Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
767 lines (682 sloc) 25.8 KB
// FastLED_NeoMatrix example for single NeoPixel Shield.
// By Marc MERLIN <marc_soft@merlins.org>
// Contains code (c) Adafruit, license BSD
#include <Adafruit_GFX.h>
#include <FastLED_NeoMatrix.h>
#include <FastLED.h>
// Choose your prefered pixmap
//#include "heart24.h"
//#include "yellowsmiley24.h"
//#include "bluesmiley24.h"
#include "smileytongue24.h"
#ifndef PSTR
#define PSTR // Make Arduino Due happy
#endif
// Allow temporaly dithering, does not work with ESP32 right now
#ifndef ESP32
#define delay FastLED.delay
#endif
#if defined(ESP32) or defined(ESP8266)
#define PIN 12 // GPIO5 = D1
#else
#define PIN 13
#endif
#define P16BY16X4
//#define P32BY8X3
#if defined(P16BY16X4) || defined(P32BY8X3)
#define BM32
#endif
#ifdef BM32
#include "google32.h"
// Anything with black does not look so good with the naked eye (better on pictures)
//#include "linux32.h"
#endif
// Max is 255, 32 is a conservative value to not overload
// a USB power supply (500mA) for 12x12 pixels.
#define BRIGHTNESS 16
// https://learn.adafruit.com/adafruit-neopixel-uberguide/neomatrix-library
// MATRIX DECLARATION:
// Parameter 1 = width of EACH NEOPIXEL MATRIX (not total display)
// Parameter 2 = height of each matrix
// Parameter 3 = number of matrices arranged horizontally
// Parameter 4 = number of matrices arranged vertically
// Parameter 5 = pin number (most are valid)
// Parameter 6 = matrix layout flags, add together as needed:
// NEO_MATRIX_TOP, NEO_MATRIX_BOTTOM, NEO_MATRIX_LEFT, NEO_MATRIX_RIGHT:
// Position of the FIRST LED in the FIRST MATRIX; pick two, e.g.
// NEO_MATRIX_TOP + NEO_MATRIX_LEFT for the top-left corner.
// NEO_MATRIX_ROWS, NEO_MATRIX_COLUMNS: LEDs WITHIN EACH MATRIX are
// arranged in horizontal rows or in vertical columns, respectively;
// pick one or the other.
// NEO_MATRIX_PROGRESSIVE, NEO_MATRIX_ZIGZAG: all rows/columns WITHIN
// EACH MATRIX proceed in the same order, or alternate lines reverse
// direction; pick one.
// NEO_TILE_TOP, NEO_TILE_BOTTOM, NEO_TILE_LEFT, NEO_TILE_RIGHT:
// Position of the FIRST MATRIX (tile) in the OVERALL DISPLAY; pick
// two, e.g. NEO_TILE_TOP + NEO_TILE_LEFT for the top-left corner.
// NEO_TILE_ROWS, NEO_TILE_COLUMNS: the matrices in the OVERALL DISPLAY
// are arranged in horizontal rows or in vertical columns, respectively;
// pick one or the other.
// NEO_TILE_PROGRESSIVE, NEO_TILE_ZIGZAG: the ROWS/COLUMS OF MATRICES
// (tiles) in the OVERALL DISPLAY proceed in the same order for every
// line, or alternate lines reverse direction; pick one. When using
// zig-zag order, the orientation of the matrices in alternate rows
// will be rotated 180 degrees (this is normal -- simplifies wiring).
// See example below for these values in action.
#if defined(P16BY16X4)
#define mw 32
#define mh 32
#define NUMMATRIX (mw*mh)
CRGB leds[NUMMATRIX];
FastLED_NeoMatrix *matrix = new FastLED_NeoMatrix(leds, 16, 16, 2, 2,
NEO_MATRIX_BOTTOM + NEO_MATRIX_RIGHT +
NEO_MATRIX_COLUMNS + NEO_MATRIX_ZIGZAG +
NEO_TILE_TOP + NEO_TILE_RIGHT + NEO_TILE_PROGRESSIVE);
#elif defined(P32BY8X3)
#define mw 24
#define mh 32
#define NUMMATRIX (mw*mh)
CRGB leds[NUMMATRIX];
FastLED_NeoMatrix *matrix = new FastLED_NeoMatrix(leds, 8, 32, 3, 1,
NEO_MATRIX_TOP + NEO_MATRIX_RIGHT +
NEO_MATRIX_ROWS + NEO_MATRIX_ZIGZAG +
NEO_TILE_TOP + NEO_TILE_LEFT + NEO_TILE_PROGRESSIVE);
#else
#define mw 16
#define mh 16
#define NUMMATRIX (mw*mh)
CRGB leds[NUMMATRIX];
// Define matrix width and height.
FastLED_NeoMatrix *matrix = new FastLED_NeoMatrix(leds, mw, mh,
NEO_MATRIX_TOP + NEO_MATRIX_RIGHT +
NEO_MATRIX_ROWS + NEO_MATRIX_ZIGZAG);
#endif
// This could also be defined as matrix->color(255,0,0) but those defines
// are meant to work for adafruit_gfx backends that are lacking color()
#define LED_BLACK 0
#define LED_RED_VERYLOW (3 << 11)
#define LED_RED_LOW (7 << 11)
#define LED_RED_MEDIUM (15 << 11)
#define LED_RED_HIGH (31 << 11)
#define LED_GREEN_VERYLOW (1 << 5)
#define LED_GREEN_LOW (15 << 5)
#define LED_GREEN_MEDIUM (31 << 5)
#define LED_GREEN_HIGH (63 << 5)
#define LED_BLUE_VERYLOW 3
#define LED_BLUE_LOW 7
#define LED_BLUE_MEDIUM 15
#define LED_BLUE_HIGH 31
#define LED_ORANGE_VERYLOW (LED_RED_VERYLOW + LED_GREEN_VERYLOW)
#define LED_ORANGE_LOW (LED_RED_LOW + LED_GREEN_LOW)
#define LED_ORANGE_MEDIUM (LED_RED_MEDIUM + LED_GREEN_MEDIUM)
#define LED_ORANGE_HIGH (LED_RED_HIGH + LED_GREEN_HIGH)
#define LED_PURPLE_VERYLOW (LED_RED_VERYLOW + LED_BLUE_VERYLOW)
#define LED_PURPLE_LOW (LED_RED_LOW + LED_BLUE_LOW)
#define LED_PURPLE_MEDIUM (LED_RED_MEDIUM + LED_BLUE_MEDIUM)
#define LED_PURPLE_HIGH (LED_RED_HIGH + LED_BLUE_HIGH)
#define LED_CYAN_VERYLOW (LED_GREEN_VERYLOW + LED_BLUE_VERYLOW)
#define LED_CYAN_LOW (LED_GREEN_LOW + LED_BLUE_LOW)
#define LED_CYAN_MEDIUM (LED_GREEN_MEDIUM + LED_BLUE_MEDIUM)
#define LED_CYAN_HIGH (LED_GREEN_HIGH + LED_BLUE_HIGH)
#define LED_WHITE_VERYLOW (LED_RED_VERYLOW + LED_GREEN_VERYLOW + LED_BLUE_VERYLOW)
#define LED_WHITE_LOW (LED_RED_LOW + LED_GREEN_LOW + LED_BLUE_LOW)
#define LED_WHITE_MEDIUM (LED_RED_MEDIUM + LED_GREEN_MEDIUM + LED_BLUE_MEDIUM)
#define LED_WHITE_HIGH (LED_RED_HIGH + LED_GREEN_HIGH + LED_BLUE_HIGH)
static const uint8_t PROGMEM
mono_bmp[][8] =
{
{ // 0: checkered 1
B10101010,
B01010101,
B10101010,
B01010101,
B10101010,
B01010101,
B10101010,
B01010101,
},
{ // 1: checkered 2
B01010101,
B10101010,
B01010101,
B10101010,
B01010101,
B10101010,
B01010101,
B10101010,
},
{ // 2: smiley
B00111100,
B01000010,
B10100101,
B10000001,
B10100101,
B10011001,
B01000010,
B00111100 },
{ // 3: neutral
B00111100,
B01000010,
B10100101,
B10000001,
B10111101,
B10000001,
B01000010,
B00111100 },
{ // 4; frowny
B00111100,
B01000010,
B10100101,
B10000001,
B10011001,
B10100101,
B01000010,
B00111100 },
};
static const uint16_t PROGMEM
// These bitmaps were written for a backend that only supported
// 4 bits per color with Blue/Green/Red ordering while neomatrix
// uses native 565 color mapping as RGB.
// I'm leaving the arrays as is because it's easier to read
// which color is what when separated on a 4bit boundary
// The demo code will modify the arrays at runtime to be compatible
// with the neomatrix color ordering and bit depth.
RGB_bmp[][64] = {
// 00: blue, blue/red, red, red/green, green, green/blue, blue, white
{ 0x100, 0x200, 0x300, 0x400, 0x600, 0x800, 0xA00, 0xF00,
0x101, 0x202, 0x303, 0x404, 0x606, 0x808, 0xA0A, 0xF0F,
0x001, 0x002, 0x003, 0x004, 0x006, 0x008, 0x00A, 0x00F,
0x011, 0x022, 0x033, 0x044, 0x066, 0x088, 0x0AA, 0x0FF,
0x010, 0x020, 0x030, 0x040, 0x060, 0x080, 0x0A0, 0x0F0,
0x110, 0x220, 0x330, 0x440, 0x660, 0x880, 0xAA0, 0xFF0,
0x100, 0x200, 0x300, 0x400, 0x600, 0x800, 0xA00, 0xF00,
0x111, 0x222, 0x333, 0x444, 0x666, 0x888, 0xAAA, 0xFFF, },
// 01: grey to white
{ 0x111, 0x222, 0x333, 0x555, 0x777, 0x999, 0xAAA, 0xFFF,
0x222, 0x222, 0x333, 0x555, 0x777, 0x999, 0xAAA, 0xFFF,
0x333, 0x333, 0x333, 0x555, 0x777, 0x999, 0xAAA, 0xFFF,
0x555, 0x555, 0x555, 0x555, 0x777, 0x999, 0xAAA, 0xFFF,
0x777, 0x777, 0x777, 0x777, 0x777, 0x999, 0xAAA, 0xFFF,
0x999, 0x999, 0x999, 0x999, 0x999, 0x999, 0xAAA, 0xFFF,
0xAAA, 0xAAA, 0xAAA, 0xAAA, 0xAAA, 0xAAA, 0xAAA, 0xFFF,
0xFFF, 0xFFF, 0xFFF, 0xFFF, 0xFFF, 0xFFF, 0xFFF, 0xFFF, },
// 02: low red to high red
{ 0x001, 0x002, 0x003, 0x005, 0x007, 0x009, 0x00A, 0x00F,
0x002, 0x002, 0x003, 0x005, 0x007, 0x009, 0x00A, 0x00F,
0x003, 0x003, 0x003, 0x005, 0x007, 0x009, 0x00A, 0x00F,
0x005, 0x005, 0x005, 0x005, 0x007, 0x009, 0x00A, 0x00F,
0x007, 0x007, 0x007, 0x007, 0x007, 0x009, 0x00A, 0x00F,
0x009, 0x009, 0x009, 0x009, 0x009, 0x009, 0x00A, 0x00F,
0x00A, 0x00A, 0x00A, 0x00A, 0x00A, 0x00A, 0x00A, 0x00F,
0x00F, 0x00F, 0x00F, 0x00F, 0x00F, 0x00F, 0x00F, 0x00F, },
// 03: low green to high green
{ 0x010, 0x020, 0x030, 0x050, 0x070, 0x090, 0x0A0, 0x0F0,
0x020, 0x020, 0x030, 0x050, 0x070, 0x090, 0x0A0, 0x0F0,
0x030, 0x030, 0x030, 0x050, 0x070, 0x090, 0x0A0, 0x0F0,
0x050, 0x050, 0x050, 0x050, 0x070, 0x090, 0x0A0, 0x0F0,
0x070, 0x070, 0x070, 0x070, 0x070, 0x090, 0x0A0, 0x0F0,
0x090, 0x090, 0x090, 0x090, 0x090, 0x090, 0x0A0, 0x0F0,
0x0A0, 0x0A0, 0x0A0, 0x0A0, 0x0A0, 0x0A0, 0x0A0, 0x0F0,
0x0F0, 0x0F0, 0x0F0, 0x0F0, 0x0F0, 0x0F0, 0x0F0, 0x0F0, },
// 04: low blue to high blue
{ 0x100, 0x200, 0x300, 0x500, 0x700, 0x900, 0xA00, 0xF00,
0x200, 0x200, 0x300, 0x500, 0x700, 0x900, 0xA00, 0xF00,
0x300, 0x300, 0x300, 0x500, 0x700, 0x900, 0xA00, 0xF00,
0x500, 0x500, 0x500, 0x500, 0x700, 0x900, 0xA00, 0xF00,
0x700, 0x700, 0x700, 0x700, 0x700, 0x900, 0xA00, 0xF00,
0x900, 0x900, 0x900, 0x900, 0x900, 0x900, 0xA00, 0xF00,
0xA00, 0xA00, 0xA00, 0xA00, 0xA00, 0xA00, 0xA00, 0xF00,
0xF00, 0xF00, 0xF00, 0xF00, 0xF00, 0xF00, 0xF00, 0xF00, },
// 05: 1 black, 2R, 2O, 2G, 1B with 4 blue lines rising right
{ 0x000, 0x200, 0x000, 0x400, 0x000, 0x800, 0x000, 0xF00,
0x000, 0x201, 0x002, 0x403, 0x004, 0x805, 0x006, 0xF07,
0x008, 0x209, 0x00A, 0x40B, 0x00C, 0x80D, 0x00E, 0xF0F,
0x000, 0x211, 0x022, 0x433, 0x044, 0x855, 0x066, 0xF77,
0x088, 0x299, 0x0AA, 0x4BB, 0x0CC, 0x8DD, 0x0EE, 0xFFF,
0x000, 0x210, 0x020, 0x430, 0x040, 0x850, 0x060, 0xF70,
0x080, 0x290, 0x0A0, 0x4B0, 0x0C0, 0x8D0, 0x0E0, 0xFF0,
0x000, 0x200, 0x000, 0x500, 0x000, 0x800, 0x000, 0xF00, },
// 06: 4 lines of increasing red and then green
{ 0x000, 0x000, 0x001, 0x001, 0x002, 0x002, 0x003, 0x003,
0x004, 0x004, 0x005, 0x005, 0x006, 0x006, 0x007, 0x007,
0x008, 0x008, 0x009, 0x009, 0x00A, 0x00A, 0x00B, 0x00B,
0x00C, 0x00C, 0x00D, 0x00D, 0x00E, 0x00E, 0x00F, 0x00F,
0x000, 0x000, 0x010, 0x010, 0x020, 0x020, 0x030, 0x030,
0x040, 0x040, 0x050, 0x050, 0x060, 0x060, 0x070, 0x070,
0x080, 0x080, 0x090, 0x090, 0x0A0, 0x0A0, 0x0B0, 0x0B0,
0x0C0, 0x0C0, 0x0D0, 0x0D0, 0x0E0, 0x0E0, 0x0F0, 0x0F0, },
// 07: 4 lines of increasing red and then blue
{ 0x000, 0x000, 0x001, 0x001, 0x002, 0x002, 0x003, 0x003,
0x004, 0x004, 0x005, 0x005, 0x006, 0x006, 0x007, 0x007,
0x008, 0x008, 0x009, 0x009, 0x00A, 0x00A, 0x00B, 0x00B,
0x00C, 0x00C, 0x00D, 0x00D, 0x00E, 0x00E, 0x00F, 0x00F,
0x000, 0x000, 0x100, 0x100, 0x200, 0x200, 0x300, 0x300,
0x400, 0x400, 0x500, 0x500, 0x600, 0x600, 0x700, 0x700,
0x800, 0x800, 0x900, 0x900, 0xA00, 0xA00, 0xB00, 0xB00,
0xC00, 0xC00, 0xD00, 0xD00, 0xE00, 0xE00, 0xF00, 0xF00, },
// 08: criss cross of green and red with diagonal blue.
{ 0xF00, 0x001, 0x003, 0x005, 0x007, 0x00A, 0x00F, 0x000,
0x020, 0xF21, 0x023, 0x025, 0x027, 0x02A, 0x02F, 0x020,
0x040, 0x041, 0xF43, 0x045, 0x047, 0x04A, 0x04F, 0x040,
0x060, 0x061, 0x063, 0xF65, 0x067, 0x06A, 0x06F, 0x060,
0x080, 0x081, 0x083, 0x085, 0xF87, 0x08A, 0x08F, 0x080,
0x0A0, 0x0A1, 0x0A3, 0x0A5, 0x0A7, 0xFAA, 0x0AF, 0x0A0,
0x0F0, 0x0F1, 0x0F3, 0x0F5, 0x0F7, 0x0FA, 0xFFF, 0x0F0,
0x000, 0x001, 0x003, 0x005, 0x007, 0x00A, 0x00F, 0xF00, },
// 09: 2 lines of green, 2 red, 2 orange, 2 green
{ 0x0F0, 0x0F0, 0x0FF, 0x0FF, 0x00F, 0x00F, 0x0F0, 0x0F0,
0x0F0, 0x0F0, 0x0FF, 0x0FF, 0x00F, 0x00F, 0x0F0, 0x0F0,
0x0F0, 0x0F0, 0x0FF, 0x0FF, 0x00F, 0x00F, 0x0F0, 0x0F0,
0x0F0, 0x0F0, 0x0FF, 0x0FF, 0x00F, 0x00F, 0x0F0, 0x0F0,
0x0F0, 0x0F0, 0x0FF, 0x0FF, 0x00F, 0x00F, 0x0F0, 0x0F0,
0x0F0, 0x0F0, 0x0FF, 0x0FF, 0x00F, 0x00F, 0x0F0, 0x0F0,
0x0F0, 0x0F0, 0x0FF, 0x0FF, 0x00F, 0x00F, 0x0F0, 0x0F0,
0x0F0, 0x0F0, 0x0FF, 0x0FF, 0x00F, 0x00F, 0x0F0, 0x0F0, },
// 10: multicolor smiley face
{ 0x000, 0x000, 0x00F, 0x00F, 0x00F, 0x00F, 0x000, 0x000,
0x000, 0x00F, 0x000, 0x000, 0x000, 0x000, 0x00F, 0x000,
0x00F, 0x000, 0xF00, 0x000, 0x000, 0xF00, 0x000, 0x00F,
0x00F, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x00F,
0x00F, 0x000, 0x0F0, 0x000, 0x000, 0x0F0, 0x000, 0x00F,
0x00F, 0x000, 0x000, 0x0F4, 0x0F3, 0x000, 0x000, 0x00F,
0x000, 0x00F, 0x000, 0x000, 0x000, 0x000, 0x00F, 0x000,
0x000, 0x000, 0x00F, 0x00F, 0x00F, 0x00F, 0x000, 0x000, },
};
// Convert a BGR 4/4/4 bitmap to RGB 5/6/5 used by Adafruit_GFX
void fixdrawRGBBitmap(int16_t x, int16_t y, const uint16_t *bitmap, int16_t w, int16_t h) {
uint16_t RGB_bmp_fixed[w * h];
for (uint16_t pixel=0; pixel<w*h; pixel++) {
uint8_t r,g,b;
uint16_t color = pgm_read_word(bitmap + pixel);
//Serial.print(color, HEX);
b = (color & 0xF00) >> 8;
g = (color & 0x0F0) >> 4;
r = color & 0x00F;
//Serial.print(" ");
//Serial.print(b);
//Serial.print("/");
//Serial.print(g);
//Serial.print("/");
//Serial.print(r);
//Serial.print(" -> ");
// expand from 4/4/4 bits per color to 5/6/5
b = map(b, 0, 15, 0, 31);
g = map(g, 0, 15, 0, 63);
r = map(r, 0, 15, 0, 31);
//Serial.print(r);
//Serial.print("/");
//Serial.print(g);
//Serial.print("/");
//Serial.print(b);
RGB_bmp_fixed[pixel] = (r << 11) + (g << 5) + b;
//Serial.print(" -> ");
//Serial.println(RGB_bmp_fixed[pixel], HEX);
}
matrix->drawRGBBitmap(x, y, RGB_bmp_fixed, w, h);
}
// In a case of a tile of neomatrices, this test is helpful to make sure that the
// pixels are all in sequence (to check your wiring order and the tile options you
// gave to the constructor).
void count_pixels() {
matrix->clear();
for (uint16_t i=0; i<mh; i++) {
for (uint16_t j=0; j<mw; j++) {
matrix->drawPixel(j, i, i%3==0?(uint16_t)LED_BLUE_HIGH:i%3==1?(uint16_t)LED_RED_HIGH:(uint16_t)LED_GREEN_HIGH);
// depending on the matrix size, it's too slow to display each pixel, so
// make the scan init faster. This will however be too fast on a small matrix.
#ifdef ESP8266
if (!(j%3)) matrix->show();
yield(); // reset watchdog timer
#elif ESP32
delay(1);
matrix->show();
#else
matrix->show();
#endif
}
}
}
// Fill the screen with multiple levels of white to gauge the quality
void display_four_white() {
matrix->clear();
matrix->fillRect(0,0, mw,mh, LED_WHITE_HIGH);
matrix->drawRect(1,1, mw-2,mh-2, LED_WHITE_MEDIUM);
matrix->drawRect(2,2, mw-4,mh-4, LED_WHITE_LOW);
matrix->drawRect(3,3, mw-6,mh-6, LED_WHITE_VERYLOW);
matrix->show();
}
void display_bitmap(uint8_t bmp_num, uint16_t color) {
static uint16_t bmx,bmy;
// Clear the space under the bitmap that will be drawn as
// drawing a single color pixmap does not write over pixels
// that are nul, and leaves the data that was underneath
matrix->fillRect(bmx,bmy, bmx+8,bmy+8, LED_BLACK);
matrix->drawBitmap(bmx, bmy, mono_bmp[bmp_num], 8, 8, color);
bmx += 8;
if (bmx >= mw) bmx = 0;
if (!bmx) bmy += 8;
if (bmy >= mh) bmy = 0;
matrix->show();
}
void display_rgbBitmap(uint8_t bmp_num) {
static uint16_t bmx,bmy;
fixdrawRGBBitmap(bmx, bmy, RGB_bmp[bmp_num], 8, 8);
bmx += 8;
if (bmx >= mw) bmx = 0;
if (!bmx) bmy += 8;
if (bmy >= mh) bmy = 0;
matrix->show();
}
void display_lines() {
matrix->clear();
// 4 levels of crossing red lines.
matrix->drawLine(0,mh/2-2, mw-1,2, LED_RED_VERYLOW);
matrix->drawLine(0,mh/2-1, mw-1,3, LED_RED_LOW);
matrix->drawLine(0,mh/2, mw-1,mh/2, LED_RED_MEDIUM);
matrix->drawLine(0,mh/2+1, mw-1,mh/2+1, LED_RED_HIGH);
// 4 levels of crossing green lines.
matrix->drawLine(mw/2-2, 0, mw/2-2, mh-1, LED_GREEN_VERYLOW);
matrix->drawLine(mw/2-1, 0, mw/2-1, mh-1, LED_GREEN_LOW);
matrix->drawLine(mw/2+0, 0, mw/2+0, mh-1, LED_GREEN_MEDIUM);
matrix->drawLine(mw/2+1, 0, mw/2+1, mh-1, LED_GREEN_HIGH);
// Diagonal blue line.
matrix->drawLine(0,0, mw-1,mh-1, LED_BLUE_HIGH);
matrix->drawLine(0,mh-1, mw-1,0, LED_ORANGE_MEDIUM);
matrix->show();
}
void display_boxes() {
matrix->clear();
matrix->drawRect(0,0, mw,mh, LED_BLUE_HIGH);
matrix->drawRect(1,1, mw-2,mh-2, LED_GREEN_MEDIUM);
matrix->fillRect(2,2, mw-4,mh-4, LED_RED_HIGH);
matrix->fillRect(3,3, mw-6,mh-6, LED_ORANGE_MEDIUM);
matrix->show();
}
void display_circles() {
matrix->clear();
matrix->drawCircle(mw/2,mh/2, 2, LED_RED_MEDIUM);
matrix->drawCircle(mw/2-1-min(mw,mh)/8, mh/2-1-min(mw,mh)/8, min(mw,mh)/4, LED_BLUE_HIGH);
matrix->drawCircle(mw/2+1+min(mw,mh)/8, mh/2+1+min(mw,mh)/8, min(mw,mh)/4-1, LED_ORANGE_MEDIUM);
matrix->drawCircle(1,mh-2, 1, LED_GREEN_LOW);
matrix->drawCircle(mw-2,1, 1, LED_GREEN_HIGH);
if (min(mw,mh)>12) matrix->drawCircle(mw/2-1, mh/2-1, min(mh/2-1,mw/2-1), LED_CYAN_HIGH);
matrix->show();
}
void display_resolution() {
matrix->setTextSize(1);
// not wide enough;
if (mw<16) return;
matrix->clear();
// Font is 5x7, if display is too small
// 8 can only display 1 char
// 16 can almost display 3 chars
// 24 can display 4 chars
// 32 can display 5 chars
matrix->setCursor(0, 0);
matrix->setTextColor(matrix->Color(255,0,0));
if (mw>10) matrix->print(mw/10);
matrix->setTextColor(matrix->Color(255,128,0));
matrix->print(mw % 10);
matrix->setTextColor(matrix->Color(0,255,0));
matrix->print('x');
// not wide enough to print 5 chars, go to next line
if (mw<25) {
if (mh==13) matrix->setCursor(6, 7);
else if (mh>=13) {
matrix->setCursor(mw-11, 8);
} else {
// we're not tall enough either, so we wait and display
// the 2nd value on top.
matrix->show();
delay(2000);
matrix->clear();
matrix->setCursor(mw-11, 0);
}
}
matrix->setTextColor(matrix->Color(0,255,128));
matrix->print(mh/10);
matrix->setTextColor(matrix->Color(0,128,255));
matrix->print(mh % 10);
// enough room for a 2nd line
if ((mw>25 && mh >14) || mh>16) {
matrix->setCursor(0, mh-7);
matrix->setTextColor(matrix->Color(0,255,255));
if (mw>16) matrix->print('*');
matrix->setTextColor(matrix->Color(255,0,0));
matrix->print('R');
matrix->setTextColor(matrix->Color(0,255,0));
matrix->print('G');
matrix->setTextColor(matrix->Color(0,0,255));
matrix->print("B");
matrix->setTextColor(matrix->Color(255,255,0));
// this one could be displayed off screen, but we don't care :)
matrix->print("*");
// We have a big array, great, let's assume 32x32 and add something in the middle
if (mh>24 && mw>25) {
for (uint16_t i=0; i<mw; i+=8) fixdrawRGBBitmap(i, mh/2-7+(i%16)/8*6, RGB_bmp[10], 8, 8);
}
}
matrix->show();
}
void display_scrollText() {
uint8_t size = max(int(mw/8), 1);
matrix->clear();
matrix->setTextWrap(false); // we don't wrap text so it scrolls nicely
matrix->setTextSize(1);
matrix->setRotation(0);
for (int8_t x=7; x>=-42; x--) {
yield();
matrix->clear();
matrix->setCursor(x,0);
matrix->setTextColor(LED_GREEN_HIGH);
matrix->print("Hello");
if (mh>11) {
matrix->setCursor(-20-x,mh-7);
matrix->setTextColor(LED_ORANGE_HIGH);
matrix->print("World");
}
matrix->show();
delay(50);
}
matrix->setRotation(3);
matrix->setTextSize(size);
matrix->setTextColor(LED_BLUE_HIGH);
for (int16_t x=8*size; x>=-6*8*size; x--) {
yield();
matrix->clear();
matrix->setCursor(x,mw/2-size*4);
matrix->print("Rotate");
matrix->show();
// note that on a big array the refresh rate from show() will be slow enough that
// the delay become irrelevant. This is already true on a 32x32 array.
delay(50/size);
}
matrix->setRotation(0);
matrix->setCursor(0,0);
matrix->show();
}
// Scroll within big bitmap so that all if it becomes visible or bounce a small one.
// If the bitmap is bigger in one dimension and smaller in the other one, it will
// be both panned and bounced in the appropriate dimensions.
void display_panOrBounceBitmap (uint8_t bitmapSize) {
// keep integer math, deal with values 16 times too big
// start by showing upper left of big bitmap or centering if the display is big
int16_t xf = max(0, (mw-bitmapSize)/2) << 4;
int16_t yf = max(0, (mh-bitmapSize)/2) << 4;
// scroll speed in 1/16th
int16_t xfc = 6;
int16_t yfc = 3;
// scroll down and right by moving upper left corner off screen
// more up and left (which means negative numbers)
int16_t xfdir = -1;
int16_t yfdir = -1;
for (uint16_t i=1; i<200; i++) {
bool updDir = false;
// Get actual x/y by dividing by 16.
int16_t x = xf >> 4;
int16_t y = yf >> 4;
matrix->clear();
// bounce 8x8 tri color smiley face around the screen
if (bitmapSize == 8) fixdrawRGBBitmap(x, y, RGB_bmp[10], 8, 8);
// pan 24x24 pixmap
if (bitmapSize == 24) matrix->drawRGBBitmap(x, y, (const uint16_t *) bitmap24, bitmapSize, bitmapSize);
#ifdef BM32
if (bitmapSize == 32) matrix->drawRGBBitmap(x, y, (const uint16_t *) bitmap32, bitmapSize, bitmapSize);
#endif
matrix->show();
// Only pan if the display size is smaller than the pixmap
// but not if the difference is too small or it'll look bad.
if (bitmapSize-mw>2) {
xf += xfc*xfdir;
if (xf >= 0) { xfdir = -1; updDir = true ; };
// we don't go negative past right corner, go back positive
if (xf <= ((mw-bitmapSize) << 4)) { xfdir = 1; updDir = true ; };
}
if (bitmapSize-mh>2) {
yf += yfc*yfdir;
// we shouldn't display past left corner, reverse direction.
if (yf >= 0) { yfdir = -1; updDir = true ; };
if (yf <= ((mh-bitmapSize) << 4)) { yfdir = 1; updDir = true ; };
}
// only bounce a pixmap if it's smaller than the display size
if (mw>bitmapSize) {
xf += xfc*xfdir;
// Deal with bouncing off the 'walls'
if (xf >= (mw-bitmapSize) << 4) { xfdir = -1; updDir = true ; };
if (xf <= 0) { xfdir = 1; updDir = true ; };
}
if (mh>bitmapSize) {
yf += yfc*yfdir;
if (yf >= (mh-bitmapSize) << 4) { yfdir = -1; updDir = true ; };
if (yf <= 0) { yfdir = 1; updDir = true ; };
}
if (updDir) {
// Add -1, 0 or 1 but bind result to 1 to 1.
// Let's take 3 is a minimum speed, otherwise it's too slow.
xfc = constrain(xfc + random(-1, 2), 3, 16);
yfc = constrain(xfc + random(-1, 2), 3, 16);
}
delay(10);
}
}
void loop() {
// clear the screen after X bitmaps have been displayed and we
// loop back to the top left corner
// 8x8 => 1, 16x8 => 2, 17x9 => 6
static uint8_t pixmap_count = ((mw+7)/8) * ((mh+7)/8);
// You can't use millis to time frame fresh rate because it uses cli() which breaks millis()
// So I use my stopwatch to count 200 displays and that's good enough
#if 0
// 200 displays in 13 seconds = 15 frames per second for 4096 pixels
for (uint8_t i=0; i<100; i++) {
matrix->fillScreen(LED_BLUE_LOW);
matrix->show();
matrix->fillScreen(LED_RED_LOW);
matrix->show();
}
#endif
Serial.println("Count pixels");
count_pixels();
Serial.println("Count pixels done");
delay(1000);
display_four_white();
delay(3000);
Serial.print("Screen pixmap capacity: ");
Serial.println(pixmap_count);
// multicolor bitmap sent as many times as we can display an 8x8 pixmap
for (uint8_t i=0; i<=pixmap_count; i++)
{
display_rgbBitmap(0);
}
delay(1000);
Serial.println("Display Resolution");
display_resolution();
delay(3000);
Serial.println("Display bitmaps");
// Cycle through red, green, blue, display 2 checkered patterns
// useful to debug some screen types and alignment.
uint16_t bmpcolor[] = { LED_GREEN_HIGH, LED_BLUE_HIGH, LED_RED_HIGH };
for (uint8_t i=0; i<3; i++)
{
display_bitmap(0, bmpcolor[i]);
delay(500);
display_bitmap(1, bmpcolor[i]);
delay(500);
}
Serial.println("Display smileys");
// Display 3 smiley faces.
for (uint8_t i=2; i<=4; i++)
{
display_bitmap(i, bmpcolor[i-2]);
// If more than one pixmap displayed per screen, display more quickly.
delay(mw>8?500:1500);
}
// If we have multiple pixmaps displayed at once, wait a bit longer on the last.
delay(mw>8?1000:500);
Serial.println("Display lines, boxes and circles");
display_lines();
delay(3000);
display_boxes();
delay(3000);
display_circles();
delay(3000);
matrix->clear();
Serial.println("Display RGB bitmaps");
for (uint8_t i=0; i<=(sizeof(RGB_bmp)/sizeof(RGB_bmp[0])-1); i++)
{
display_rgbBitmap(i);
delay(mw>8?500:1500);
}
// If we have multiple pixmaps displayed at once, wait a bit longer on the last.
delay(mw>8?1000:500);
Serial.println("Scrolltext");
display_scrollText();
#ifdef BM32
Serial.println("bounce 32 bitmap");
display_panOrBounceBitmap(32);
#endif
// pan a big pixmap
Serial.println("pan/bounce 24 bitmap");
display_panOrBounceBitmap(24);
// bounce around a small one
Serial.println("pan/bounce 8 bitmap");
display_panOrBounceBitmap(8);
Serial.println("Demo loop done, starting over");
}
void setup() {
// Time for serial port to work?
delay(1000);
Serial.begin(115200);
Serial.print("Init on pin: ");
Serial.println(PIN);
Serial.print("Matrix Size: ");
Serial.print(mw);
Serial.print(" ");
Serial.print(mh);
Serial.print(" ");
Serial.println(NUMMATRIX);
#if defined(P32BY8X3)
// Parallel output
FastLED.addLeds<WS2811_PORTA,3>(leds, NUMMATRIX/3).setCorrection(TypicalLEDStrip);
Serial.print("Setup parrallel WS2811_PORTA: ");
Serial.print(NUMMATRIX);
#else
FastLED.addLeds<NEOPIXEL,PIN>( leds, NUMMATRIX ).setCorrection(TypicalLEDStrip);
Serial.print("Setup serial: ");
Serial.println(NUMMATRIX);
#endif
matrix->begin();
matrix->setTextWrap(false);
matrix->setBrightness(BRIGHTNESS);
Serial.println("If the code crashes here, decrease the brightness or turn off the all white display below");
// Test full bright of all LEDs. If brightness is too high
// for your current limit (i.e. USB), decrease it.
//#define DISABLE_WHITE
#ifndef DISABLE_WHITE
matrix->fillScreen(LED_WHITE_HIGH);
matrix->show();
delay(3000);
matrix->clear();
#endif
}
// vim:sts=4:sw=4
You can’t perform that action at this time.