a parameter.

Example 1.6. Reading MARCXML from an InputSource

import org.marc4j.MarcReader;
import org.marc4j.MarcXmlReader;
import org.marc4j.marc.Record;
import org.xml.sax.InputSource;

public class ReadFromInputSourceExample {

public static void main(String args[]) throws Exception {

String systemId =
"http://www.loc.gov/standards/marcxml/Sandburg/sandburg.xml";

InputSource input = new InputSource(systemId);

MarcReader reader = new MarcXmlReader(input);

while (reader.hasNext()) {
Record record = reader.next();
System.out.println(record.toString());

}

}

}

Reading MODS Data

22

Reading MODS Data
Let's look at some of the specific XML related features of MarcXmlReader. The most
interesting feature is that you can pre-process the input using a stylesheet. This enables
you to create a stylesheet in XSLT that transforms XML data to MARCXML. You can
then process the result like you would do with MARCXML or MARC in ISO 2709
format. To demonstrate this feature we will use MARC4J to create Record objects from
MODS data.

MODS is a schema for a bibliographic element set that is maintained by the Library of
Congress. The schema provides a subset of the MARC standard, but an advantage to the
MARCXML format is that it uses language-based tags rather than numeric ones. MODS
can carry selected data from existing MARC records, but the standard also enables the
creation of original resource description records. The MODS syntax is richer than the
Dublin Core element set, but it is simpler to apply than the full MARC 21 bibliographic
format. Figure 1.2, “MODS Record” shows a bibliographic record for Summerland by
Michael Chabon in MODS.

Figure 1.2. MODS Record

<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods version="3.0">
<titleInfo>
<title>Summerland</title>

</titleInfo>
<name type="personal">
<namePart>Chabon, Michael.</namePart>
<role>
<roleTerm authority="marcrelator" type="text">creator</roleTerm>

</role>
</name>
<typeOfResource>text</typeOfResource>
<originInfo>
<place>
<placeTerm type="code" authority="marccountry">nyu</placeTerm>

</place>
<place>
<placeTerm type="text">New York</placeTerm>

</place>
<publisher>Miramax Books/Hyperion Books for Children</publisher>
<dateIssued>c2002</dateIssued>

Reading MODS Data

23

<dateIssued encoding="marc">2002</dateIssued>
<edition>1st ed.</edition>
<issuance>monographic</issuance>

</originInfo>
<language>
<languageTerm authority="iso639-2b" type="code">eng</languageTerm>

</language>
<physicalDescription>
<form authority="marcform">print</form>
<extent>500 p. ; 22 cm.</extent>

</physicalDescription>
<abstract>Ethan Feld, the worst baseball player in the history of

the game, finds himself recruited by a 100-year-old scout to help a
band of fairies triumph over an ancient enemy.</abstract>
<targetAudience authority="marctarget">juvenile</targetAudience>
<note type="statement of responsibility">Michael Chabon.</note>
<subject>
<topic>Fantasy</topic>

</subject>
<subject>
<topic>Baseball</topic>
<topic>Fiction</topic>

</subject>
<subject>
<topic>Magic</topic>
<topic>Fiction</topic>

</subject>
<identifier type="isbn">0786808772</identifier>
<identifier type="isbn">0786816155 (pbk.)</identifier>
<recordInfo>
<recordContentSource authority="marcorg">DLC</recordContentSource>
<recordCreationDate encoding="marc">020805</recordCreationDate>
<recordIdentifier>12883376</recordIdentifier>

</recordInfo>
</mods>

</modsCollection>

The Library of Congress provides a stylesheet that transforms MODS to MARCXML.
Using this stylesheet you can process the bibliographic information contained in a
collection of MODS records as MARC data. To do this, you need to add the stylesheet
location as an argument when you create the MarcXmlReader instance. Example 1.7,
“Reading MODS Data” shows the code to create Record objects from MODS input.

Reading MODS Data

24

Example 1.7. Reading MODS Data

import org.marc4j.MarcReader;
import org.marc4j.MarcXmlReader;
import org.marc4j.marc.Record;
import java.io.InputStream;
import java.io.FileInputStream;

public class ModsToMarc21Example {

public static void main(String args[]) throws Exception {

String stylesheetUrl =
"http://www.loc.gov/standards/marcxml/xslt/MODS2MARC21slim.xsl";

InputStream in = new FileInputStream("mods.xml");
MarcReader reader = new MarcXmlReader(in, stylesheetUrl);
while (reader.hasNext()) {

Record record = reader.next();
System.out.println(record.toString());

}

}

}

The stylesheetUrl variable contains a reference to the location of the XSLT stylesheet.
It is passed as an argument on creation of the MarcXmlReader. The reader first
transforms the MODS data to MARCXML using the given stylesheet. The XSLT output is
then parsed by the MarcXmlReader to create Record objects. When you compile and
run this program, it will write the converted data from the MODS document to standard
output:

LEADER 00000nam 2200000uu 4500
001 12883376
005 20030616111422.0
008 020805|2002 nyu||||j |||||||||||eng||
020 $a0786808772
020 $a0786816155 (pbk.)

Reading MODS Data

25

040 $aDLC
100 1 $aChabon, Michael.$ecreator
245 10$aSummerland$cMichael Chabon.
250 $a1st ed.
260 $aNew York$bMiramax Books/Hyperion Books for Children$cc2002$c2002
300 $a500 p. ; 22 cm.
520 $aEthan Feld, the worst baseball player in the history of the
game, finds himself recruited by a 100-year-old scout to help a band
of fairies triumph over an ancient enemy.

650 1 $aFantasy
650 1 $aBaseball$xFiction
650 1 $aMagic$xFiction

In addition to the stylesheet to transform MODS data to MARCXML, the Library of
Congress provides the following stylesheets that transform different bibliographic
formats to MARCXML:

Dublin Core to MARCXML Stylesheet
The Dublin Core metadata standard is a simple element set for describing a wide
range of networked resources. The Dublin Core basic element set comprises fifteen
elements such as title, creator, publisher, date, description, subject and identifier.
Each element is optional and may be repeated.

OAI MARC to MARCXML Stylesheet
The OAI (Open Archives Initiative) MARC schema was developed for the exchange
of MARC records using OAI protocols.

ONIX to MARCXML Stylesheet
The ONIX schema is an international standard for representing and communicating
book industry product information in electronic form.

MARC DTD to MARCXML Stylesheet
The MARC DTD's were developed in the mid 1990's to support the conversion of
MARC data to SGML (Structured Generalized Markup Language). Although the
DTD's have been converted to XML DTD's, they are retired in favor of the
MARCXML schema.

You can find the stylesheets at the Tools & Utilities section of the MARCXML standards
page. In Chapter 3,MARC4J and JAXPwe take a closer look at MARC4J in XML
environments.

Reading MODS Data

26

Implementing MarcReader
Sometimes you need to read data that is not in ISO 2709 or a given XML format. In these
cases you can implement the MarcReader interface to create Record objects from an
input source. To do this you need to implement two methods:

hasNext()
Implement this method to provide an iterator that returns true if there are more
records available from the input source and falsewhen the end of the file is
reached.

next()
Implement this method to return the next record in the iteration as a Record object.

Depending on the data structure you need to parse, writing a custom MarcReader
implementation can become quite complicated. It is not the goal of this book to teach you
how to write parsers in Java, so we will look at a simple implementation. It creates
minimal level authority records from a Tab-separated file containing personal names.
Each line contains the control number, the personal name and the dates associated with
the name. The input file might look like this:

34284 Thoreau, Henry David 1817-1862
34542 Hawthorne, Nathaniel 1804-1864
12435 Emerson, Ralph Waldo 1803-1882

Since each line contains a record, we can read lines from the input file and then split each
line into a list of tokens. We start with the hasNext()method. This method should
return true if there are more lines to read from the reader, or false if it reached the
end of the file:

if ((line = br.readLine()) != null)
return true;

else
return false;

Each line is then parsed by the next()method. The first step is to split the line into
tokens. The resulting String array should contain three tokens:

Implementing MarcReader

27

String[] tokens = line.trim().split("\t");

if (tokens.length != 3)
throw new MarcException("Invalid number of tokens");

You can then use the MarcFactory class to create the record object:

MarcFactory factory = MarcFactory.newInstance();

Record record = factory.newRecord("00000nz a2200000o 4500");

ControlField controlField =
factory.newControlField("001", tokens[0]);

record.addVariableField(controlField);

DataField dataField = factory.newDataField("100", ' ', ' ');
dataField.addSubfield(factory.newSubfield('a', tokens[1]));
dataField.addSubfield(factory.newSubfield('d', tokens[2]));

record.addVariableField(dataField);

The code in Example 1.8, “MarcReader Implementation” shows the complete code for
the MarcReader implementation to parse a Tab-separated file and create minimal level
authority records.

Example 1.8. MarcReader Implementation

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;

import org.marc4j.MarcException;
import org.marc4j.MarcReader;
import org.marc4j.marc.ControlField;
import org.marc4j.marc.DataField;
import org.marc4j.marc.MarcFactory;

Implementing MarcReader

28

import org.marc4j.marc.Record;

public class PersonalNamesReader implements MarcReader {

private BufferedReader br = null;

private String line;

public PersonalNamesReader(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));

}

public boolean hasNext() {
try {

if ((line = br.readLine()) != null)
return true;

else
return false;

} catch (IOException e) {
throw new MarcException(e.getMessage(), e);

}
}

public Record next() {
String[] tokens = line.trim().split("\t");

if (tokens.length != 3)
throw new MarcException("Invalid number of tokens");

MarcFactory factory = MarcFactory.newInstance();

Record record = factory.newRecord("00000nz a2200000o 4500");

ControlField controlField =
factory.newControlField("001", tokens[0]);

record.addVariableField(controlField);

DataField dataField = factory.newDataField("100", ' ', ' ');
dataField.addSubfield(factory.newSubfield('a', tokens[1]));
dataField.addSubfield(factory.newSubfield('d', tokens[2]));

record.addVariableField(dataField);

return record;

Implementing MarcReader

29

}

}

Using the PersonalNamesReader is not different from using the MarcStreamReader
or MarcXmlReader class. Example 1.9, “Driver for PersonalNamesReader” shows the
code for a driver to test the MarcReader implementation. It reads lines from a file called
names.txt located in the current directory and writes the authority records to standard
output using the toString()method.

Example 1.9. Driver for PersonalNamesReader

import org.marc4j.MarcReader;
import org.marc4j.marc.Record;
import java.io.InputStream;
import java.io.FileInputStream;

public class ReadPersonalNames {

public static void main(String args[]) throws Exception {

InputStream in = new FileInputStream("names.txt");

MarcReader reader = new PersonalNamesReader(in);

while (reader.hasNext()) {
Record record = reader.next();
System.out.println(record.toString());

}

}

}

Implementing MarcReader

30

When you compile and run this program, it will write each record in tagged display
format to standard output:

LEADER 00000nz a2200000o 4500
001 34284
100 1 $aThoreau, Henry David$d1817-1862

LEADER 00000nz a2200000o 4500
001 34542
100 1 $aHawthorne, Nathaniel$d1804-1864

LEADER 00000nz a2200000o 4500
001 12435
100 1 $aEmerson, Ralph Waldo$d1803-1882

Implementing MarcReader

31

32

Chapter 2. Writing Data
Writing MARC Data

MARC4J provides a MarcWriter interface to write MARC data to an output stream.
This interface provides two important methods:

write(Record record)
Writes a single Record to the output stream.

close()
Closes the writer.

The MARC4J library provides two implementations of MarcWriter:

MarcStreamWriter
Writes MARC data in ISO 2709 format.

MarcXmlWriter
Writes MARC data in MARCXML format.

Let's start with writing records in ISO 2709 format. To do this we first need to instantiate
a MarcStreamWriter:

MarcWriter writer = new MarcStreamWriter(System.out);

The constructor takes a subclass of OutputStream as an argument. You can use
FileOutputStream to write the output to a file:

OutputStream out = new FileOutputStream("output.mrc");
MarcWriter writer = new MarcStreamWriter(out);

You can first create a File object and use that to create an instance of
FileOutputStream:

33

File file = new File("output.mrc");
OutputStream out = new FileOutputStream(file);
MarcWriter writer = new MarcStreamWriter(out);

To append the output to an existing file, add a boolean argument to the
FileOutputStream constructor with the value true:

File file = new File("output.mrc");
OutputStream out = new FileOutputStream(file, true);
MarcWriter writer = new MarcStreamWriter(out);

This can be useful if you want to write records from a number of input files to a single
output file.

Let's look at a complete program. Example 2.1, “Write MARC in ISO 2709 Format”
updates Example 1.1, “Reading MARC Data” to read the record for Summerland in ISO
2709 format and write the same record in ISO 2709 format to standard output.

Example 2.1. Write MARC in ISO 2709 Format

import java.io.InputStream;
import java.io.FileInputStream;

import org.marc4j.MarcReader;
import org.marc4j.MarcStreamReader;
import org.marc4j.MarcStreamWriter;
import org.marc4j.MarcWriter;
import org.marc4j.marc.Record;

public class WriteMarcExample {

public static void main(String args[]) throws Exception {

InputStream input = new FileInputStream("summerland.mrc");

MarcReader reader = new MarcStreamReader(input);
MarcWriter writer = new MarcStreamWriter(System.out);
while (reader.hasNext()) {

Writing MARC Data

34

Record record = reader.next();
writer.write(record);

}
writer.close();

}
}

Warning

Make sure that you always close the MarcWriter using the close()method.

Writing MARCXML Data
Instead of using MarcStreamWriter, you can use MarcXmlWriter to write records in
MARCXML format. To do this, you can instantiate a MarcXmlWriter using an instance
of an OutputStream subclass:

MarcWriter writer = new MarcXmlWriter(System.out);

You can set indent to true to format the XML output:

MarcWriter writer = new MarcXmlWriter(System.out, true);

Example 2.2, “Write MARC in MARCXML Format” reads the record for Summerland in
ISO 2709 format and writes the same record in MARCXML format to standard output.

Example 2.2. Write MARC in MARCXML Format

import java.io.InputStream;
import java.io.FileInputStream;

import org.marc4j.MarcReader;
import org.marc4j.MarcStreamReader;
import org.marc4j.MarcWriter;

Writing MARCXML Data

35

import org.marc4j.MarcXmlWriter;
import org.marc4j.marc.Record;

public class WriteMarcXmlExample {

public static void main(String args[]) throws Exception {

InputStream input = new FileInputStream("summerland.mrc");

MarcReader reader = new MarcStreamReader(input);
MarcWriter writer = new MarcXmlWriter(System.out, true);

while (reader.hasNext()) {
Record record = reader.next();
writer.write(record);

}
writer.close();

}
}

You can also write MARCXML data to MARC in ISO 2709 format by using an instance of
MarcXmlReader to read MARCXML data and a MarcStreamWriter instance to write
MARC data in ISO 2709 format.

The load time to create a MarcStreamWriter or MarcXmlWriter is not high, so you
can create an instance to write a single record, for example to output a Record object
that was created from scratch:

MarcFactory factory = MarcFactory.newInstance();

Record record = factory.newRecord("00000cam a2200000 a 4500");

record.addVariableField(factory.newControlField("001", "12883376"));

DataField dataField = factory.newDataField("245", '1', '0');
dataField.addSubfield(factory.newSubfield('a', "Summerland /"));
dataField.addSubfield(factory.newSubfield('c', "Michael Chabon."));
record.addVariableField(dataField);

MarcWriter writer = new MarcStreamWriter(System.out);
writer.write(record);
writer.close();

Performing Character Conversions

36

Performing Character Conversions
When serializing Record objects you can perform character conversions. This feature is
important when converting MARC data between ISO 2709 and MARCXML formats.
Most MARC formats use specific character sets and MARC4J is able to convert some of
them to UCS/Unicode and back. Converters are available for the following character
encodings:

MARC-8
Character encoding used by MARC 21 records.

ISO 5426
Character encoding used by UNIMARC records

ISO 6937
Character encoding used by UNIMARC records

Using the converters is not difficult, but there are some things to remember. As already
stated in Chapter 1, Reading Data, MARC4J reads and writes ISO 2709 records as binary
data, but data elements in control fields and subfields are converted to String values.
When Java converts a byte array to a String it needs a character encoding. Java can use
a default character encoding, but this might not always be the right encoding to use.
Therefore both MarcReader and MarWriter implementations provide you with the
ability to set a character encoding when constructing a new instance. The following list
summarizes how both MarcReader and MarcWriter implementations handle
character encodings:

MarcStreamReader
By default uses ISO 8859-1 (Latin 1) as 8-bit character set alternative, since encodings
like MARC-8 are not supported by Java. In case of MARC 21 data,
MarcStreamReader tries to detect the encoding from the Leader by reading the
character coding scheme in the leader using the getCharCodingScheme()
method. You can override the value when instantiating a MarcStreamReader:

MarcReader reader = new MarcStreamReader(input, "UTF8");

Please note that MarcStreamReader expects a Java encoding name.

MarcXmlReader
By default relies on the underlying XML parser implementation. Normally you
would provide the encoding in the XML declaration of the input file:

Performing Character Conversions

37

<?xml version="1.0" encoding="UTF-8"?>

You can set the character encoding using an InputSource, for example:

InputStream in = new FileInputStream("summerland.xml");
InputSource is = new InputSource(in);
is.setEncoding("ISO-8859-1");
MarcReader = new MarcXmlReader(is);

The InputSource uses standard Internet encoding names, rather than Java
encoding names. Use for example UTF-8 in stead of UTF8 and ISO-8859-1 instead of
ISO8859_1.

MarcStreamWriter
By default uses ISO 8859-1 (Latin 1) as 8-bit character set alternative, since encodings
like MARC-8 are not supported by Java. You can override the value when
instantiating a MarcStreamWriter:

MarcWriter writer = new MarcStreamWriter(output, "UTF8");

Please note that MarcStreamWriter expects a Java encoding name.

MarcXmlWriter
By default uses UTF-8. You can override the value when instantiating a
MarcXmlWriter:

MarcWriter writer = new MarcXmlWriter(output, "UTF8");

Please note that MarcXmlWriter expects a Java encoding name. For the encoding in
the XML declaration MARC4J relies on the underlying parser.

Check the Java supported encodings for the canonical name to use for a specific
encoding. You can find more information in the documentation for the Java 2 Standard
Edition. Look for Internationalization in the Guide to Features section.

Performing Character Conversions

38

Let's look at some character conversion examples. Example 2.3, “Convert MARC-8 to
UCS/Unicode” reads ISO 2709 records using the default encoding and writes the records
in ISO 2709 format performing a MARC-8 to UCS/Unicode conversion. The class
AnselToUnicode is used to perform the character conversion. This class uses the
MARC-8 to Unicode XML mapping file published by the Library of Congress to convert
between MARC-8 and UCS/Unicode. The code for the converter was contributed to the
MARC4J project by Corey Keith at the time he was working for the Network
Development and MARC Standards Office at the Library of Congress.

Example 2.3. Convert MARC-8 to UCS/Unicode

import java.io.InputStream;
import java.io.FileInputStream;

import org.marc4j.converter.impl.AnselToUnicode;
import org.marc4j.MarcReader;
import org.marc4j.MarcStreamReader;
import org.marc4j.MarcStreamWriter;
import org.marc4j.MarcWriter;
import org.marc4j.marc.Record;

public class Marc8ToUnicodeExample {

public static void main(String args[]) throws Exception {

InputStream input = new FileInputStream("summerland.mrc");

MarcReader reader = new MarcStreamReader(input);
MarcWriter writer = new MarcStreamWriter(System.out, "UTF8");

AnselToUnicode converter = new AnselToUnicode();
writer.setConverter(converter);

while (reader.hasNext()) {
Record record = reader.next();
writer.write(record);

}
writer.close();

}
}

Performing Character Conversions

39

Since MarcStreamWriter uses the Latin-1 character encoding by default, the writer is
instantiated with the UTF-8 character encoding. When converting MARC records to
UTF-8 the leader value for the character coding scheme should also be updated. This is
not done by the MarcStreamWriter class. You can set the value while iterating over
the Record objects:

while (reader.hasNext()) {
Record record = reader.next();

Leader leader = record.getLeader();
leader.setCharCodingScheme('a');

writer.write(record);
}

Example 2.4, “Convert MARC to MARCXML” converts ISO 2709 records encoded in
MARC-8 to MARCXML encoded in UCS/Unicode.

Example 2.4. Convert MARC to MARCXML

import java.io.InputStream;
import java.io.FileInputStream;

import java.io.OutputStream;
import java.io.FileOutputStream;

import org.marc4j.converter.impl.AnselToUnicode;
import org.marc4j.MarcReader;
import org.marc4j.MarcStreamReader;
import org.marc4j.MarcStreamWriter;
import org.marc4j.MarcWriter;
import org.marc4j.marc.Record;
import org.marc4j.marc.Leader;

public class MarcToMarcXmlExample {

public static void main(String args[]) throws Exception {

InputStream input = new FileInputStream("summerland.mrc");

Performing Character Conversions

40

OutputStream out = new FileOutputStream("summerland.xml");

MarcReader reader = new MarcStreamReader(input);
MarcWriter writer = new MarcXmlWriter(out, true);

AnselToUnicode converter = new AnselToUnicode();
writer.setConverter(converter);

while (reader.hasNext()) {
Record record = reader.next();

Leader leader = record.getLeader();
leader.setCharCodingScheme('a');

writer.write(record);
}
writer.close();

}
}

To convert UCS/Unicode back to MARC-8, for example to convert MARCXML back to
ISO 2709, you can use the UnicodeToAnsel class.

In addition to using a character converter, you can perform Unicode normalization. This
is not done by the MARC-8 to UCS/Unicode converter. With Unicode normalization text
is transformed into the canonical composed or precomposed form. For example "a´bc" is
normalized to "ábc". To perform normalization set Unicode normalization to true:

MarcXmlWriter writer = new MarcXmlWriter(out, true);

AnselToUnicode converter = new AnselToUnicode();
writer.setConverter(converter);

writer.setUnicodeNormalization(true);

Warning

Please note that it is not guaranteed to work if you try to convert normalized
Unicode back to MARC-8 with UnicodeToAnsel. The UnicodeToAnsel class
can only handle non-precomposed Unicode characters.

Performing Character Conversions

41

Writing MODS Data
In Chapter 1, Reading Datawe have seen that you can use a stylesheet to pre-process the
input that is given to the MarcXmlReader. With MarcXmlWriter you can post-process
the MARCXML result using an XSLT stylesheet. Example 2.5, “Write MODS Data”
converts MARC to MARCXML and transforms the result tree to MODS using the
stylesheet provided by the Library of Congress. To do this, you need to add the
stylesheet location as an argument when you create the MarcXmlWriter instance.
Example 2.5, “Write MODS Data” uses an implementation of the Result interface to
hold the output data:

Result result = new StreamResult(System.out);

The Result interface is part of the JAXP API. This API is covered in more detail in
Chapter 3,MARC4J and JAXP.

Example 2.5. Write MODS Data

import java.io.InputStream;
import java.io.FileOutputStream;

import javax.xml.transform.Result;
import javax.xml.transform.stream.StreamResult;

import org.marc4j.MarcReader;
import org.marc4j.MarcStreamReader;
import org.marc4j.MarcXmlWriter;
import org.marc4j.converter.impl.AnselToUnicode;
import org.marc4j.marc.Record;

public class Marc2ModsExample {

public static void main(String args[]) throws Exception {

String stylesheetUrl =
"http://www.loc.gov/standards/mods/v3/MARC21slim2MODS3.xsl";

Result result = new StreamResult(System.out);

Writing MODS Data

42

InputStream input = new FileInputStream("summerland.mrc");

MarcReader reader = new MarcStreamReader(input);

MarcXmlWriter writer = new MarcXmlWriter(result, stylesheetUri);
writer.setConverter(new AnselToUnicode());

while (reader.hasNext()) {
Record record = (Record) reader.next();
writer.write(record);

}
writer.close();

}
}

In addition to the stylesheet which transforms MARCXML data to MODS, the following
stylesheets are available from the Library of Congress which transform MARCXML to
other formats:

MARCXML to RDF Encoded Simple Dublin Core Stylesheet
Transforms MARCXML to Dublin Core using the Resource Description Framework
(RDF) syntax format. RDF is a language for describing resources in the World Wide
Web.

MARCXML to OAI Encoded Simple Dublin Core Stylesheet
Transforms MARCXML to Dublin Core using the Open Archives Initiative (OAI)
syntax format. This syntax is intended for use in the Open Archives Initiative
Protocol for Metadata Harvesting.

MARCXML to SRW Encoded Simple Dublin Core Stylesheet
Transforms MARCXML to Dublin Core using the Search/Retrieve Web Service
(SRW) syntax format. SRW is a standard search protocol for Internet search queries.
This syntax is intended for use in a searchRetrieve response.

MARCXML to MARC DTD Stylesheet
Transforms MARCXML to XML conforming to the MARC DTD syntax.

MARC Tagged View
Transforms MARCXML to HTML to provide a MARC tagged display.

Writing MODS Data

43

English Tagged View
Transforms MARCXML to HTML to provide a labelled display.

MARC Bibliographic Validator
Validates MARCXML against the MARC bibliographic format.

You can find the stylesheets at the Tools & Utilities section of the MARCXML standards
page. In Chapter 3,MARC4J and JAXPwe take a closer look at MARC4J in XML
environments.

Writing MODS Data

44

Chapter 3. MARC4J and JAXP
JAXP Overview

The Java API for XML Processing (JAXP) provides an implementation independent API
to process XML with Java. JAXP supports the Simple API for XML (SAX) and Document
Object Model (DOM) to parse XML as a stream of events or to build an in-memory object
representation. The library also supports XSLT to transform documents to other XML
documents, or other text formats. JAXP 1.3 introduced additional packages, including a
schema-independent Validation Framework, XPath support, support for W3C XML
Schema Data Types and support for XInclude. JAXP 1.3 is part of the J2SE 1.5 release. A
stand-alone implementation is available for J2SE 1.3 and 1.4. This chapter focuses on the
core classes defined in the following packages:

javax.xml.parsers
Provides processor independent factory classes to obtain a SAXParser or
DocumentBuilder from the underlying XML parser implementation.

javax.xml.transform
Provides processor independent factory classes to obtain an XSLT processor from the
underlying implementation. This package is also known as TRAX (Transformation
API for XML).

If you do not provide a specific XML parser or XSLT processor implementation, the
JAXP implementation will use the default parser that comes with your Java distribution.
To use a different implementation, you have to set a system property that points to the
parser or processor that should override the default implementation. The easiest way to
do this, is to include the system properties in a jaxp.properties file located in the
JAVA_HOME/lib directory. The Xerces parser and Xalan XSLT processor are the default
implementations for J2SE 1.5, but J2SE 1.4 by default uses the Crimson XML parser. To
use Xerces with J2SE 1.4, you can create a jaxp.properties file with the following
properties:

javax.xml.parsers.SAXParserFactory=
org.apache.xerces.jaxp.SAXParserFactoryImpl

javax.xml.parsers.DocumentBuilderFactory=
org.apache.xerces.jaxp.DocumentBuilderFactoryImpl

You can also modify your CLASSPATH settings or set the properties at runtime:

45

java -Djavax.xml.parsers.SAXParserFactory=
org.apache.xerces.jaxp.SAXParserFactoryImpl XercesSerializerExample

The XML support in MARC4J is implemented using the interfaces and classes specified
in JAXP, so you should be able to use MARC4J with any JAXP compliant parser or
processor.

Integration between MARC4J and XML is mainly supported through the Transformation
API package. The following interfaces and classes are the most important classes to
develop XML applications with MARC4J:

ContentHandler
The ContentHandler interface is part of SAX (Simple API for XML). Through a
ContentHandler a SAX parser reports basic document events like the start and
end of elements and character data. When using a SAX based parser, you implement
the ContentHandler interface to develop your XML application. This interface is
used in the MarcXmlReader class to process the MARCXML input source.

TransformerFactory
A TransformerFactory instance can be used to create Transformer and
Templates objects. A Transformer instance can be used to transform a source
document into a result document using an XSLT stylesheet. A Templates object is
an in-memory representation of an XSLT stylesheet that can be used to create
Transformer objects without the need to read the stylesheet from the file system or
the network every time a new Transformer instance is created.

SAXTransformerFactory
This class extends TransformerFactory to provide SAX specific support. With
the SAXTransformerFactory class you can create a TransformerHandler from
a Source or Templates object. A TransformerHandler extends the
ContentHandler interface. When passed to a MarcXmlWriter instance, the writer
will report the MARCXML SAX events to the handler to transform the MARCXML
data to a different XML or text format. Instances of TransformerHandler can be
chained together to create a pipeline using the setResult(Result)method.

Source
Implementations of this interface can act as an input source for both XML documents
and XSLT stylesheets. JAXP provides three implementations: StreamSource
provides an input source from a file or input stream, SAXSource provides an input
source from SAX parser events and DOMSource provides an input source from a
DOM document.

JAXP Overview

46

Result
Implementations of this interface can act as a holder for a transformation result tree.
JAXP provides three implementations: StreamResult can be used to write the
result to a file or other output stream, SAXResult can be used to write the result to a
ContentHandler and DOMResult can be used to write the result to a DOM
document.

Together these interfaces and classes provide a powerful framework to process MARC
data in XML environments. In the next sections of this chapter we will look at some
examples that illustrate the use of MARC4J with JAXP in XML applications.

Writing To a DOMDocument
The Document Object Model (DOM) is a data structure that represents an XML
document as a tree of nodes. The basic DOM interface is implemented in the
org.w3c.dom package. The interfaces in this package represent elements, attributes,
character data, comments, and processing instructions. All of these interfaces are
sub-interfaces of the Node interface that provides basic methods to navigate the tree and
to add, move, remove, copy or change nodes in the tree. The root of the tree is a
Document object that represents a complete XML document.

Using MarcXmlWriter you can write MARCXML to an instance of Document. The
DOM document can then be used for further processing in your XML application. To do
this, first create an instance of DOMResult:

DOMResult result = new DOMResult();

You can then use the result to create a MarcXmlWriter:

MarcXmlWriter writer = new MarcXmlWriter(result);

The writer writes the output to a DOM document that can be retrieved from the result
object:

Document doc = (Document) result.getNode();

Writing To a DOMDocument

47

Example 3.1, “Writing Output To a DOM Document” shows the complete code. It reads
the record for Summerland in ISO 2709 format and writes the record as MARCXML to a
DOM document.

Example 3.1. Writing Output To a DOMDocument

import java.io.InputStream;
import java.io.FileInputStream;

import javax.xml.transform.dom.DOMResult;

import org.marc4j.MarcReader;
import org.marc4j.MarcStreamReader;
import org.marc4j.MarcXmlWriter;
import org.marc4j.marc.Record;
import org.w3c.dom.Document;

public class Marc2DomExample {

public static void main(String args[]) throws Exception {

InputStream input = new FileInputStream("summerland.mrc");

MarcReader reader = new MarcStreamReader(input);

DOMResult result = new DOMResult();

MarcXmlWriter writer = new MarcXmlWriter(result);

while (reader.hasNext()) {
Record record = (Record) reader.next();
writer.write(record);

}
writer.close();

Document doc = (Document) result.getNode();
}

}

Writing To a DOMDocument

48

Writing output to a DOM document can be useful when you need to embed the result
into a parent document, such as a SOAP (Simple Object Access Protocol) envelope:

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Body>
<!-- MARCXML collection -->

</env:Body>
</env:Envelope>

Let's assume that we have a Document called soapEnv. We can then use the following
code to add the Document instance, that contains the MARCXML data, to the env:Body
element of the SOAP envelope:

// the object containing the MARCXML data
Document doc = (Document) result.getNode();

// import the node in the SOAP document
Node marcxml = soapEnv.importNode(doc.getDocumentElement(), true);

// get the SOAP body element
Element soapBody = (Element)

soapEnv.getElementsByTagName("env:Body").item(0);

// append the node containing the MARCXML data
// to the SOAP Body element
soapBody.appendChild(marcxml);

You can post-process the MARCXML data before writing the result to a DOM document
using an XSLT stylesheet. The following listing transforms MARC records to MODS and
writes the MODS data to a DOM document:

String stylesheetUrl =
"http://www.loc.gov/standards/mods/v3/MARC21slim2MODS3.xsl";

Source stylesheet = new StreamSource(stylesheetUrl);

DOMResult result = new DOMResult();
MarcXmlWriter writer = new MarcXmlWriter(result, stylesheet);

Writing To a DOMDocument

49

while (reader.hasNext()) {
Record record = (Record) reader.next();
writer.write(record);

}
writer.close();

Document doc = (Document) result.getNode();

Formatting Output with Xerces
Example 3.1, “Writing Output To a DOM Document” demonstrated that you can write
the output of MarcXmlWriter to an implementation of the Result interface, in this
case DOMResult. My favorite implementation of the Result interface is the
SAXResult class. The MarcXmlWriter class provides very basic formatting options. If
you need more advanced formatting, you can use a SAXResult to hold a
ContentHandler derived from a dedicated XML serializer. Example 3.2, “Formatting
Output with the Xerces Serializer” uses the Xerces XMLSerializer class to write
MARC records to XML. The program also converts characters from MARC-8 to
UCS/Unicode and performs Unicode normalization. The XMLSerializer class
provides a lot of formatting options and it knows how to handle namespaces reported by
the SAX startPrefixMapping() and endPrefixMapping() events. Using the
serializer is simple. The first step is to configure the output format with the serialization
options you want:

OutputFormat format = new OutputFormat("xml", "UTF-8", true);

The Outputformat class provides all kinds of formatting options including indentation
and the maximum line length. In this case the output method is xml, the output
encoding is UTF-8 and indentation is set to true. The object is used to create an instance
of XMLSerializer. In this example the output is written to standard output:

XMLSerializer serializer = new XMLSerializer(System.out, format);

To be able to register the serializer, you need to wrap the instance in a SAXResult:

Formatting Output with Xerces

50

Result result = new SAXResult(serializer.asContentHandler());

You can then use the SAXResult to create an instance of MarcXmlWriter. Example 3.2,
“Formatting Output with the Xerces Serializer” shows the complete code.

Example 3.2. Formatting Output with the Xerces Serializer

import java.io.InputStream;
import java.io.FileInputStream;

import javax.xml.transform.Result;
import javax.xml.transform.sax.SAXResult;

import org.apache.xml.serialize.OutputFormat;
import org.apache.xml.serialize.XMLSerializer;
import org.marc4j.MarcReader;
import org.marc4j.MarcStreamReader;
import org.marc4j.MarcXmlWriter;
import org.marc4j.converter.impl.AnselToUnicode;
import org.marc4j.marc.Record;
import org.marc4j.marc.Leader;

public class XercesSerializerExample {

public static void main(String args[]) throws Exception {

InputStream input = new FileInputStream("summerland.mrc");

MarcReader reader = new MarcStreamReader(input);

// configure the output format
OutputFormat format = new OutputFormat("xml", "UTF-8", true);

// create the serializer
XMLSerializer serializer = new XMLSerializer(System.out, format);

// create the result
Result result = new SAXResult(serializer.asContentHandler());

MarcXmlWriter writer = new MarcXmlWriter(result);

Formatting Output with Xerces

51

writer.setConverter(new AnselToUnicode());
writer.setUnicodeNormalization(true);

while (reader.hasNext()) {
Record record = reader.next();

Leader leader = record.getLeader();
leader.setCharCodingScheme('a');

writer.write(record);
}
writer.close();

}
}

Tip

Since MarcXmlWriter only provides limited formatting options, it is
recommended to always use a dedicated XML serializer like Xerces
XMLSerializer.

Compiling Stylesheets
If you need to transform input from many files, you can instantiate MarcXmlReader
with a compiled stylesheet to speed up the process. The XSLT processor will then use the
in-memory stylesheet data rather than re-parse the entire stylesheet for every file. A
compiled stylesheet is represented by the Templates class. The MarcXmlReader class
provides a constructor that takes a TransformerHandler as an argument. A
TransformerHandler listens for SAX parse events and transforms them to a Result.
For each transformation we need a new instance of TransformerHandler. You can
obtain the handler from a Templates object containing the in-memory stylesheet
representation. To demonstrate the use of a compiled stylesheet, we create a program
that reads files containing MODS data from a given directory on the file system. For each
file it transforms the MODS records to MARCXML and writes each record in tagged
display format to standard output.

The first step is to create an instance of TransformerFactory:

TransformerFactory tf = TransformerFactory.newInstance();

Compiling Stylesheets

52

You can then create a Templates object to hold the in-memory stylesheet
representation:

Source stylesheet = new StreamSource(
"http://www.loc.gov/standards/marcxml/xslt/MODS2MARC21slim.xsl");

Templates templates = tf.newTemplates(stylesheet);

To read files from the file system, a filter is used to limit the list to XML files:

File dir = new File(inputDir);

FilenameFilter filter = new FilenameFilter() {
public boolean accept(File dir, String name) {

return name.endsWith(".xml");
}

};

File[] files = dir.listFiles(filter);

To create the TransformerHandler, you first need to cast the TransformerFactory
to a SAXTransformerFactory:

SAXTransformerFactory stf = ((SAXTransformerFactory) tf);

You can then read files from the file list and process each file using MarcXmlReader:

for (int i = 0; i < files.length; i++) {

TransformerHandler handler = stf.newTransformerHandler(templates);

InputStream input = new FileInputStream(files[i]);

MarcReader reader = new MarcXmlReader(input, handler);

while (reader.hasNext()) {
Record record = reader.next();

Compiling Stylesheets

53

System.out.println(record.toString());
}

}

Example 3.3, “Reading MODS from Multiple Files” shows the complete code.

Example 3.3. Reading MODS fromMultiple Files

import java.io.File;
import java.io.FileInputStream;
import java.io.FilenameFilter;
import java.io.InputStream;

import javax.xml.transform.Source;
import javax.xml.transform.Templates;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.sax.SAXResult;
import javax.xml.transform.sax.SAXSource;
import javax.xml.transform.sax.SAXTransformerFactory;
import javax.xml.transform.sax.TransformerHandler;
import javax.xml.transform.stream.StreamSource;

import org.marc4j.MarcReader;
import org.marc4j.MarcXmlReader;
import org.marc4j.marc.Record;

public class TemplatesExample {

public static void main(String args[]) throws Exception {
if (args.length != 1))

throw new Exception("Usage: TemplatesExample <dir>")

String inputDir = args[0];

TransformerFactory tf = TransformerFactory.newInstance();

if (tf.getFeature(SAXSource.FEATURE)
&& tf.getFeature(SAXResult.FEATURE)) {

// create a stylesheet source

Compiling Stylesheets

54

Source stylesheet = new StreamSource(
"http://www.loc.gov/standards/marcxml/xslt/MODS2MARC21slim.xsl");

// create an in-memory stylesheet representation
Templates templates = tf.newTemplates(stylesheet);

File dir = new File(inputDir);

// create a filter to include only .xml files
FilenameFilter filter = new FilenameFilter() {

public boolean accept(File dir, String name) {
return name.endsWith(".xml");

}
};

// list all files
File[] files = dir.listFiles(filter);

// cast the transformer handler to a sax transformer handler
SAXTransformerFactory stf = ((SAXTransformerFactory) tf);

// iterate over all files
for (int i = 0; i < files.length; i++) {

// create a transformer handler from the template
TransformerHandler handler = stf

.newTransformerHandler(templates);

// create the input stream
InputStream input = new FileInputStream(files[i]);

// parse the input stream and write each record
MarcReader reader = new MarcXmlReader(input, handler);
while (reader.hasNext()) {

Record record = reader.next();
System.out.println(record.toString());

}
}

}
}

}

Chaining Stylesheets

55

Chaining Stylesheets
You can chain TransformerHandler instances together to create a pipeline that sends
the XML data through a sequence of stages. For each stylesheet in the chain a
TransformerHandler is created. In Example 3.4, “Stylesheet Chain” the XML data
goes through the following three stages:

1. The first handler receives SAX events from the MarcXmlWriter that converts the ISO
2709 input to MARCXML. It then transforms the MARCXML data to MODS and
sends the result to the second handler.

2. The second handler transforms the SAX events received from the first handler back to
MARCXML. Let's assume that we want to check if there is any loss of data between
the transformations.

3. The third handler receives the MARCXML data from the second handler and writes
the MARCXML data to a tagged display format in HTML using the
MARC21slim2HTML.xsl stylesheet.

First a TransformerHandler is created for each stylesheet by obtaining an instance
from the SAXTransformerFactory. The stylesheets are then chained together using
the setResult()method so that each transformation step passes its output to the next
step:

tHandler1.setResult(new SAXResult(tHandler2));
tHandler2.setResult(new SAXResult(tHandler3));

The third and final transformation step writes the result to the file output.html:

OutputStream out = new FileOutputStream("output.html");
tHandler3.setResult(new StreamResult(out));

The TransformerHandler that performs the first transformation step is wrapped in a
SAXResult to create the instance of MarcXmlWriter. Example 3.4, “Stylesheet Chain”
shows the complete code for the stylesheet chain program.

Chaining Stylesheets

56

Example 3.4. Stylesheet Chain

import java.io.InputStream;
import java.io.FileInputStream;
import java.io.OutputStream;
import java.io.FileOutputStream;

import javax.xml.transform.Result;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.sax.SAXResult;
import javax.xml.transform.sax.SAXSource;
import javax.xml.transform.sax.SAXTransformerFactory;
import javax.xml.transform.sax.TransformerHandler;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

import org.marc4j.MarcReader;
import org.marc4j.MarcStreamReader;
import org.marc4j.MarcWriter;
import org.marc4j.MarcXmlWriter;
import org.marc4j.marc.Record;

public class StylesheetChainExample {

public static void main(String args[]) throws Exception {

TransformerFactory tf = TransformerFactory.newInstance();

if (tf.getFeature(SAXSource.FEATURE)
&& tf.getFeature(SAXResult.FEATURE)) {

// cast the transformer handler to a sax transformer handler
SAXTransformerFactory stf = ((SAXTransformerFactory) tf);

// create a TransformerHandler for each stylesheet.
TransformerHandler tHandler1 = stf

.newTransformerHandler(new StreamSource(
"http://www.loc.gov/standards/mods/v3/MARC21slim2MODS3.xsl"));

TransformerHandler tHandler2 = stf
.newTransformerHandler(new StreamSource(

"http://www.loc.gov/standards/marcxml/xslt/MODS2MARC21slim.xsl"));

Chaining Stylesheets

57

TransformerHandler tHandler3 = stf
.newTransformerHandler(new StreamSource(

"http://www.loc.gov/standards/marcxml/xslt/MARC21slim2HTML.xsl"));

// chain the transformer handlers
tHandler1.setResult(new SAXResult(tHandler2));
tHandler2.setResult(new SAXResult(tHandler3));

// create an output stream
OutputStream out = new FileOutputStream("output.html");
tHandler3.setResult(new StreamResult(out));

// create a SAXResult with the first handler
Result result = new SAXResult(tHandler1);

// create the input stream
InputStream input = new FileInputStream("summerland.mrc");

// parse the input
MarcReader reader = new MarcStreamReader(input);
MarcWriter writer = new MarcXmlWriter(result);
while (reader.hasNext()) {

Record record = reader.next();
writer.write(record);

}
writer.close();

out.close();
}

}
}

When you compile and run this program, it will write each record in tagged display
format to the file output.html. Figure 3.1, “Stylesheet Chain Output” shows the
output for the Summerland record used in Example 3.4, “Stylesheet Chain”.

Chaining Stylesheets

58

Figure 3.1. Stylesheet Chain Output

Creating a Dublin Core Writer
If you do not want to rely on a stylesheet to post-process MARCXML into the desired
XML format, you can implement your own MarcWriter. One approach to do this, is to
implement a ContentHandler that produces SAX events. You can then serialize the
events to XML using a serializer that consumes the SAX events. The benefit is that your
writer will be very fast and will have a low memory consumption. The disadvantage of
this approach is that it requires some low level SAX programming. Using a
ContentHandler to create XML is not difficult, but it can be a challenge to create code
that is nice and clean. These are the methods a ContentHandler provides:

Creating a Dublin Core Writer

59

characters(char[] ch, int start, int length)
Receive notification of character data.

endDocument()
Receive notification of the end of a document.

endElement(String uri, String localName, String qName)
Receive notification of the end of an element.

endPrefixMapping(String prefix)
End the scope of a prefix-URI mapping.

ignorableWhitespace(char[] ch, int start, int length)
Receive notification of ignorable whitespace in element content.

processingInstruction(String target, String data)
Receive notification of a processing instruction.

setDocumentLocator(Locator locator)
Receive an object for locating the origin of SAX document events.

skippedEntity(String name)
Receive notification of a skipped entity.

startDocument()
Receive notification of the beginning of a document.

startElement(String uri, String localName, String qName,
Attributes atts)

Receive notification of the beginning of an element.

startPrefixMapping(String prefix, String uri)
Begin the scope of a prefix-URI Namespace mapping.

Although SAX was designed to read XML data, you can also use these methods to create
XML. To do this you only need an implementation of ContentHandler that is able to
serialize XML, like the Xerces XMLSerializer used in Example 3.2, “Formatting
Output with the Xerces Serializer”. Example 3.5, “Output Dublin Core Title Element”
shows a simple program that outputs a Dublin Core title element.

Creating a Dublin Core Writer

60

Example 3.5. Output Dublin Core Title Element

import org.apache.xml.serialize.XMLSerializer;
import org.xml.sax.Attributes;
import org.xml.sax.ContentHandler;
import org.xml.sax.helpers.AttributesImpl;

public class SaxProducerExample {

public static final String DC_NS =
"http://purl.org/dc/elements/1.1/";

public static final Attributes atts = new AttributesImpl();

public static void main(String args[]) throws Exception {

// create a serializer
XMLSerializer serializer = new XMLSerializer(System.out, null);
ContentHandler ch = serializer.asContentHandler();

// start the document
ch.startDocument();
ch.startPrefixMapping("", DC_NS);

// write the title element
ch.startElement(DC_NS, "title", "title", atts);
char[] data = "Summerland".toCharArray();
ch.characters(data, 0, data.length);
ch.endElement(DC_NS, "title", "title");

// end the document
ch.endPrefixMapping("");
ch.endDocument();

}

}

When you compile and run this program, it will write the following XML document to
standard output:

Creating a Dublin Core Writer

61

<?xml version="1.0"?>
<title xmlns="http://purl.org/dc/elements/1.1/">Summerland</title>

You can use this approach to create a MarcWriter implementation that reports SAX
events to a ContentHandler implementation:

public class MarcDublinCoreWriter implements MarcWriter {

private ContentHandler ch;

public MarcDublinCoreWriter(ContentHandler ch) {
this.ch = ch;
// start document

}

public void write(Record record) {
// create Dublin Core record

}

public void close() {
// end document

}

}

Example 3.6, “Dublin Core Writer” shows the code for a MarcWriter implementation
that creates Dublin Core. It is not a full implementation of the MARC 21 to Dublin Core
crosswalk: it writes the creator, title and subject elements to the ContentHandler.

The two getDataElements()methods are helper methods to concatenate the given
subfield data elements and return the result as a character array. Since MARC is richer in
data than Dublin Core, in some cases multiple MARC data elements are mapped to a
single Dublin Core element. The method iterates over a character array containing
subfield codes. If there is a match, the data element is added to the StringBuffer
preceded by a space. The data is converted before it is returned if a registered character
converter is present.

Creating a Dublin Core Writer

62

Example 3.6. Dublin Core Writer

import java.util.Iterator;
import java.util.List;

import org.marc4j.MarcException;
import org.marc4j.MarcWriter;
import org.marc4j.converter.CharConverter;
import org.marc4j.marc.DataField;
import org.marc4j.marc.Record;
import org.marc4j.marc.Subfield;
import org.xml.sax.Attributes;
import org.xml.sax.ContentHandler;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.AttributesImpl;

public class DublinCoreWriter implements MarcWriter {

public static final String RDF_NS =
"http://www.w3.org/1999/02/22-rdf-syntax-ns#";

public static final String DC_NS =
"http://purl.org/dc/elements/1.1/";

public static final Attributes atts = new AttributesImpl();

private ContentHandler ch;

private CharConverter converter = null;

public DublinCoreWriter(ContentHandler ch) {
this.ch = ch;
try {

ch.startDocument();
ch.startPrefixMapping("rdf", RDF_NS);
ch.startPrefixMapping("dc", DC_NS);
ch.startElement(RDF_NS, "Description", "rdf:Description",

atts);
} catch (SAXException e) {

throw new MarcException(e.getMessage(), e);
}

}

Creating a Dublin Core Writer

63

public void close() {
try {

ch.endElement(RDF_NS, "Description", "rdf:Description");
ch.endPrefixMapping("dc");
ch.endPrefixMapping("rdf");
ch.endDocument();

} catch (SAXException e) {
throw new MarcException(e.getMessage(), e);

}

}

public CharConverter getConverter() {
return converter;

}

public void setConverter(CharConverter converter) {
this.converter = converter;

}

public void write(Record record) {
DataField field;
char[] data;

try {
field = (DataField) record.getVariableField("100");
if (field != null) {

data = getDataElements(field);
ch.startElement(DC_NS, "creator", "dc:creator", atts);
ch.characters(data, 0, data.length);
ch.endElement(DC_NS, "creator", "dc:creator");

}

field = (DataField) record.getVariableField("245");
if (field != null) {

data = getDataElements(field, "abfghk");
ch.startElement(DC_NS, "title", "dc:title", atts);
ch.characters(data, 0, data.length);
ch.endElement(DC_NS, "title", "dc:title");

}

String[] subjects = { "600", "610", "611", "630", "650" };
List list = record.getVariableFields(subjects);
Iterator i = list.iterator();

Creating a Dublin Core Writer

64

while (i.hasNext()) {
field = (DataField) i.next();
data = getDataElements(field);
ch.startElement(DC_NS, "subject", "dc:subject", atts);
ch.characters(data, 0, data.length);
ch.endElement(DC_NS, "subject", "dc:subject");

}

} catch (SAXException e) {
throw new MarcException(e.getMessage(), e);

}

}

private char[] getDataElements(DataField field) {
return getDataElements(field, null);

}

private char[] getDataElements(DataField field, String codeString) {
StringBuffer sb = new StringBuffer();

char[] codes = "abcdefghijklmnopqrstuvwxyz".toCharArray();

if (codeString != null)
codes = codeString.toCharArray();

for (int i = 0; i < codes.length; i++) {
Subfield sf = field.getSubfield(codes[i]);
if (sf != null) {

if (i > 1)
sb.append(" ");

sb.append(sf.getData());
}

}
if (converter == null)

return sb.toString().toCharArray();
else {

String data = converter.convert(sb.toString());
return data.toCharArray();

}
}

}

Creating a Dublin Core Writer

65

Example 3.7, “Driver for DublinCoreWriter” provides a driver to demonstrate the use of
DublinCoreWriter in a program. It reads the record for Summerland and writes the
record as a Dublin Core document to standard output using the Xerces
XMLSerializer.

Example 3.7. Driver for DublinCoreWriter

import java.io.InputStream;
import java.io.FileInputStream;

import org.apache.xml.serialize.OutputFormat;
import org.apache.xml.serialize.XMLSerializer;
import org.marc4j.MarcReader;
import org.marc4j.MarcStreamReader;
import org.marc4j.MarcWriter;
import org.marc4j.marc.Record;
import org.xml.sax.ContentHandler;

public class DublinCoreWriterExample {

public static void main(String args[]) throws Exception {

InputStream input = new FileInputStream("summerland.mrc");

MarcReader reader = new MarcStreamReader(in);

OutputFormat format = new OutputFormat("xml", "UTF-8", true);
XMLSerializer serializer = new XMLSerializer(System.out, format);
ContentHandler ch = serializer.asContentHandler();

MarcWriter writer = new DublinCoreWriter(ch);
while (reader.hasNext()) {

Record record = (Record) reader.next();
writer.write(record);

}
writer.close();

}

}

Creating a Dublin Core Writer

66

When you compile and run this program, it will write the following document to
standard output:

<?xml version="1.0" encoding="UTF-8"?>
<rdf:Description

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:creator>Chabon, Michael.</dc:creator>
<dc:title>Summerland /</dc:title>
<dc:subject>Fantasy.</dc:subject>
<dc:subject>Baseball Fiction.</dc:subject>
<dc:subject>Magic Fiction.</dc:subject>

</rdf:Description>

Implementing a MarcWriter to serialize Record objects to XML requires some low
level SAX programming, but if you have high performance demands and require low
memory consumption, you might want to consider this approach.

Creating a Dublin Core Writer

67

68

Chapter 4. Indexing with Lucene
Introduction

In this chapter we add text indexing and searching to a MARC4J application using
Apache Lucene. Lucene is a high-performance text search engine library written in Java.
Like MARC4J, Lucene is a low-level API, but in order to start using it, you only need to
know how to use a few of its classes. MARC4J provides a MarcWriter implementation
called MarcIndexWriter to create a Lucene index from Record objects, making
indexing MARC data a breeze. When you create an index using MarcIndexWriter,
you add documents to an index using the write(Record)method specified in the
MarcWriter interface.

Installation
To use Lucene with MARC4J, you need to download a binary release of Lucene and a
library containing the MarcIndexWriter. This package is not bundled with MARC4J,
but you can find it at the Documents & Files section of the MARC4J project at
http://marc4j.tigris.org. Look for marc4j-lucene-0.1.zip or marc4j-lucene-0.1.tar.gz . You can
download a binary release of Lucene at the website for the Apache Lucene project. The
MARC4J Lucene library uses Lucene version 2.0.0, so make sure you download this
version or a later release. Add lucene-core-2.0.0.jar, marc4j-lucene.jar,
marc4j.jar and commons-logging-1.1.jar to your CLASSPATH environment
variable. The marc4j-lucene.jar and commons-logging-1.1.jar packages are
included in the download for the MARC4J Lucene API.

Index Configuration
The core classes for indexing text with Lucene are IndexWriter, Directory,
Analyzer, Document, and Field. IndexWriter is used to create a new index and to
add Documents to an existing index. Before text is indexed, it is passed through an
Analyzerwhen the field is flagged as tokenized. Analyzers extract tokens out of text to
be indexed, and ignore the rest. Lucene comes with a number of Analyzer
implementations, including analyzers for different languages. The examples in this book
all use the StandardAnalyzer. It is considered the most generally useful analyzer. By
default this class uses an English stop-word list that can be overridden when creating an
instance. StandardAnalyzer provides a sophisticated lexical analyzer that keeps
together tokens like e-mail adresses, host names or words with an interior apostrophe.

An index consists of a collection of documents, and each document consists of one or
more fields. Each field has a name and a value. A field title can for example hold the title

69

http://marc4j.tigris.org

proper. Fields are repeatable, so you can have multiple fields with the same name. The
Directory class is an abstract class that represents the location of a Lucene index.
Lucene provides a number of Directory implementations, including FSDirectory, to
store an index in a directory on the file system and RAMDirectory to hold a fast
in-memory index.

To enable MarcIndexWriter to index your MARC records, you need to provide a
configuration file with information about the way your MARC data should be indexed
by Lucene. If you do not provide a configuration file, MarcIndexWriterwill use the
one that is included in the library. The default configuration is based on the MARC 21 to
Dublin Core crosswalk. Table 4.1, “Default Indexing Schema” provides a mapping of the
fields and the data elements that are indexed.

Table 4.1. Default Indexing Schema

Lucene Field MARC Data Elements
dc.type Leader character position 6 and tag 655 subfield code a.
dc.format Tag 856 subfield code q.
dc.language Tag 008 character positions 35-37.
dc.creator Tags 100, 110, 111, 700, 710, 711, 720.
dc.title Tag 245.
dc.publisher Tag 260 subfield code a and b.
dc.date Tag 260 subfield code c.
dc.description Tags 500, 504, 505, 520, 521.
dc.subject Tags 600, 610, 611, 630, 650, 653.
dc.coverage Tag 651.
dc.relation Tags 530, 760, 762, 765, 767, 770, 772-777, 780, 785-787.
dc.identifier Tag 020 subfield code a and tag 856 subfield code u.
dc.rights Tag 506 subfield code s, tag 540 subfield code a.
controlnumber Tag 001.
record Contains the ISO 2709 data as a compressed byte stream.

The examples in this chapter are taken from this schema. Creating a configuration file is
simple. We start with the basic XML document:

Index Configuration

70

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE document PUBLIC "-//MARC4J//DTD Indexing Schema//EN"

"http://marc4j.org/dtd/indexing-schema.dtd">
<document>
<!-- add fields here -->

</document>

It is important to include the reference to the XML DTD (Document Type Definition) to
declare that the configuration document conforms to the MARC4J Indexing Schema
DTD. The MarcIndexWriter instance validates the XML configuration against this
schema and an error will be thrown if the program is unable to locate it. The
MarcIndexWriter class uses the declaration as a key to find the schema file in the
resource bundle. As you can see the root element is document, corresponding to a
document in Lucene. The next step is to add an index field to the configuration
document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE document PUBLIC "-//MARC4J//DTD Indexing Schema//EN"

"http://marc4j.org/dtd/indexing-schema.dtd">
<document>
<field name="controlnumber" index="untokenized" store="yes">
<controlfield tag="001"/>

</field>
</document>

This document has a single field named controlnumber containing the control number
(tag 001) as a value. The control number is added as an untokenized value to the index.
This means that it is not tokenized by an analyzer. The control number is stored so it can
be used as a reference to the MARC record.

In this example the whole control field value is added, but it is also possible to specify a
data element at particular character positions. The following field element specifies a
field dc.languagewith the MARC language code taken from character positions 35-37 of
the fixed-length data elements (tag 008).

Index Configuration

71

<field name="dc.language" index="untokenized" store="no">
<controlfield tag="008" start="35" end="37"/>

</field>

As shown in the controlnumber field, the start and end attributes are not required. You can
use the start attribute without an end attribute to specify a single character data element.
Leader values are added in a similar way using a leader element. The following listing
adds a field dc.type containing the leader value for the type of record:

<field name="dc.type" index="untokenized" store="no">
<leader start="6"/>

</field>

You can add an end attribute for leader values consisting of more than one character,
although it might not be very useful.

A text index would not be of much use without data fields containing the actual
bibliographic information. The following field element specifies a dc.title field with the
title and remainder of title subfields:

<field name="dc.title" index="tokenized" store="no">
<datafield tag="245">
<subfield>a</subfield>
<subfield>b</subfield>

</datafield>
</field>

The title and remainder of title subfields are added as tokenized values. This means that
the data elements are passed through the StandardAnalyzer before text is added to
the index.

You are not required to add a separate subfield element for each subfield code. The
following short notation is also valid:

<field name="dc.title" index="tokenized" store="no">
<datafield tag="245">
<subfield>ab</subfield>

Index Configuration

72

</datafield>
</field>

A single index field can contain multiple data elements. To create a field named dc.subject
containing subject access fields, you can do the following:

<field name="dc.subject" index="tokenized" store="no">
<datafield tag="600">
<subfield>abcdefghjklmnopqrstu4vxyz</subfield>

</datafield>
<datafield tag="610">
<subfield>abcdefghklmnoprstu4vxyz</subfield>

</datafield>
<datafield tag="611">
<subfield>acdefghklnpqstu4vxyz</subfield>
</datafield>
<datafield tag="630">
<subfield>adfghklmnoprstvxyz</subfield>

</datafield>
<datafield tag="650">
<subfield>aevxyz</subfield>

</datafield>
<datafield tag="653">
<subfield>a</subfield>

</datafield>
</field>

You can also mix leader values, control fields and data fields within a single index field.
The listing below specifies a field named dc.datewith the date from the fixed-length data
elements and the date of publication as values:

<field name="dc.date" index="tokenized" store="no">
<controlfield tag="008" start="7" end="10"/>
<datafield tag="260">
<subfield>c</subfield>

</datafield>
</field>

Index Configuration

73

In addition to the MARC data elements, it is possible to configure MarcIndexWriter to
store the full MARC record in Lucene as a byte array:

<field name="record" index="no" store="compress">
<record/>

</field>

This adds a field named record to the document with a compressed byte stream
containing the full MARC record. In this case the index attribute is ignored since it is not
possible to index a binary field in Lucene.

Creating an Index
Example 4.1, “Creating an Index” shows a command-line program that creates an index
based on the default index configuration. It takes two arguments: the path where Lucene
should create the index and the input file.

Example 4.1. Creating an Index

import java.io.File;
import java.io.FileInputStream;
import java.io.InputStream;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.index.IndexWriter;
import org.marc4j.MarcReader;
import org.marc4j.MarcStreamReader;
import org.marc4j.lucene.MarcIndexWriter;
import org.marc4j.marc.Record;

public class CreateIndexSample {

public static void main(String args[]) throws Exception {
if (args.length != 2)

throw new Exception("Usage: CreateIndexSample " +
"<index> <input>");

File indexDir = new File(args[0]);

Creating an Index

74

File inputFile = new File(args[1]);

InputStream in = new FileInputStream(inputFile);

// create a Lucene index writer
Analyzer analyzer = new StandardAnalyzer();
IndexWriter indexWriter = new IndexWriter(indexDir,

analyzer, true);

// create the index writer for record objects
MarcIndexWriter writer = new MarcIndexWriter(indexWriter);

// read records and add them to the index
MarcReader reader = new MarcStreamReader(in, "UTF8");
while (reader.hasNext()) {

Record record = reader.next();
writer.write(record);

}
System.out.println("Documents: " + indexWriter.docCount());

// close the index writer
writer.close();

}

}

The IndexWriter uses the path to the index directory as the index location. The
StandardAnalyzer is used to tokenize the fields. The boolean value true instructs
IndexWriter to create the index, or overwrite an existing one. The IndexWriter
object is used by MarcIndexWriter to add documents to the index. To index data
using a custom index configuration, the MarcIndexWriter class provides two
additional constructors that take a byte stream or a system identifier as an argument.

Example 4.1, “Creating an Index” uses MarcStreamReader to read records from the
input stream in ISO 2709 format, but you can also use MarcXmlReader to add
MARCXML data to the index.

Andrzej Bialecki created a tool called Luke that provides an index browser for Lucene. It
is a very helpful tool to browse the structure of a Lucene index or to perform ad-hoc
queries. You can launch Luke via Java Web Start from the Luke web site. Figure 4.1,
“Luke Overview Tab” shows the Overview tab. It displays the index name, number of
fields, documents and terms. It also allows you to browse fields and terms.

Creating an Index

75

Figure 4.1. Luke Overview Tab

Searching
Now that you have created the index, you can start using it to search. Example 4.2,
“Searching the Index” creates an instance of IndexSearcher using the index location
provided as an argument. It then searches the index for records that have a title with
value Summerland.

Example 4.2. Searching the Index

import java.io.File;

import org.apache.lucene.analysis.Analyzer;

Searching

76

import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.Hits;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;

public class SearchIndexSample {

public static void main(String args[]) throws Exception {
if (args.length != 1)

throw new Exception("Usage: SearchIndexSample <index>");

File indexDir = new File(args[0]);

// create a Lucene index searcher
Directory dir = FSDirectory.getDirectory(indexDir, false);
IndexSearcher searcher = new IndexSearcher(dir);

// search by title
Analyzer analyzer = new StandardAnalyzer();
QueryParser parser = new QueryParser("title", analyzer);
Query q = parser.parse("Summerland");
Hits hits = searcher.search(q);
System.out.println("Hits: " + hits.length());

}

}

As you can see in the imports, searching the index does not require any MARC4J classes.
All that you need to know is the location of the index that has been created using the
MarcIndexWriter. It is used to create a Directory instance that is required to
instantiate the IndexSearcher object:

File indexDir = new File(args[0]);

// create a Lucene index searcher
Directory dir = FSDirectory.getDirectory(indexDir, false);
IndexSearcher searcher = new IndexSearcher(dir);

Searching

77

The core classes to execute queries are TermQuery, Term, QueryParser, Query and
Hits. When searching tokenized fields, it is important to provide the same analyzer that
has been used to create the index:

Analyzer analyzer = new StandardAnalyzer();
QueryParser parser = new QueryParser("title", analyzer);
Query q = parser.parse("Summerland");
Hits hits = searcher.search(q);

For untokenized fields, like the controlnumber field, you can add the field directly to a
query:

TermQuery q = new TermQuery(new Term("controlnumber", "11939876"));
Hits hits = searcher.search(q);

Once you have an instance of Hits, you can retrieve the Lucene documents. The index is
created using the default configuration. Since it stores the whole record as a byte array,
you can retrieve the full MARC record in ISO 2709 format and unmarshal it to a Record
object. To do this, you first retrieve the Document instance from the Hits object:

Document doc = hits.doc(i);

You can then get the binary value for the record field using the
getBinaryValue(String)method:

byte[] bytes = doc.getBinaryValue("record");

This method returns the record as a byte stream. You can unmarshal the byte stream
using the RecordUtils class provided by the MARC4J Lucene library:

Record record = RecordUtils.unmarshal(bytes);

Searching

78

In Example 4.3, “Searching the Index and Retrieving Records” the retrieval of the record
object is added to our search example.

Example 4.3. Searching the Index and Retrieving Records

import java.io.File;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.Hits;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
import org.marc4j.lucene.RecordUtils;
import org.marc4j.marc.Record;

public class SearchIndexSample {

public static void main(String args[]) throws Exception {
if (args.length != 2)

throw new Exception("Usage: SearchIndexSample " +
"<index> <term>");

File indexDir = new File(args[0]);
String queryString = args[1];

// create a Lucene index searcher
Directory dir = FSDirectory.getDirectory(indexDir, false);
IndexSearcher searcher = new IndexSearcher(dir);

// search by title
Analyzer analyzer = new StandardAnalyzer();
QueryParser parser = new QueryParser("title", analyzer);
Query q = parser.parse(queryString);
Hits hits = searcher.search(q);

for (int i = 0; i < hits.length(); i++) {
Document doc = hits.doc(i);
byte[] bytes = doc.getBinaryValue("record");
Record record = RecordUtils.unmarshal(bytes);

Searching

79

System.out.println(record.toString());
}

}

}

This program writes each record in the search result in tagged display format to
standard output:

LEADER 00714cam a2200205 a 4500
001 12883376
005 20030616111422.0
008 020805s2002 nyu j 000 1 eng
020 $a0786808772
020 $a0786816155 (pbk.)
040 $aDLC$cDLC$dDLC
100 1 $aChabon, Michael.
245 10$aSummerland /$cMichael Chabon.
250 $a1st ed.
260 $aNew York :$bMiramax Books/Hyperion Books for Children,$cc2002.
300 $a500 p. ;$c22 cm.
520 $aEthan Feld, the worst baseball player in the history of the game,
finds himself recruited by a 100-year-old scout to help a band of
fairies triumph over an ancient enemy.

650 1$aFantasy.
650 1$aBaseball$vFiction.
650 1$aMagic$vFiction.

The QueryParser requires a default field, but you can also specify the fields in your
query to specify other fields than the default field, or to search by multiple fields using
boolean operators:

// search by creator and title
dc.creator:Chabon AND dc.title:Summerland

// search by creator and title phrase
dc.creator:Chabon AND dc.title:"Kavalier and Clay"

// search by creator and title prase with nested or clause

Searching

80

dc.creator:Chabon AND (dc.title:"Kavalier and Clay"
OR dc.title:Summerland)

// search by subject using an or and not clause
dc.subject: (Fantasy OR Magic NOT "Comic books, strips, etc.")

Besides the boolean operators, Lucene supports field grouping, wild cards, fuzzy
searches and proximity and range searches. Information about the query parser syntax
can be found on the Query Parser page. It is available on the website of the Apache
Lucene project or in the documentation included in the distribution. I can also
recommend Lucene in Action by Erik Hatcher and Otis Gospodnetic´.

You can use the Search tab in Luke for experimentation. Make sure to use the same
analyzer that was used to create the index. In Example 4.1, “Creating an Index” the
StandardAnalyzerwas used. The MARC4J Lucene API also provides a command-line
utility that enables you create and update a Lucene index for MARC data. See the section
called “Indexing MARC with Lucene” in Appendix B, Command-line Reference for usage.
This command-line utility will be used in Chapter 5, Putting It All Together to populate
the index for the SRU web application.

Searching

81

82

Chapter 5. Putting It All Together
Introduction

In this chapter we develop a web application that implements a basic SRU
Search/Retrieve operation. SRU (Search and Retrieve via URL) is a standard search
protocol for Internet search queries. SRU is an XML oriented protocol that allows a user
to search a remote database of records. It uses the Common Query Language (CQL) as a
query language and allows servers to return results marked up in different XML
vocabularies such as Dublin Core, MARCXML or MODS. The design builds on the
experience gained with the Z39.50 information retrieval protocol, but it uses common
Internet standards making it easy to understand and easy to implement.

It is not possible to implement a complete SRU server in a single chapter. The standard is
considered simple, but it is not that simple. The goal of this chapter is to demonstrate
how you can use MARC4J in your applications. The MarcIndexWriterwill be used to
create the initial index containing indexed MARC records. The MARC4J API will then be
used to serialize results from Lucene to the desired XML output format. Our program
will not have a user interface. The user simply submits a URL based search request to the
server, the server will parse the query to create a Lucene query. Results are returned to
the user in an XML encoded response. Although there are several excellent frameworks
available to create Java web applications, such as the Spring Framework, we will use a
simple application model based on the Front Controller pattern as specified in Martin
Fowlers book Patterns of Enterprise Application Architecture.

For the previous chapters no specific Java IDE (Integrated Development Environment)
was required, but for this chapter it is strongly recommended to use an IDE such as
Eclipse or IntelliJ IDEA. Since Eclipse is a free IDE, the examples are based on Eclipse,
but if you are an experienced developer, don't hesitate to use the IDE of your choice. To
build and deploy the application, the Eclipse Ant integration is used. Apache Ant is a
build tool written in Java. The application is deployed to the Apache Tomcat servlet
container, but the Search/Retrieve application will also work in other servlet containers.

Setting Up the Environment
If you do not have a copy of Apache Tomcat installed, you can download it at the
Apache Tomcat web site. You can find the installation instructions under the
Documentation section. After installation you can test if Tomcat is running by pointing
the browser to http://localhost:8080. If the software was successfully installed you should
see the Apache Tomcat welcome page.

83

Warning

You must have the CATALINA_HOME environment variable set in order to be
able to deploy the Search/Retrieve application. The build.xml file depends on
some Apache Tomcat libraries.

Now that we have a target environment, we need to set up a project for development.
We need to create the project structure, add the required libraries, configure logging,
create a build file, configure some Tomcat tasks and finally create the project in Eclipse.
First create the folder structure shown in Figure 5.1, “Project Folder Structure”.

Figure 5.1. Project Folder Structure

sru
|
|--build
|
|--src
|
|--web

|
|--WEB-INF
|
|--classes
|
|--lib

The sru folder is the project root folder containing all the project resources. The src
directory is for the Java source code, the build directory is the output directory and the
web directory contains the resources that are needed by the servlet container. The web
directory has a WEB-INF sub directory that is required by Java web applications. It
contains two sub directories: the classes directory contains classes we want to deploy
and the lib directory contains the third party libraries.

The Search/Retrieve web application depends on the following third party libraries:

marc4j.jar
The MARC4J API.

Setting Up the Environment

84

marc4j-lucene.jar
The MARC4J Lucene API.

cql-java.jar
This is a CQL query parser created by Mike Taylor. It is included in the MARC4J
Lucene API distribution. It is used to translate CQL query expressions to Lucene
query expressions.

lucene-core-2.0.0.jar
The Lucene library that we will use for searching the index created with the MARC4J
Lucene API.

log4j-1.2.8.jar
In order to be able to debug the application we will use the Apache Log4j logging
services.

Copy these files to the WEB-INF/lib directory. To enable logging we need to add a
Log4j configuration. If you are familiar with Log4j, you might want to set up your own
configuration, otherwise simply copy the lines from Example 5.1, “Basic Log4j
Configuration” into a file called log4j.properties and save the file in the classes
directory. It contains a minimalistic configuration to enable Log4j to write log statements
to standard output. In Eclipse these statements will be written to the Console View, in
Tomcat they will be added to the stdout.log file located in the Apache Tomcat log
directory.

Example 5.1. Basic Log4j Configuration

Set root logger level to DEBUG and its only appender to A1.
log4j.rootLogger=DEBUG, A1

A1 is set to be a ConsoleAppender.
log4j.appender.A1=org.apache.log4j.ConsoleAppender

A1 uses PatternLayout.
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n

log4j.rootLogger=DEBUG, A1
log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout

Setting Up the Environment

85

Print the date in ISO 8601 format
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c - %m%n

use the A1 appender for our packages
org.marc4j.sru=A1

In addition to the WEB-INF directory, the servlet engine requires a Web Application
Deployment Descriptor. This is an XML file describing the servlets and other components
that will make up the Search/Retrieve application. Create a file called web.xml in the
WEB-INF directory and add the following:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://
java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" version="2.4">

<display-name>sru</display-name>

<!-- servlet configurations -->

</web-app>

In order to build and deploy the application, we also need a build file. We use Apache
Ant to execute build and deployment tasks. Example 5.2, “The Ant Build File” shows the
complete build file for the sru project.

Example 5.2. The Ant Build File

<?xml version="1.0" encoding="UTF-8"?>
<project name="sru" default="jar" basedir=".">

<property environment="env" />

<!-- get the Tomcat home directory -->
<property name="tomcat.home" value="${env.CATALINA_HOME}" />

<property name="tomcat.url" value="http://localhost:8080/manager"/>

Setting Up the Environment

86

<property name="tomcat.username" value="admin"/>
<property name="tomcat.password" value=""/>

<property name="project.name" value="sru"/>
<property name="src.dir" value="src"/>
<property name="web.dir" value="web"/>
<property name="dist.dir" value="dist"/>
<property name="build.dir" value="build"/>
<property name="webapp.name" value="sru"/>

<target name="init">
<tstamp />
<record name="build.log" loglevel="verbose" append="no" />

</target>

<path id="classpath">
<fileset dir="${web.dir}/WEB-INF/lib">
<include name="*.jar" />

</fileset>
<fileset dir="${tomcat.home}/common/lib">
<include name="servlet*.jar" />
<include name="mail.jar" />
<include name="activation.jar" />

</fileset>
<pathelement path="${build.dir}" />
<pathelement path="${web.dir}/WEB-INF/classes" />

</path>

<target name="prepare" depends="init">
<mkdir dir="${build.dir}" />

</target>

<target name="compile" depends="prepare">
<javac srcdir="${src.dir}" destdir="${build.dir}">
<classpath refid="classpath" />

</javac>
<copy todir="${build.dir}">
<fileset dir="${src.dir}">
<include name="**/*.properties" />
<include name="**/*.xml" />

</fileset>
</copy>

</target>

<target name="jar" depends="compile">

Setting Up the Environment

87

<jar jarfile="${project.name}.jar">
<fileset dir="${build.dir}">
<include name="**/*.class" />
<include name="**/*.properties" />
<include name="**/*.xml" />

</fileset>
</jar>

</target>

<target name="war" depends="compile">
<mkdir dir="${dist.dir}" />
<war destfile="${dist.dir}/${webapp.name}.war"

webxml="${web.dir}/WEB-INF/web.xml">
<classes dir="${build.dir}" />
<fileset dir="${web.dir}">
<include name="**/*.*" />
<exclude name="**/web.xml" />

</fileset>
</war>

</target>

<target name="deploy" depends="compile">
<copy todir="${tomcat.home}/webapps/${webapp.name}"

preservelastmodified="true">
<fileset dir="${web.dir}">
<include name="**/*.*"/>

</fileset>
</copy>
<copy todir="${tomcat.home}/webapps/${webapp.name}/WEB-INF/classes"

preservelastmodified="true">
<fileset dir="${build.dir}" />

</copy>
</target>

<target name="clean" depends="init">
<delete dir="${dist.dir}" />
<delete dir="${build.dir}" />

</target>

<!-- tomcat ant tasks -->
<taskdef file="tomcatTasks.properties">
<classpath>
<pathelement path="${tomcat.home}/server/lib/catalina-ant.jar" />

</classpath>
</taskdef>

Setting Up the Environment

88

<target name="install" depends="war">
<deploy url="${tomcat.url}"

username="${tomcat.username}"
password="${tomcat.password}"
path="/${webapp.name}"
war="file:${dist.dir}/${webapp.name}.war" />

</target>

<target name="remove">
<undeploy url="${tomcat.url}"

username="${tomcat.username}"
password="${tomcat.password}"
path="/${webapp.name}" />

</target>

<target name="reload" depends="deploy">
<reload url="${tomcat.url}"

username="${tomcat.username}"
password="${tomcat.password}"
path="/${webapp.name}" />

</target>

<target name="start">
<start url="${tomcat.url}"

username="${tomcat.username}"
password="${tomcat.password}"
path="/${webapp.name}" />

</target>

<target name="stop">
<stop url="${tomcat.url}"

username="${tomcat.username}"
password="${tomcat.password}"
path="/${webapp.name}" />

</target>

<target name="list">
<list url="${tomcat.url}"

username="${tomcat.username}"
password="${tomcat.password}" />

</target>

</project>

Setting Up the Environment

89

Copy these lines into a file called build.xml and save the file in the project root folder
(this is the sru folder).

To run the Apache Tomcat tasks like deploy, undeploy and reload, we need to configure the
classes that implement these tasks. To do this, create a file called
tomcatTasks.properties in the same directory as build.xml and add the
following lines:

deploy=org.apache.catalina.ant.DeployTask
undeploy=org.apache.catalina.ant.UndeployTask
remove=org.apache.catalina.ant.RemoveTask
reload=org.apache.catalina.ant.ReloadTask
start=org.apache.catalina.ant.StartTask
stop=org.apache.catalina.ant.StopTask
list=org.apache.catalina.ant.ListTask

The final task, before starting development, is to configure the project in the Eclipse IDE.
To do this follow these steps:

Start the New Project wizard
Start Eclipse and select File, New and then Project. Eclipse will show the New Project
wizard.

Add the project root folder
Select Java Project and click Next. Eclipse will show the New Java Project wizard.
Type sru in the Project name input box and then select the Create project from
existing source option. Use the Browse button to navigate to the sru project root
directory and click Next to enter the Java settings.

Add the build path
In the Java settings window, right click on the src folder and select the Use as
Source Folder option to add the src folder to the build path. To add the default
output location use the Browse button to select the build folder.

Verify if the libraries are added to the CLASSPATH
Click on the Libraries tab to verify if the libraries from the lib folder are listed. If
this is not the case you can add them using the Add JARs... button.

Add the classes folder
Click the Add Class Folder... and navigate to the WEB-INF folder. Select the
classes folder and click OK to add the folder. We need to add the classes folder
to enable Log4j to find the log appenders.

Setting Up the Environment

90

Add the Apache Tomcat libraries
We also need some Apache Tomcat libraries. Click Add External JARs and browse
on your file system to the common/lib folder in the Apache Tomcat home directory.
Select the file servlet-api.jar. Repeat this last action for catalina-ant.jar
located in the server/lib directory of your Apache Tomcat installation.

Finish the New Project wizard
Click Finish to save the settings and close the wizard.

Our project is now added to Eclipse. It should look similar to Figure 5.2, “SRU Project in
Eclipse”:

Figure 5.2. SRU Project in Eclipse

Both the development and deployment environments are now fully configured to start
developing the Search/Retrieve application.

Implementing the Controller
The Search/Retrieve application is a web application. It needs to be able to handle HTTP
requests from a client such as a browser. It is possible to write a servlet that handles the

Implementing the Controller

91

requests for the Search/Retrieve operation, but since it might be required to implement
additional operations in the near future, it is recommended to avoid creating a servlet for
each operation. It would introduce all kinds of duplicate behavior across our servlets,
such as exception handling when someone requests an operation that is not supported.
To avoid this, a single class is created that implements the common behavior to handle
all operations, including the Search/Retrieve operation. Example 5.3, “The Controller
Class” shows the code for this class.

Example 5.3. The Controller Class

package org.marc4j.sru;

import java.io.IOException;
import javax.servlet.ServletConfig;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class Controller extends HttpServlet {

private static final String PACKAGE_NAME = "org.marc4j.sru";

protected ServletContext context;

public void init(ServletConfig config) throws ServletException {
context = config.getServletContext();

}

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

Operation operation = getOperation(request);
operation.init(context, request, response);
operation.execute();

}

public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

doGet(request, response);

Implementing the Controller

92

}

private Operation getOperation(HttpServletRequest request) {
Operation operation = null;
try {

final String actionClassName = PACKAGE_NAME + "."
+ request.getParameter("operation") + "Operation";

operation = (Operation) Class.forName(actionClassName)
.newInstance();

} catch (Exception e) {
operation = new UnsupportedOperation();

}
return operation;

}

public void destroy() {
context = null;

}

}

This class extends the HttpServlet class. It requires each request to provide a
parameter operation, representing the SRU operation name, like SearchRetrieve, Explain
or Scan. These are operations an SRU server should provide. Based on the operation
request parameter, the controller tries to instantiate the operation by calling the
getOperation()method. If there is no match, an UnsupportedOperation is
instantiated. The controller then initializes the Operation instance with the
ServletContext, the HttpServletRequest and HttpServletResponse objects.
Each operation needs to implement the abstract method execute(). This method
contains the logic specific to the operation. The Operation class also implements a
forward()method to forward the request to a view. Example 5.4, “The Base Operation
Class” shows the abstract Operation class.

Example 5.4. The Base Operation Class

package org.marc4j.sru;

import java.io.IOException;

Implementing the Controller

93

import javax.servlet.RequestDispatcher;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public abstract class Operation {

protected ServletContext context;

protected HttpServletRequest request;

protected HttpServletResponse response;

public void init(ServletContext context,
HttpServletRequest request,
HttpServletResponse response) {

this.context = context;
this.request = request;
this.response = response;

}

public abstract public void execute() throws ServletException,
IOException;

protected void forward(String target) throws ServletException,
IOException {

RequestDispatcher dispatcher =
context.getRequestDispatcher(target);

dispatcher.forward(request, response);
}

}

To add these classes to the Search/Retrieve application, we start with adding a package
to the src folder. Select the src folder and click File, New and then Package. Eclipse
shows the Java Package window. For the examples in this book I used
org.marc4j.sru, but you can use a different name. Put the name of your choice in the
name field and click Finish. We start with creating the Operation class, since the
Controller class depends on it. To create this class, select the package we just created
and then click File, New and then Class. Eclipse shows the Java Class window. Enter
Operation in the name field and click Finish to create the class. Enter the code listed in

Implementing the Controller

94

Example 5.4, “The Base Operation Class” and repeat the steps to add a class for the
Controller class as listed in Example 5.3, “The Controller Class”. Make sure to add the
HttpServlet class in the superclass field when you create the Controller class.

Tip

Eclipse can organize the imports for you. When editing a class, either right click
on the class in the Package Explorer and go to Source, then Organize Imports or
use the command Ctrl+Shift+O.

On creation of the Controller class, Eclipse reports an error because it cannot locate
the UnsupportedOperation class. Using an IDE like Eclipse this is easy to solve. Click
on the error in the left margin, select the option Create class 'UnsupportedOperation' and
click Enter. Eclipse shows the Java Class window. Click Finish to create the class and add
the following lines in the body of the execute()method:

request.setAttribute("code", "4");
request.setAttribute("message", "Unsupported operation");

forward("/diagnostic.jsp");

Example 5.5, “The UnsupportedOperation Class.” shows the complete code for the
UnsupportedOperation class.

Example 5.5. The UnsupportedOperation Class.

package org.marc4j.sru;

import java.io.IOException;
import javax.servlet.ServletException;

public class UnsupportedOperation extends Operation {

public void execute() throws ServletException, IOException {
request.setAttribute("code", "4");
request.setAttribute("message", "Unsupported operation");

forward("/diagnostic.jsp");
}

}

Implementing the Controller

95

When the Controller receives a request with an unsupported operation, it will
instantiate the UnsupportedOperation class and call the execute()method. The
UnsupportedOperation does not have much logic. It simply forwards the request to
the diagnostic.jsp file. Create this file in the web directory and add the JSP code
listed in Example 5.6, “Diagnostic Record”.

Example 5.6. Diagnostic Record

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="1.2">
<jsp:directive.page contentType="text/xml"/>
<jsp:output omit-xml-declaration="false"/>
<diagnostic xmlns="http://www.loc.gov/zing/srw/diagnostic/">
<uri>info:srw/diagnostic/1/${requestScope.code}</uri>
<details>${requestScope.code}</details>
<message>${requestScope.message}</message>

</diagnostic>
</jsp:root>

We now have the Controller class, the abstract Operation class and a first
implementation that is able to handle requests for unsupported operations. When we
deploy this web application, it will return an unsupported operation for every request,
because it is the only operation currently implemented.

To enable Apache Tomcat to forward requests to the controller, we need to add a servlet
mapping to theWeb Application Deployment Descriptor. Add the following lines to the
web.xml file located in the WEB-INF folder:

<servlet>
<servlet-name>Controller</servlet-name>
<servlet-class>
org.marc4j.sru.Controller

</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Controller</servlet-name>
<url-pattern>/search/*</url-pattern>

</servlet-mapping>

Implementing the Controller

96

Example 5.7, “The Deployment Descriptor” shows the completeWeb Application
Deployment Descriptor file.

Example 5.7. The Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://
java.sun.com/xml/ns/j2ee/web-app_2_4.xsd" version="2.4">

<display-name>sru</display-name>

<servlet>
<servlet-name>Controller</servlet-name>
<servlet-class>
org.marc4j.sru.Controller

</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Controller</servlet-name>
<url-pattern>/search/*</url-pattern>

</servlet-mapping>

</web-app>

Since we use a front controller, this is basically all we need to configure in the Web
Application Deployment Descriptor. If we had used a servlet for each operation, it would
have been necessary to configure a servlet every time a new one was added to the
application.

You are now ready to deploy the application. In Eclipse select Window, Show View and
then Ant. Eclipse opens the Ant View. Click the Add Buildfiles button and select the
build.xml located in the root folder of the project. Eclipse adds the build file to the Ant
View. To test the connection, select the list task and click Run the Selected Target. The
Eclipse console should list the applications deployed on the Tomcat servlet container:

Implementing the Controller

97

Buildfile: /Users/bpeters/Documents/workspace/sru/build.xml
list:

[list] OK - Listed applications for virtual host localhost
[list] /admin:running:0:/usr/local/tomcat/server/webapps/admin
[list] /balancer:running:0:balancer
[list] /:running:0:/usr/local/tomcat/webapps/ROOT
[list] /manager:running:0:/usr/local/tomcat/server/webapps/manager

BUILD SUCCESSFUL
Total time: 1 second

Run the deploy task to deploy the Search/Retrieve application to Apache Tomcat. When
you run the list task again, the sru application should appear in the list:

Buildfile: /Users/bpeters/Documents/workspace/sru/build.xml
list:

[list] OK - Listed applications for virtual host localhost
[list] /admin:running:0:/usr/local/tomcat/server/webapps/admin
[list] /balancer:running:0:balancer
[list] /sru:running:0:/usr/local/tomcat/server/webapps/sru
[list] /:running:0:/usr/local/tomcat/webapps/ROOT
[list] /manager:running:0:/usr/local/tomcat/server/webapps/manager

BUILD SUCCESSFUL
Total time: 1 second

To test the application, open a web browser and enter the following URL:

http://localhost:8080/sru/search?operation=SearchRetrieve

The browser should display the following diagnostic message:

<?xml version="1.0" encoding="UTF-8"?>
<diagnostic xmlns="http://www.loc.gov/zing/srw/diagnostic/">
<uri>info:srw/diagnostic/1/4</uri>
<details>4</details>
<message>Unsupported operation.</message>

</diagnostic>

Building the Index

98

Building the Index
Before we continue development, we first need to populate an Apache Lucene index.
You can use the MarcIndexDriver to do that. This class is a command-line program
that can add records to either a new Lucene index or an existing one. To run the driver,
the following libraries are required on the CLASSPATH environment variable:

marc4j.jar
lucene-core-2.0.0.jar
marc4j-lucene.jar
commons-logging-1.1.jar

You need some MARC records, but I assume that will be no problem, since that's what
this book is all about. Creating the index is very simple. Create a directory called index
as a subdirectory of sru, the project root directory. The following command creates the
index in directory /Users/bpeters/Documents/workspace/sru/index and adds
the given MARC records:

java -jar marc4j-lucene.jar
-index /Users/bpeters/Documents/workspace/sru/index
-create input.mrc

Running this command from the command-line will output something similar to this:

Index has 0 documents
Added 2 documents in 410 milliseconds

You can also specify the CLASSPATH and main class explicitly using a command of the
form:

java -cp marc4j.jar;lucene-core-2.0.0.jar;marc4j-lucene.jar;
commons-logging-1.1.jar org.marc4j.lucene.util.MarcIndexDriver
-index /Users/bpeters/Documents/workspace/sru/index -create input.mrc

Building the Index

99

Warning

If you add multiple files to the index use the -create option only for the first file,
otherwise MarcIndexDriverwill overwrite the existing index every time you
add a new file.

Implementing the SRU Operation
Now that we have the controller framework and a Lucene index that contains some
records, we can start developing the Search/Retrieve operation. We start with developing
a simple gateway to wrap the specific Lucene code. Example 5.8, “The SearchGateway
Class” implements the logic needed for the Search/Retrieve operation.

Example 5.8. The SearchGateway Class

package org.marc4j.sru;

import java.io.IOException;

import org.apache.log4j.Logger;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.Hits;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
import org.marc4j.lucene.util.QueryHelper;

public class SearchGateway {

static Logger log = Logger.getLogger(SearchGateway.class);

// location of the index
public static final String INDEX_DIR =
"/Users/bpeters/Documents/workspace/sru/index";

public Hits query(String cql) throws IOException {
log.debug("entering query() method");

Implementing the SRU Operation

100

Directory dir = FSDirectory.getDirectory(INDEX_DIR, false);
IndexSearcher searcher = new IndexSearcher(dir);

Analyzer analyzer = new StandardAnalyzer();
QueryParser parser = new QueryParser("dc:title", analyzer);
Query q = null;
try {

// create Lucene expression from CQL expression
String queryString = QueryHelper.toLucene(cql);
log.debug("Lucene query expression: " + queryString);

q = parser.parse(queryString);
} catch (Exception e) {

log.error(e.getMessage(), e);
}

Hits hits = searcher.search(q);
log.debug("Hits returned for " + cql + ": " + hits.length());

return hits;
}

}

Most of the code in Example 5.8, “The SearchGateway Class” is similar to Example 4.2,
“Searching the Index” in Chapter 4, Indexing with Lucene. The IndexSearcher instance
uses the FSDirectory object to open the directory containing the index. The
StandardAnalyzer is used to analyze the search query string to ensure that the query
is in the same form as the index. A part that needs some explanation is the following line
of code:

String queryString = QueryHelper.toLucene(cql);

The QueryHelper class is part of the MARC4J Lucene library. It enables you to translate
a CQL query expression to a Lucene query expression, but it only supports a limited set
of features required by CQL. In the current release the QueryHelper class supports the
query expressions listed in Table 5.1, “Query Examples”.

Implementing the SRU Operation

101

Table 5.1. Query Examples

CQL Query Expression Description
Summerland Matches records that contain Summerland in the

default field.
dc.title = Summerland Matches records that contain the term Summerland

in the dc.title field.
dc.title = "Kavalier and
Clay"

Matches records that contain the phrase
"Kavalier and Clay" in the dc.title field.

dc.author = Chabon and
"Kavalier and Clay"

Matches records that contain the term Chabon in
the dc.creator field and the phrase "Kavalier
and Clay" in the default field.

Summerland or "Kavalier
and Clay"

Matches records that contain the term Summerland
or the phrase "Kavalier and Clay" in the
default field.

dc.subject = (Fantasy or
Magic) not "Comic books,
strips, etc."

Matches records that contain the term Fantasy or
Magic, but not the phrase "Comic books,
strips, etc." in the dc.subject field.

You can use the wildcards * (match zero or more characters) and ? (match a single
character).

The Query object is created using the Lucene query string returned by the toLucene()
method. The IndexSearcher instance uses the Query instance and returns a Hits
object that contains documents that meet the criteria.

Note

In a real world application it is not recommended to create a new instance of
IndexSearcher every time the query()method is executed, but for now this
will work. It is also recommended to put the location of the index in a property
file located on the CLASSPATH environment to avoid having to update the class
when the location of the index changes.

To test the gateway, we add a JUnit test class to the project. JUnit is a Java library to run
automated tests. It is an essential tool for Java developers and most IDE's enable you to
run tests from within the editor. It is not the purpose of this book to provide a tutorial on
how to use JUnit. There are quite a few books and online tutorials available that cover
this subject. Before we can start writing test classes, we need to add the junit.jar to
the CLASSPATH. In Eclipse select Project, then Properties from the menu. Then go to the
Libraries tab, click Add External JARs... and navigate to the directory where you

Implementing the SRU Operation

102

installed Eclipse. Go to the sub directory plugins and then to a sub directory that is
called something like org.junit_3.8.1. Open this directory, select junit.jar and
click open to add the library to the CLASSPATH environment variable. Example 5.9,
“JUnit Test for Gateway” shows the code for the JUnit test to test the query()method
in the SearchGateway class.

Example 5.9. JUnit Test for Gateway

package org.marc4j.sru.test;

import junit.framework.TestCase;
import org.apache.lucene.search.Hits;
import org.marc4j.sru.SearchGateway;

public class SearchGatewayTest extends TestCase {

public void testSimpleQuery() throws Exception {
SearchGateway gateway = new SearchGateway();
Hits hits = gateway.query("Summerland");
assertEquals(1, hits.length());

}

}

The JUnit TestCase class provides test methods like assertEquals() to test if a
particular condition is true. If this is not the case, the test fails. You can run the test from
within your Eclipse environment. Right click on the test class and select Run As... and
then JUnit Test. JUnit will run every method in the class that starts with test. In this
case there is only one test method called testSimpleQuery(). It assumes there is an
indexed record with title Summerland.

We are now ready to implement the Search/Retrieve operation. It will use the
SearchGateway class to execute queries. Select the package org.marc4j.sru and
then select File, New, Class. Add SearchRetrieveOperation in the name field and
add Operation as a superclass. Click finish to create the class. Example 5.10, “The
SearchRetrieveOperation Class” shows the code created by Eclipse.

Implementing the SRU Operation

103

Example 5.10. The SearchRetrieveOperation Class

package org.marc4j.sru;

import java.io.IOException;
import javax.servlet.ServletException;

public class SearchRetrieveOperation extends Operation {

public void execute() throws ServletException, IOException {
// TODO Auto-generated method stub

}

}

We will start with a first implementation that simply returns the number of records
retrieved by the query. Example 5.11, “Method Implementation” shows the code for this
implementation.

Example 5.11. Method Implementation

package org.marc4j.sru;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;

import org.apache.lucene.search.Hits;

public class SearchRetrieveOperation extends Operation {

public void execute() throws ServletException, IOException {

String queryString = request.getParameter("query");

SearchGateway gateway = new SearchGateway();
Hits hits = gateway.query(queryString);

Implementing the SRU Operation

104

response.setContentType("text/xml;charset=utf-8");

PrintWriter writer = response.getWriter();

writer.println("<?xml version=\"1.0\" encoding=\"UTF-8\"?>");
writer.println("<searchRetrieveResponse "

+ "xmlns=\"http://www.loc.gov/zing/srw/\">\n"
+ " <version>1.1</version>\n <numberOfRecords>"
+ hits.length() + "</numberOfRecords>\n"
+ "</searchRetrieveResponse>");

writer.flush();
}

}

The query parameter is retrieved from the request and used to obtain a Hits object
using the SearchGateway. The browser needs to know that it will receive an XML
encoded response. This is done using the setContentTypemethod. The response is
returned via the PrintWriter object that is obtained from the
HttpServletResponse. To test the SearchRetrieveOperation, deploy and reload
the application using the Ant tasks, open a web browser and enter the following URL:

http://localhost:8080/sru/search?operation=SearchRetrieve
&query=Summerland

If you enter a title word that matches one or more titles in your Lucene index, the
operation should return a response similar to this:

<?xml version="1.0" encoding="UTF-8"?>
<searchRetrieveResponse xmlns="http://www.loc.gov/zing/srw/">
<version>1.1</version>
<numberOfRecords>1</numberOfRecords>

</searchRetrieveResponse>

The next part is adding the actual records from the search result to the response.
According to the SRU standard, each record should be embedded in a record element like
this:

Implementing the SRU Operation

105

<record>
<recordPacking>XML</recordPacking>
<recordSchema>info:srw/schema/1/dc-v1.1</recordSchema>
<recordData>
<!-- the record data -->

</recordData>
<recordNumber>1</recordNumber>

</record>

The record element provides information about the data format and structure of the
embedded record. In this case the record is encoded in XML according to the Dublin
Core schema.

There are a few things to consider for the Search/Retrieve response. We could simply
continue with the current approach and use the println()method of our response
writer to write the whole XML response as a String, but then we would end up with
unreadable code that is difficult to maintain. A better approach is using one of the XML
API's, for example to create a DOM Document instance and serialize the document to
the response writer. As an alternative, we can also develop an XSLT stylesheet to create
the response and use MarcXmlWriter to write the result to the response writer.
Another alternative is to implement a new MarcWriter implementation that uses the
low-level SAX interface to produce the XML output using SAX events. This approach
was used for Example 3.6, “Dublin Core Writer”. For a high traffic SRU server this might
be the best solution, but for now let's use an XSLT stylesheet to create the response.

We start with creating a basic stylesheet that transforms MARCXML to a limited Dublin
Core document with only a creator and title element. Copy the contents of listing
Example 5.12, “The Dublin Core Stylesheet” in a file called marcxml2dc.xsl and add
the file to the org.marc4j.sru package in a sub directory called resources.

Example 5.12. The Dublin Core Stylesheet

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"

xmlns="http://www.loc.gov/zing/srw"
xmlns:marc="http://www.loc.gov/MARC21/slim"
xmlns:srw_dc="info:srw/schema/1/dc-schema"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
exclude-result-prefixes="marc">

Implementing the SRU Operation

106

<xsl:output method="xml" indent="yes" encoding="UTF-8"/>

<xsl:template match="/">
<searchRetrieveResponse

xmlns="http://www.loc.gov/zing/srw/"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<version>1.1</version>
<numberOfRecords>
<xsl:value-of select="count(//marc:record)"/>

</numberOfRecords>
<xsl:apply-templates/>

</searchRetrieveResponse>
</xsl:template>

<xsl:template match="marc:record">
<record>
<recordPacking>XML</recordPacking>
<recordSchema>info:srw/schema/1/dc-v1.1</recordSchema>
<recordData>
<srw_dc:dc>
<xsl:call-template name="creator"/>
<xsl:call-template name="title"/>

</srw_dc:dc>
</recordData>
<recordNumber><xsl:number/></recordNumber>

</record>
</xsl:template>

<xsl:template name="creator">
<dc:creator>
<xsl:for-each select="marc:datafield[@tag=100]">
<xsl:call-template name="writeSubfields"/>

</xsl:for-each>
</dc:creator>

</xsl:template>

<xsl:template name="title">
<dc:title>
<xsl:for-each select="marc:datafield[@tag=245]">
<xsl:call-template name="writeSubfields">
<xsl:with-param name="codes">abfghk</xsl:with-param>

</xsl:call-template>
</xsl:for-each>

</dc:title>

Implementing the SRU Operation

107

</xsl:template>

<xsl:template name="writeSubfields">
<xsl:param name="codes">abcdefghijklmnopqrstuvwxyz</xsl:param>
<xsl:for-each select="marc:subfield">
<xsl:if test="contains($codes, @code)">
<xsl:if test="position() > 1">
<xsl:text> </xsl:text>

</xsl:if>
<xsl:value-of select="text()"/>

</xsl:if>
</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

To update the execute()method, first remove all the code under the line where the
response writer gets retrieved using the getWriter()method call. We start with
creating a Source object containing the stylesheet:

String stylesheetPath = "resources/marcxml2dc.xsl";
InputStream in = getClass().getResourceAsStream(stylesheetPath);
Source source = new StreamSource(in);

The getResourceAsStream()method is used to locate the file containing the
stylesheet relative to the location of the SearchRetrieveOperation class. To avoid
having to re-parse the stylesheet for every request, it is recommended to create a
Templates object and cache it in the ServletContext, but for now this will work.
Next create a Result object containing the response writer. The stylesheet output will
be written to this writer.

Result result = new StreamResult(writer);

The Result and Source instances are used to create an instance of MarcXmlWriter:

MarcWriter marcWriter = new MarcXmlWriter(result, source);

Implementing the SRU Operation

108

You can then read records from the search result by iterating over the Hits to retrieve
the ISO 2709 byte stream from the Document:

for (int i = 0; i < hits.length(); i++) {
Document doc = hits.doc(i);

// write each record
}

The MARC4J Lucene API provides a class called RecordUtils that is able to unmarshal
the byte stream to a Record object:

byte[] bytes = doc.getBinaryValue("record");
Record record = RecordUtils.unmarshal(bytes);

Each record is written to the MarcWriter implementation that writes output to the
servlet response:

marcWriter.write(record);

Finally you need to close the MarcWriter instance and flush the response writer.
Example 5.13, “The Updated Method” shows the complete code for the updated
execute()method.

Example 5.13. The Updated Method

public void execute() throws ServletException, IOException {

String queryString = request.getParameter("query");

SearchGateway gateway = new SearchGateway();
Hits hits = gateway.query(queryString);

response.setContentType("text/xml;charset=utf-8");

Implementing the SRU Operation

109

PrintWriter writer = response.getWriter();

String stylesheetPath = "resources/marcxml2dc.xsl";
InputStream in = getClass().getResourceAsStream(stylesheetPath);
Source source = new StreamSource(in);

Result result = new StreamResult(writer);

MarcWriter marcWriter = new MarcXmlWriter(result, source);
for (int i = 0; i < hits.length(); i++) {

Document doc = hits.doc(i);
byte[] bytes = doc.getBinaryValue("record");
Record record = RecordUtils.unmarshal(bytes);
marcWriter.write(record);

}
marcWriter.close();

writer.flush();
}

Deploy and reload the application using the Ant tasks, open a web browser and enter the
following URL:

http://localhost:8080/sru/search?operation=SearchRetrieve
&query=Summerland

If you enter a title word that matches one or more titles in your Lucene index, the
operation should return a response similar to this:

<?xml version="1.0" encoding="UTF-8"?>
<searchRetrieveResponse xmlns="http://www.loc.gov/zing/srw/"

xmlns:srw_dc="info:srw/schema/1/dc-schema"
xmlns:dc="http://purl.org/dc/elements/1.1/">

<version>1.1</version>
<numberOfRecords>1</numberOfRecords>
<record xmlns="http://www.loc.gov/zing/srw">
<recordPacking>XML</recordPacking>
<recordSchema>info:srw/schema/1/dc-v1.1</recordSchema>
<recordData>

Implementing the SRU Operation

110

<srw_dc:dc>
<dc:creator>Chabon, Michael.</dc:creator>
<dc:title>Summerland /</dc:title>

</srw_dc:dc>
</recordData>
<recordNumber>1</recordNumber>

</record>
</searchRetrieveResponse>

Most browsers automatically encode characters that need to be escaped in a URL, so you
should also be able to execute more complex queries like for example:

http://localhost:8080/sru/search?operation=SearchRetrieve&query=
dc.creator="Chabon, Michael" and "Kavalier and Clay"

You can now add templates to the XSLT stylesheet to include other Dublin Core fields in
the response. To do this, first add templates for each field you want to add, like for
example to add the publisher and publication date:

<xsl:template name="publisher">
<xsl:for-each select="marc:datafield[@tag=260]">
<dc:publisher>
<xsl:call-template name="writeSubfields">
<xsl:with-param name="codes">ab</xsl:with-param>

</xsl:call-template>
</dc:publisher>

</xsl:for-each>
</xsl:template>

<xsl:template name="date">
<xsl:for-each select="marc:datafield[@tag=260]">
<dc:date>
<xsl:value-of select="marc:subfield[@code='c']"/>

</dc:date>
</xsl:for-each>

</xsl:template>

Implementing the SRU Operation

111

Then add a call to the new templates in the template that matches the record element:

<xsl:call-template name="publisher"/>
<xsl:call-template name="date"/>

The reason we explicitly call each template, is that otherwise we will end up with the
remaining data from the source tree in the response. You can test this by replacing the
call-template elements with an empty apply-templates element:

<xsl:template match="marc:record">
<record>
<recordPacking>XML</recordPacking>
<recordSchema>info:srw/schema/1/dc-v1.1</recordSchema>
<recordData>
<srw_dc:dc>
<xs:apply-templates/>

</srw_dc:dc>
</recordData>
<recordNumber><xsl:number/></recordNumber>
</record>

</xsl:template>

Adding the Explain Operation
The Explain operation records the facilities that are available on the SRU server. It can be
used for configuration purposes by the client and contains such information as the host,
port and path and the record schema used by the Search/Retrieve operation. The explain
response should be returned when the client simply sends a request to the SRU database,
in our case:

http://localhost:8080/sru

To do this, create another JSP template containing the explain response and add this
template to the web.xml file as a welcome file. Add the contents of Example 5.14, “JSP
Template for the Explain Response” to a file called explain.jsp and save the file in the
web directory.

Adding the Explain Operation

112

Example 5.14. JSP Template for the Explain Response

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
version="1.2">

<jsp:output omit-xml-declaration="false"/>
<jsp:directive.page contentType="text/xml"/>
<explainResponse xmlns="http://www.loc.gov/zing/srw/"

xmlns:zr="http://explain.z3950.org/dtd/2.0/">
<version>1.1</version>
<record>
<recordPacking>XML</recordPacking>
<recordSchema>http://explain.z3950.org/dtd/2.0/ </recordSchema>
<recordData>
<zr:explain>
<zr:serverInfo>
<zr:host>localhost</zr:host>
<zr:port>8080</zr:port>
<zr:database>sru/search</zr:database>

</zr:serverInfo>
<zr:databaseInfo>
<zr:title>An example SRU service</zr:title>
<zr:description lang='en' primary='true'>
This is an example SRU service.

</zr:description>
</zr:databaseInfo>
<zr:schemaInfo>
<zr:schema identifier='info:srw/schema/1/dc-v1.1'

sort='false' name='dc'>
<zr:title>Dublin Core</zr:title>

</zr:schema>
</zr:schemaInfo>
<zr:configInfo>
<zr:default type='numberOfRecords'>100</zr:default>

</zr:configInfo>
</zr:explain>

</recordData>
</record>

</explainResponse>
</jsp:root>

Adding the Explain Operation

113

To add the explain response as a welcome file, open the web.xml file and add the
following lines under the Servlet mappings:

<welcome-file-list>
<welcome-file>explain.jsp</welcome-file>

</welcome-file-list>

Deploy and reload the application using the Ant tasks, open a web browser and enter the
following URL:

http://localhost:8080/sru

You should see the contents of the explain response document.

In addition to the application URL, the explain operation should also be the response of
an operation URL. For our application this means that the following URL should return
the explain response:

http://localhost:8080/sru/search?version=1.1&operation=Explain

Thanks to our controller this is not difficult. Adding an operation class called
ExplainOperationwith a forward to the explain.jsp should be enough.
Example 5.15, “The ExplainOperation Class” shows the complete code.

Example 5.15. The ExplainOperation Class

package org.marc4j.sru;

import java.io.IOException;

import javax.servlet.ServletException;

public class ExplainOperation extends Operation {

public void execute() throws ServletException, IOException {
forward("/explain.jsp");

Adding the Explain Operation

114

}

}

Deploy and reload the application using the Ant tasks, open a web browser and enter the
following URL:

http://localhost:8080/sru/search?version=1.1&operation=Explain

Again you should see the contents of the explain response document.

We now have a basic SRU implementation that provides support for the Search/Retrieve
operation and is able to report the facilities to the client. The implementation is fully
functional, but it does not support all the request parameters specified by the
Search/Retrieve operation and CQL support is limited to the use of boolean operators
and wild cards. In a production environment an SRU server should also report more
detailed diagnostics and the standard specifies a third operation, the Scan operation, to
enable clients to browse the index for search terms.

Is Java still suitable for web application development? Recently there has been a lot of
discussion about Java as a platform for web applications. The Java 2 Enterprise Edition
(J2EE), Sun's platform for web applications, has evolved into a complex platform,
especially for applications that do not require the enterprise scalability and security that
J2EE provides. Open source projects such as Hibernate and the Spring Framework show
that you do not need traditional J2EE application models to solve complex real-world
problems. The solution presented here is not ready for deployment in a production
environment, but it required only 216 lines of code and a few simple Java Server Pages to
implement a working SRU server.

Adding the Explain Operation

115

116

Appendix A. MARC4J API Summary
This appendix provides a quick reference to the MARC4J API. It provides a brief
overview for the core interfaces and classes.

The org.marc4j Package
The org.marc4j package holds the interfaces and classes for reading and writing
MARC and MARCXML data.

MarcReader
Implement this interface to provide an iterator over a collection of Record objects.

hasNext()
Returns true if the iteration has more records, false otherwise.

next()
Returns the next record in the iteration.

MARC4J provides two MarcReader implementations:

MarcStreamReader
An iterator over a collection of MARC records in ISO 2709 format.

MarcXmlReader
An iterator over a collection of MARC records in MARCXML format.

MarcWriter
Implement this interface to provide a writer for Record objects.

close()
Closes the writer.

getConverter()
Returns the character converter.

117

setConverter(CharConverter converter)
Sets the character converter.

write(Record record)
Writes a single Record to the output stream.

MARC4J provides two MarcWriter implementations:

MarcStreamWriter
Class for writing MARC record objects in ISO 2709 format.

MarcXmlWriter
Class for writing MARC record objects in MARCXML format.

The org.marc4j.marc Package
The org.marc4j.marc package holds the interfaces that incorporate the behaviour and
data of a MARC record and contains the default implementation of this domain model.

Record
Represents a MARC record.

addVariableField(VariableField field)
Adds a VariableField object.

find(String pattern)
Returns a List of VariableField objects that have a data element that matches
the given regular expression.

find(String[] tag, String pattern)
Returns a List of VariableField objects with the given tags that have a data
element that matches the given regular expression.

find(String tag, String pattern)
Returns a List of VariableField objects with the given tag that have a data
element that matches the given regular expression.

getControlFields()
Returns a List of control fields

The org.marc4j.marc Package

118

getControlNumber()
Returns the control number or null if no control number is available.

getControlNumberField()
Returns the control number field or null if no control number field is available.

getDataFields()
Returns a list of data fields

getLeader()
Returns the Leader.

getType()
Returns the type of record.

getVariableField(String tag)
Returns the first instance of VariableFieldwith the given tag.

getVariableFields()
Returns a List of variable fields

getVariableFields(String tag)
Returns a List of variable fields with the given tag.

getVariableFields(String[] tag)
Returns a List of VariablField objects for the given tags.

removeVariableField(VariableField field)
Removes a variable field from the collection. Use this method to remove fields
obtained from a getVariableFields()method.

setLeader(Leader leader)
Sets the Leader object.

setType(String type)
Sets the type of record.

Leader
Represents a record label in a MARC record.

getBaseAddressOfData()
Returns the base address of data (positions 12-16).

Leader

119

getCharCodingScheme()
Returns the character coding scheme (position 09).

getEntryMap()
Returns the entry map (positions 20-23).

getImplDefined1()
Returns implementation defined values (positions 07-08).

getImplDefined2()
Returns implementation defined values (positions 17-19).

getIndicatorCount()
Returns the indicator count (positions 10).

getRecordLength()
Returns the logical record length (positions 00-04).

getRecordStatus()
Returns the record status (positions 05).

getSubfieldCodeLength()
Returns the subfield code length (position 11).

getTypeOfRecord()
Returns the record type (position 06).

marshal()
Creates a String object from this Leader object.

setBaseAddressOfData(int baseAddressOfData)
Sets the base address of data (positions 12-16).

setCharCodingScheme(char charCodingScheme)
Sets the character encoding scheme (position 09).

setEntryMap(char[] entryMap)
Sets the entry map (positions 20-23).

setImplDefined1(char[] implDefined1)
Sets implementation defined values (position 07-08).

setImplDefined2(char[] implDefined2)
Sets implementation defined values (positions 17-19).

Leader

120

setIndicatorCount(int indicatorCount)
Sets the indicator count (position 10).

setRecordLength(int recordLength)
Sets the logical record length (positions 00-04).

setRecordStatus(char recordStatus)
Sets the record status (position 05).

setSubfieldCodeLength(int subfieldCodeLength)
Sets the subfield code length (position 11).

setTypeOfRecord(char typeOfRecord)
Sets the type of record (position 06).

unmarshal(String ldr)
Creates a Leader object from a String object.

VariableField
Represents a variable field in a MARC record.

find(String pattern)
Returns true if the given regular expression matches a subsequence of a data
element within the variable field.

getTag()
Returns the tag name.

setTag(String tag)
Sets the tag name.

ControlField
Represents a control field in a MARC record.

getData()
Returns the data element as a String object.

setData(String data)
Sets the data element.

VariableField

121

DataField
Represents a data field in a MARC record.

addSubfield(int index, Subfield subfield)
Inserts a Subfield at the specified position.

addSubfield(Subfield subfield)
Adds a Subfield.

getIndicator1()
Returns the first indicator.

getIndicator2()
Returns the second indicator.

getSubfield(char code)
Returns the first Subfield object with the given code.

getSubfields()
Returns the list of Subfield objects.

getSubfields(char code)
Returns the list of Subfield objects for the given subfield code.

removeSubfield(Subfield subfield)
Removes a Subfield.

setIndicator1(char ind1)
Sets the first indicator.

setIndicator2(char ind2)
Sets the second indicator.

Subfield
Represents a subfield in a MARC record.

find(String pattern)
Returns true if the given regular expression matches a subsequence of the data
element.

DataField

122

getCode()
Returns the data element identifier.

getData()
Returns the data element.

setCode(char code)
Sets the data element identifier.

setData(String data)
Sets the data element.

MarcFactory
Factory for creating MARC record objects.

newControlField()
Returns a new control field instance.

newControlField(String tag)
Creates a new control field with the given tag and returns the instance.

newControlField(String tag, String data)
Creates a new control field with the given tag and data and returns the instance.

newDataField()
Returns a new data field instance.

newDataField(String tag, char ind1, char ind2)
Creates a new data field with the given tag and indicators and returns the instance.

newInstance()
Creates a new factory instance.

newLeader()
Returns a new leader instance.

newLeader(String ldr)
Creates a new leader with the given String object.

newRecord()
Returns a new record instance.

MarcFactory

123

newRecord(Leader leader)
Returns a new record instance.

newRecord(String leader)
Returns a new record instance.

newSubfield()
Returns a new subfield instance.

newSubfield(char code)
Creates a new subfield with the given identifier.

newSubfield(char code, String data)
Creates a new subfield with the given identifier and data.

The org.marc4j.converter Package
This package contains the interface for the character converter

CharConverter
Implement this class to create a character converter.

convert(String dataElement)
Converts the dataElement and returns the result as a String object.

The package org.marc4j.converter.impl provides default implementations for
three character encodings through the following classes:

AnselToUnicode
A utility to convert MARC-8 data to non-precomposed UCS/Unicode.

UnicodeToAnsel
A utility to convert UCS/Unicode data to MARC-8.

Iso5426ToUnicode
A utility to convert UNIMARC data to UCS/Unicode.

UnicodeToIso5426
A utility to convert UCS/Unicode data to UNIMARC (ISO 5426 charset).

The org.marc4j.converter Package

124

Iso6937ToUnicode
A utility to convert ISO 6937 data to UCS/Unicode.

UnicodeToIso6937
A utility to convert UCS/Unicode data to ISO 6937.

The org.marc4j.util Package
This package contains the command-line utilities. See Appendix B, Command-line
Reference for usage.

MarcXmlDriver
Provides a basic driver to convert MARC records to MARCXML.

XmlMarcDriver
Provides a driver to convert MARCXML records to MARC format.

The org.marc4j.lucene Package
The org.marc4j.lucene package provides a MarcWriter implementation to index
MARC data using the Lucene search engine.

MarcIndexWriter
Class for writing Record objects to a Lucene index based on a Lucene document
configuration for MARC records. The constructor takes an instance of
org.apache.lucene.index.IndexWriter and an optional MARC4J Indexing
Schema file as arguments.

close()
Closes the index writer.

getConverter()
Returns the character converter.

setConverter(CharConverter converter)
Sets the character converter.

The org.marc4j.util Package

125

setUnicodeNormalization(boolean normalize)
If set to true this writer will perform Unicode normalization on data elements using
normalization form C (NFC).

write(Record record)
Creates a Lucene document and adds it to the index.

The org.marc4j.lucene.util Package
The org.marc4j.lucene.util contains some helper classes and the command-utility
to create an index based on MARC records.

MarcIndexDriver
Provides a basic driver to create a Lucene index for MARC records. See Appendix B,
Command-line Reference for usage.

RecordUtils
Helper class for serializing and deserializing records.

marshal(Record record)
Serializes the given Record object to a byte stream in ISO 2709 format.

marshal(Record record, CharConverter converter, String encoding)
Serializes the given Record object to a byte stream in ISO 2709 format.

marshal(Record record, String encoding)
Serializes the given Record object to a byte stream in ISO 2709 format.

toXML(Record record, OutputStream out)
Serializes a record to MARCXML.

toXML(Record record, String stylesheetUrl, OutputStream out)
Serializes a record to MARCXML and then applies the given stylesheet.

unmarshal(byte[] bytes)
Builds a Record object from the given byte stream in ISO 2709 format.

unmarshal(byte[] bytes, String encoding)
Builds a Record object from the given byte stream in ISO 2709 format.

The org.marc4j.lucene.util Package

126

QueryHelper
Helper class to convert a CQL query to a Lucene query. This class requires the
cql-java.jar package.

toLucene(String cql)
Converts the given CQL query string to a Lucene query string.

toLuceneQuery(String cql)
Converts the given CQL query string to a Lucene Query object.

QueryHelper

127

128

Appendix B. Command-line Reference
MARC4J provides a command line interface through two Java classes. To use them you
need a Java Virtual Machine and the MARC4J distribution. Make sure to add both
marc4j.jar and normalizer.jar to the CLASSPATH environment variable. The
MarcXmlDriver class can be used to convert a file containing MARC records to
MARCXML or to a different format, like MODS or Dublin Core, by processing the result
through an XSLT. The XmlMarcDriver class can be used to convert a file containing
MARCXML data back to MARC in ISO 2709 format. It is also possible to process the
input source through XSLT to create MARCXML from a different source format, like
MODS or Dublin Core. The MARC4J Lucene package provides a command line utility to
create a Lucene index holding MARC data.

MARC to XML
The MarcXmlDriver requires an input file containing one or more MARC records in
ISO 2709 format. In addition the class takes zero or more of the following options:

-usage
Show the usage text.

-out output-file
Specify the name of the output file. If this argument is not present output is written
to the console.

-convert encoding
Convert the data elements to UTF-8 using the given encoding. MARC4J supports the
following encodings:

• MARC8 (MARC-8 ANSEL used by MARC 21)

• ISO5426 (ISO 5426 used by UNIMARC records)

• ISO6937 (ISO 6937 used by UNIMARC records)

-encoding
Decode the input stream using the given encoding name. Use Java encoding names
such as UTF8 and ISO8859_1. The default character encoding is Latin 1 (ISO8859_1).

-normalize
Perform Unicode normalization. With Unicode normalization text is transformed
into the canonical composed form. For example "a´bc" is normalized to "ábc".

129

-xsl stylesheet
Process the result through an XSLT stylesheet located at the given URL. The
stylesheet should consume well-formed MARCXML data.

The examples below assume that you use Sun's Java Virtual Machine. The following
command simply converts the given file with MARC records to MARCXML and writes
output to the "standard" output stream:

java org.marc4j.util.MarcXmlDriver input.mrc

To write the result to a file add a file name and optional path:

java org.marc4j.util.MarcXmlDriver -out output.xml input.mrc

To convert MARC 21 records encoded in MARC-8 ANSEL to UTF-8 add the -convert
argument with the MARC8 encoding value:

java org.marc4j.util.MarcXmlDriver -convert MARC8
-out output.xml input.mrc

To perform Unicode normalization:

java org.marc4j.util.MarcXmlDriver -convert MARC8 -normalize
-out output.xml input.mrc

This command converts a file containing MARC 21 records to MODS. It uses the XSLT
stylesheet provided by the Library of Congress. The MARC-8 ANSEL character data is
converted to normalized UTF-8:

java org.marc4j.util.MarcXmlDriver -convert MARC8 -normalize
-xsl http://www.loc.gov/standards/mods/v3/MARC21slim2MODS3.xsl
-out output.xml input.mrc

XML Back to MARC

130

XML Back to MARC
The org.marc4j.util.XmlMarcDriver requires an input file containing
MARCXML. In addition the class takes zero or more of the following options:

-usage
Show the usage text.

-out output-file
Specify the name of the output file. If this argument is not present output is written
to the console.

-convert encoding
Convert the data elements from UTF-8 back to the given encoding. MARC4J
supports the following encodings:

• MARC8 (MARC-8 ANSEL used by MARC 21)

• ISO5426 (ISO 5426 used by UNIMARC records)

• ISO6937 (ISO 6937 used by UNIMARC records)

-encoding
Create output using the given character encoding. Use Java encoding names such as
UTF8 and ISO8859_1.

-xsl stylesheet
Process the XML data source through the XSLT stylesheet located at the given URL.
The stylesheet should produce well-formed MARCXML data.

The following command simply converts the given file with MARCXML data to MARC
in ISO 2709 format and writes output to the "standard" output stream:

java org.marc4j.util.XmlMarcDriver input.xml

To write the result to a file, add a file name and optional path:

java org.marc4j.util.XmlMarcDriver -out output.mrc input.xml

To write UTF-8 encoded MARCXML to UTF-8 encoded MARC in ISO 2709 format:

XML Back to MARC

131

java org.marc4j.util.XmlMarcDriver -encoding UTF8
-out output.mrc input.xml

To convert MARCXML data encoded in UTF-8 to MARC-8 ANSEL add the -convert
argument with the MARC8 encoding value:

java org.marc4j.util.XmlMarcDriver -convert MARC8
-out output.mrc input.xml

This command converts a file containing MODS data using the XSLT stylesheet provided
by the Library of Congress to MARC in ISO 2709 format. The UTF-8 data is converted to
MARC-8 ANSEL:

java org.marc4j.util.XmlMarcDriver -convert MARC8
-xsl http://www.loc.gov/standards/marcxml/xslt/MODS2MARC21slim.xsl
-out output.mrc input.xml

Indexing MARC with Lucene
The MARC4J Lucene API provides a command-line utility called MarcIndexDriver to
populate a Lucene index with MARC data. Make sure to add
lucene-core-2.0.0.jar, marc4j-lucene.jar, marc4j.jar and
commons-logging-1.1.jar to your CLASSPATH environment variable. The
marc4j-lucene.jar and commons-logging-1.1.jar packages are included in the
download for the MARC4J Lucene API.

The org.marc4j.lucene.util.MarcIndexDriver requires an input file containing
MARC records. In addition the class takes zero or more of the following options:

-usage
Show the usage text.

-index index-directory
Specify the name of the directory containing the Lucene index. If this argument is
not present an in-memory index is created. On exit this index will be destroyed.

Indexing MARC with Lucene

132

-create
Create a Lucene index at the given index directory or overwrite the existing one.

Warning

This option will overwrite any existing index with a new one.

-schema schema URL
Use the Lucene index schema located at the given URL. The schema document
should conform to the MARC4J Indexing Schema DTD (see: Figure B.1, “Indexing
Schema”). It is generated from a RELAX NG Schema. If this argument is not present
the default index schema will be used. The default index schema is based on the
MARC 21 to Dublin Core crosswalk.

Figure B.1. Indexing Schema

<?xml encoding="UTF-8"?>

<!ELEMENT document (field)+>

<!ELEMENT field (record|(leader?,(controlfield|datafield)*))>

<!ATTLIST field
name CDATA #REQUIRED
index (no|tokenized|untokenized) #REQUIRED
store (compress|yes|no) #REQUIRED>

<!ELEMENT record EMPTY>

<!ELEMENT leader EMPTY>

<!ATTLIST leader
start CDATA #REQUIRED
end CDATA #IMPLIED>

<!ELEMENT controlfield EMPTY>

<!ATTLIST controlfield
tag CDATA #REQUIRED
start CDATA #IMPLIED
end CDATA #IMPLIED>

Indexing MARC with Lucene

133

<!ELEMENT datafield (subfield)+>

<!ATTLIST datafield
tag CDATA #REQUIRED>

<!ELEMENT subfield (#PCDATA)>

The following command simply creates an in-memory index and indexes the MARC
records in input.mrc using the default index schema:

java org.marc4j.lucene.util.MarcIndexDriver input.mrc

To create a new index on the file system, or overwrite an existing one, and add the
MARC records in input.mrc using the default index schema:

java org.marc4j.lucene.util.MarcIndexDriver
-index /Users/bpeters/Documents/workspace/sru/index
-create input.mrc

To add the MARC records in input.mrc to an existing index using the default index
schema:

java org.marc4j.lucene.util.MarcIndexDriver
-index /Users/bpeters/Documents/workspace/sru/index input.mrc

This command adds the MARC records in input.mrc to an existing index using the
given index schema:

java org.marc4j.lucene.util.MarcIndexDriver
-index /Users/bpeters/Documents/workspace/sru/index
-schema file:///Users/bpeters/Documents/workspace/sru/schema.xml
input.mrc

Indexing MARC with Lucene

134

References
Publications

Fowler, Martin. Patterns of Enterprise Application Architecture. Boston: Addison
Wesley, 2003.

Friedl, Jeffrey E. F.. Mastering Regular Expressions. Sebastopol: O'Reilly, 2006.

Gospodnetic´, Otis and Hatcher, Eric. Lucene in Action. Manning: Greenwich, 2005

Understanding Metadata. NISO Press 2004. Available from http://www.niso.org.

Bibliographic Standards
Dublin Core Metadata Initiative [http://dublincore.org/]

MARC 21 XML Schema [http://www.loc.gov/standards/marcxml/]

MARC Standards [http://www.loc.gov/marc/]

Metadata Object Description Schema (MODS) [http://www.loc.gov/standards/mods/]

OAI MARC XML [http://www.dlib.vt.edu/projects/OAi/marcxml/marcxml.html]

ONIX for Books [http://www.editeur.org/onix.html]

SRU (Search/Retrieve via URL) [http://www.loc.gov/standards/sru/]

UNIMARC [http://www.ifla.org/VI/3/p1996-1/sec-uni.htm]

Helpful Internet Pages
Apache Lucene [http://lucene.apache.org]

Apache Tomcat [http://tomcat.apache.org/]

Eclipse IDE [http://eclipse.org]

Luke - Lucene Index Toolbox [http://www.getopt.org/luke/]

Sun Developer Network [http://java.sun.com/]

135

http://www.niso.org
http://dublincore.org/
http://dublincore.org/
http://www.loc.gov/standards/marcxml/
http://www.loc.gov/standards/marcxml/
http://www.loc.gov/marc/
http://www.loc.gov/marc/
http://www.loc.gov/standards/mods/
http://www.loc.gov/standards/mods/
http://www.dlib.vt.edu/projects/OAi/marcxml/marcxml.html
http://www.dlib.vt.edu/projects/OAi/marcxml/marcxml.html
http://www.editeur.org/onix.html
http://www.editeur.org/onix.html
http://www.loc.gov/standards/sru/
http://www.loc.gov/standards/sru/
http://www.ifla.org/VI/3/p1996-1/sec-uni.htm
http://www.ifla.org/VI/3/p1996-1/sec-uni.htm
http://lucene.apache.org
http://lucene.apache.org
http://tomcat.apache.org/
http://tomcat.apache.org/
http://eclipse.org
http://eclipse.org
http://www.getopt.org/luke/
http://www.getopt.org/luke/
http://java.sun.com/
http://java.sun.com/

136

	Crosswalking
	Table of Contents
	Preface
	What You Should Already Know
	Organization of This Book
	Conventions Used in This Book
	Typographic Conventions
	Icons

	Getting the Software
	Getting Examples from This Book
	Acknowledgments

	Chapter 1. Reading Data
	MARC Formats
	Introducing MARC4J
	The Record Object Model
	Creating and Updating Records
	Reading MARCXML Data
	Reading MODS Data
	Implementing MarcReader

	Chapter 2. Writing Data
	Writing MARC Data
	Writing MARCXML Data
	Performing Character Conversions
	Writing MODS Data

	Chapter 3. MARC4J and JAXP
	JAXP Overview
	Writing To a DOM Document
	Formatting Output with Xerces
	Compiling Stylesheets
	Chaining Stylesheets
	Creating a Dublin Core Writer

	Chapter 4. Indexing with Lucene
	Introduction
	Installation
	Index Configuration
	Creating an Index
	Searching

	Chapter 5. Putting It All Together
	Introduction
	Setting Up the Environment
	Implementing the Controller
	Building the Index
	Implementing the SRU Operation
	Adding the Explain Operation

	Appendix A. MARC4J API Summary
	The org.marc4j Package
	MarcReader
	MarcWriter

	The org.marc4j.marc Package
	Record
	Leader
	VariableField
	ControlField
	DataField
	Subfield
	MarcFactory

	The org.marc4j.converter Package
	CharConverter

	The org.marc4j.util Package
	The org.marc4j.lucene Package
	MarcIndexWriter

	The org.marc4j.lucene.util Package
	RecordUtils
	QueryHelper

	Appendix B. Command-line Reference
	MARC to XML
	XML Back to MARC
	Indexing MARC with Lucene

	References

