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A Graph-Theoretic -Via M inim ization 
A lgorithm  for Two-Layer Printed 

Circuit Boards 
RUEN-WU CHEN, YOJI KAJITANI, SENIOR MEMBER, IEEE AND SHU-PARK CHAN, FELLOW, IEEE 

Abstract-Based on graph theory, an efficient via minimization algo- 
rithm for certain types of two-layer printed circuit boards is developed 
which can he executed in polynomial time. The algorithm yields solutions 
for routings with junctions of degrees varying from 2 to 8 and guarantees 
the minimum number of vias for routings with three or fewer line segments 
connected to each junction. Examples are given to illustrate various aspects 
of the algorithm. In addition, preassignment of line segments on a particu- 
lar layer of the board due to certain prescribed board (or component) 
constraints is discussed. 

I. INTRODUCTION 

T HE following basic definitions, as presented in [l], 
facilitate the description of the via m inimization prob- 

lem. 
A component is a cell which may be either a basic circuit 

element or a network device. A net is a collection of 
(straight) line segments that electrically connect a specified 
set of component pins. A physical routing, denoted by P, is 
a collection of all the nets interconnected on a PC board. 
In a physical routing, a point where some line segments 
located at the same layer of the board are connected 
together is referred to as an intersection; and a point, other 
than a component pin, at which some line segments on two 
different layers of the board are connected is called a via. 

Current routing algorithms for two-layer printed circuit 
(PC) boards produce a large number of vias. This is due to 
the fact that most routing algorithms which solve the layer 
assignment problem efficiently rout all horizontal line seg- 
ments on one layer of a board and all vertical line segments 
on the other layer [2]. It is desirable to m inimize the 
number of vias in a PC layout, since the vias often contrib- 
ute to failure of the board due to cracking. Furthermore, 
the extra through holes needed in making the vias add to 
the total cost of production. 

Several algorithms have been proposed in the literature 
for the purpose of m inimizing the number of vias under 
certain prescribed conditions. All of these algorithms begin 
by operating on a given physical routing in which the 
placement of the components and the routing of the nets 
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have taken place. In 1971, Hasimoto and Stevens [3] pre- 
sented an algorithm which attempted to reduce the number 
of vias by moving some line segments from one layer of the 
board to the other layer for a two-layer PC board. Their 
algorithm was restricted in the sense that only two line 
segments were allowed at each junction. In 1975, Sakarnoto 
et al. [4] developed the Organized System for Automated 
Connection-Routing Algorithm (OSACA). System OSACA 
incorporated a procedure which m inimizes vias in a local 
sense by moving a line segment from one layer to the other 
if it is unobstructed. Also in 1977, Servit [5] presented an 
algorithm for reducing the number of vias by duplicating 
certain line segments for short distances on both layers. 
Until recently, the via m inimization problem was believed 
to be NP-complete even for the simplest case of the 
Hashimoto-Stevens type. Based on this belief, some ap- 
proximate and heuristic algorithms have been developed. 
In 1979, Stevens and vancleemput [6] introduced an ap- 
proximate algorithm for via m inimization in order to re- 
move some of the restrictions imposed by other algorithms. 
In their algorithm, the location of the vias in the final 
solution is restricted to the points which are vias in a given 
physical routing. In 198 1, Ciesielski and Kinnen [7] derived 
a layer assignment algorithm for routing. In their ap- . 
preach, the via m inimization problem was formulated as a 
(O,l)-integer programming problem and solved using the 
branch and bound technique. This approach is more gen- 
eral since it allows the degree of each via to vary between 2 
and 8. However, the branch and bound technique will have 
a worst-case exponential order of complexity. 

Kajitani has recently shown that the via m inimization 
problem of the Hashimoto-Stevens type is not NP-com- 
plete [8]. However, there is a large number of constraints 
associated with each of the existing algorithms developed 
for solving the via m inimization problem of the 
Hashimoto-Stevens type. At the outset of this research 
project it was believed that some of these constraints could 
be removed. The development of a more general algorithm 
which could be carried out in. polynomial time was the 
primary objective. 

In this paper, a polynomial time via m inimization algo- 
rithm is developed for routings on a two-layer PC board. 
The starting point consists of a given physical routing 
which may have been generated by automatic or manual 
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routing techniques. Such a  physical routing includes the 
specification of component  locations, layout of the nets, 
initial layer assignments, and  a  set of initial vias. Prior to 
the execution of the algorithm an  initial set of via candi- 
dates must be  selected. This set of via candidates must 
include, but may not be  lim ited to, the vias which appear  
in the given physical routing. Via candidates may be  placed 
anywhere along any of the line segments as suggested in 
[7]. Therefore, global m inimization, with respect to a  given 
physical routing, can be  achieved in principle. However, 
for the sake of clarity and  simplicity of the examples in this 
paper, the via candidates are, in fact, restricted to the 
initial set of vias and intersections in the given physical 
routing. It is recognized that such a  restriction will, in 
general, result in nonglobal m inimal solutions with respect 
to a  given physical routing. From a  computational point of 
view there will be  a  tradeoff between the execution time  
and the achievement of a  global m inimal solution with 
respect to a  given physical routing. In other words, the 
removal of the constraints on  the number  and the location 
of the via candidates will result in a  more complex graph 
mode l and  extension of the execution time. 

In the event that the restriction on  the location of the via 
candidates is removed, the algorithm yields solutions (not 
necessari ly m inimum) for a  given physical routing with 
junctions of degrees varying from 2  to 8  and guarantees a  
global m inimal solution with respect to a  given physical 
routing if the degrees of the junctions in the given routing 
are at most 3. 

II. BASIC DEFINITIONS , 
In addit ion to the definitions presented in Section I, the 

following terms are defined. 
In a  physical routing, the line segments are said to be  on  

the same axis if (a) they are on  opposite layers of the 
board, and  (b) they will coincide when one layer is pro- 
jected directly onto the other. As an  example, a  physical 
routing P, a long with the terms defined above is illustrated 
in F ig. 1. In the figure, line segments 1,, I,, I,, and  1, 
connect ing component  pins A and F  constitute a  net. Also 
l ine segments I, and  1, are on  the same axis, and  so are I, 
and  I,. 

The  assignment of line segments to complete a  physical 
routing is the designation of each line segment with a  
particular layer (layer I or layer II) of the board. In 
general, different assignments of line segments will have 
different numbers of vias. Thus it is desirable to develop an  
algorithm that will generate an  optimal assignment of line 
segments in a  given physical routing which requires a  
m inimum number  of vias. 

A transient routing, denoted by T, is an  incomplete 
physical routing in which the placement of the components 
and the routing of the nets have taken place, whereas the 
line segments have not yet been assigned. The  transient 
routing is obtained from a  given physical routing P by 
superimposing all the line segments of one  layer on  the 
other layer. In a  transient routing, a  CIWX, xi, is an  intersec- 
tion in a  physical routing P which cannot be  made  a  via 
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----- : line segments on layer I 

-: line sepents on layer II 
l : vias 

. : intersections 

,J : components along with their pins (A, B,...,Z’) 

Fig. 1. Physical routing P,. 

(because of certain physical constraints). The  region in a  
transient routing which covers two line segments on  the 
same axis (on two different layers) between two cruxes is 
called a crux zone. Two or more crux zones may be 
combined to form an  extended crux zone if they have 
common cruxes. If an  intersection in P is not a crux, it is 
called a  via candidate, denoted by hi. A via in a  physical 
routing P is also called a  via candidate in the correspond- 
ing transient routing T. The  region which covers two line 
segments on  the same axis between two via candidates is 
referred to as a  via candidate zone (VCZ). Two or more via 
candidate zones having common via candidates may be  
combined as an  extended via candidate zone. Since a  via 
can be  chosen at any point within a  via candidate zone, it 
follows that the entire zone is also referred to as a  via 
candidate. Hence, each line segment in T  must terminate at 
a  component  pin, a  crux (zone), or a  via candidate (zone). 

As an  example, the transient routing T, of a  physical 
routing P, is shown in F ig. 2. In the figure, there is one  
crux zone (between cruxes x, and  x2) and  8  via candidates 
in which h, is a  via candidate zone. 

Note that as a  starting point, a  line segment Ii in T  can 
be  placed on  either layer of the board, but all of its 
crossing line segments Ij’s which belong to a  different net 
in P must be  placed on  the other layer. According to this 
constraint, we shall introduce a  term si, called the cluster 
which will play an  important role in the via m inimization 
algorithm (to be  developed). 

In the transient routing, a  cluster, denoted by si, is a  
maximal set of mutually crossing line segments. 

For example, in F ig. 2, if horizontal line segment I, is 
assigned to layer I of the board, then its crossing (vertical) 
line segments I, and  I, must be  assigned to layer II. 
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2. Transient routing T, of P,. 

Similarly I, must be placed on layer I (since I, crosses Z,). 
The set s, containing all of these (mutually crossing) seg- 
ments (I,, I,, I,, and I,) constitutes a cluster. It (along with 
other clusters) is also illustrated by a shaded closed curve, 
as shown in Fig. 3. 

Moreover, clusters can be classified with respect to a 
given via candidate into three different types: (a) an H-type 
cluster with respect to hi( xi) which is a cluster that contains 
exactly one horizontal line segment connected to the via 
candidate hi (a crux xi); (b) a V-type cluster with respect to 
hj(xj) which is a cluster that contains exactly one vertical 
line segment connected to the via candidate hi (a crux xi); 
and (c) a VH-type cluster with respect to h, is a cluster s, 
that has horizontal and vertical line segments connected to 
the via candidate h,. Note that in (c), the via candidate h, 
connected with two line segments in the same cluster s, is 
called an essential via of s,. 

In Fig. 3, it is seen that the transient routing T is 
partitioned into a number of clusters’of types (a), (b), and 
(c) as described above, each of which is with respect to a 
via candidate (a crux). In the figure h, and h, are essential 
vias of s, and s2, respectively. 

Furthermore, subsequent to the assignment of line seg- 
ments, clusters in the transient routing T can be separated 
into two classes C, or C, with Class C, containing those 
clusters in which horizontal (vertical) line segments are 
placed on layer I (II) and Class C, containing those clusters 
in which horizontal (vertical) line segments are placed on 
layer II (I). 

III. GRAPH GT 

In this section, a topological structure, called graph G, 
will be constructed as a representation of the entire tran- 
sient routing T. G, will consist of a number of subgraphs 
each of which represents a via candidate hi along with its 

adjoining clusters. Based on this graph-theoretic represen- 
tation, an efficient algorithm will then be developed (in 
Section V) for via m inimization of a given physical routing. 
The treatment of cruxes will be deferred until Section VII. 

Consider any via candidate hi in T. The connected 
subgraph, G,(h,), can be defined and constructed accord- 
ing to the following cases. 

Case I: The clusters contain no essential vias, thus 
excluding the VH-type clusters in T. If there exist two line 
segments on the same axis in T, hi will be a via candidate 
zone; otherwise the number of clusters adjoining hi will be 
lim ited to four. The subgraph GE( hi) with respect to the 
via candidate (zone) hi along with its m  adjoining clusters 
in T  is constructed as follows: 

Step I: Create a vertex v~, for each cluster sj among all 
the adjoining clusters at hi. 

Step 2: Starting with the vertex corresponding to the top 
(or the upper leftmost cluster if there exist more than one 
such cluster on the same level) cluster adjoining hi, place 
the m  vertices in a circular arrangement in the same 
sequence as the clusters appear around a via candidate in 
T. The starting vertex will be called the top vertex. 

Step 3: Label each vertex according to the type of 
clusters it represents (i.e., V-type or H-type). If all the 
vertices are of the same type, insert a dummy vertex of the 
opposite type to the right of the top vertex; and increase m  
by one. 

Step 4: Starting with the top vertex, scan the m  vertices 
in the clockwise direction. If any two consecutive vertices 
are of the same type, stop scanning and go to Step 5. 
Otherwise, when the scanning completes the full sequence, 
go to Step 6. 

Step 5: Starting with the vertex found in Step 4, number 
the m  vertices from 1 to m  in the clockwise direction. Then 
proceed to Step 7. 

Step 6: Starting with the top vertex, number the m  
vertices from 1 to m  in the clockwise direction. 

Step 7: Let k denote the number associated with a given 
vertex. Starting with the vertex for which ‘k = 1, create an 
edge between vertex k and the nearest vertex of the oppo- 
site type in the clockwise direction. Increase k by one, and 
continue this operation until k = m . 

Thus for the m  clusters adjoining hi there are m  vertices 
and m  - 1 edges in G,(h,), called similar edges, all labeled 
eh,, with adjacent vertices corresponding to clusters of 
opposite types. 

As an example of Case (l), clusters s,, s2, sq, and ss in 
Fig. 4 are of types V, H, V, and H, respectively, with 
respect to h,, and hence subgraph GE( h2), shown in Fig. 5, 
contains vertices v,,, v~~, v~~, and vs3, interconnected by 
three similar edges eh2. 

We shall now consider another example in which clusters 
adjoin a via candidate zone (VCZ). 

In Fig. 4, clusters s2, sg, s,~, sq, se, and s,~ adjoin VCZ 
h,. The corresponding subgraph GE( h3) is shown in Fig. 6. 
In Fig. 6(b), the number associated with each edge indi- 
cates the order in which the edges were created. 

In the event that all clusters adjoining hi are of the same 
type, subgraph G&h,) is constructed by introducing a 
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+ : via candidate h. 1 

UIIIO: via candidate zone hj 

mm: crux zone 

cluster s. 

: H-type cluster 

v : v-type cluster 

VH : VWtype cluster 

Fig. 3. Partit ioning T, into clusters. 

+ : via candidate hi 

mm: via candidate zone hj 

0 .: c1uSter *j 

Fig. 4. Partit ioning T, into clusters. 
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Fig. 5. Subgraph GE(&) of Cr. 

top vertex 

k=S “s2 0 
0 

v 

k-4 “sS H H 

k=3 “sl,H 0 v 
H “s6 k=l 0 

(4 @I 
Fig. 6. Subgraph GE(h3) of Cr. (a) Step 1 to 6. (b) Step 7. 

Fig. 7. Subgraph G,(h,,) of Cr. 

dummy vertex q, (refer to Step 3). It corresponds to a 
“dummy” cluster s, containing no line segments in T. 
Hence the addition of osX will not affect the final solution. 

For example, in Fig. 4, two V-type clusters s, and sq are 
joined at h,a. Thus in Fig. 7, a dummy vertex qX of type H 
is created with similar edges eh,, linking it to v,, and Vet. 

Case 2: The via candidate hi is an essential via in T 
because of cluster s, (since s, is of type VH with respect to 
hi). The subgraph G&h,) with respect to hi is constructed 
as follows: 

Step I: If two or more clusters adjoin hi, G&hi) is 
constructed as stated in Case (1) in which the VH-type 
cluster s, is treated as either an H-type or a V-type cluster; 
otherwise proceed to Step 2. 

Step 2: A self-loop’ with label eh, is created at vertex vsV. 
For example, via candidate h,, and via candidate zone 

ha in Fig. 4 are essential vias of clusters sq and ss, respec- 
tively. The corresponding subgraphs GE( h,,) and G,(h,) 
are shown in Figs. 8 and 9, respectively. In Fig. 8, eh,, is a 
self-loop; and in Fig. 9, a path consisting of similar edges 

‘The construction of a self-loop with label eh in G, will ensure that the 
via candidate hi will be a via in the final routing. Further discussion may 
be found in Section IV. 

Fig. 8. Subgraph G&h,,) of Cr. 

Fig. 9. Subgraph G&h,) of Cr. 

‘( 

associated zone of GE(h3) 

associated zone of GE(hll) 

Fig. 10. The connections of subgraphs GE(h3) and G&h,,). 

eh,‘s is constructed between vertices v~,~ and v+ (of type V) 
and a self-loop is constructed at v~*. 

Next, graph G, is formed by joining together the n 
G,(h,) subgraphs (where i = 1,2;. .,n) as follows: 

Step I: Enclose each subgraph GE( hi) by a simple closed 
curve J, with the enclosed region referred to as the ussoci- 
ated zone of GE( h,). 

Step 2: Consider two subgraphs G,(hi) and G,(hj). If 
they have a set of common vertices (i.e., vertices with the 
same labels), they are to be connected by coalescing all 
common pairs of vertices in both graphs in such a manner 
that their associated zones will not overlap. 

Step 3: Repeat Step 2 until all the n subgraphs have 
been treated as above. 

Step 4: Remove all the n simple closed curves associated 
with the n subgraphs in the resultant graph, which yields 
G T’ 

As an example, subgraphs G,(h,,) and GE(hJ) obtained 
from T2 of Fig. 4 are connected, as shown in Fig. 10. 
However, if the two subgraphs are joined, as shown in Fig. 
11, they will be incorrectly connected since eh,, is inside the 
associated zone of GE( h3), thus causing overlap between 
their associated zones. 

As another example, consider the transient routing T2 of 
Fig. 4 which has 17 clusters and 12 via candidates. The 
corresponding graph G, is constructed by connecting all of 
the 12 G,(h,) subgraphs and the result is shown in Fig. 12. 

In order to make use of certain theorems which depend 
upon the planarity of G,, we must first demonstrate the 
fact that G, is planar. 
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a.. 
‘.. , : associated zone of GE(h3) 

qt;  :  
Y 

associated zone of GE(hll) 

Fig. 11. The incorrect connect ions of subgraphs G&h,) and  G,( h,,). 

Fig. 12. Graph G, of T2, 

Consider the plane on  which a  given transient routing T  
is drawn. In the partit ioned transient routing T  (such as the 
one shown in F ig. 3), each line segment belongs to one and 
only one cluster. Thus the clusters are drawn on  the plane 
such that no  two overlap. This fact results in the following 
theorem. 

Theorem I: The  graph G , of a  given transient routing T  
is planar. 

Proof: For G , to be  nonplanar, there exists an  edge 
e,,, connected between some vertices vS, and  vSk crossing 
some circuit Ci with vS, enclosed by C, and  vS;, outside Ci (as 
shown in F ig. 13). W e  shall show that such a  situation 
cannot exist as there cannot be  such a  one-to-one corre- 
spondence between G , and the corresponding transient 
routing T. 

Note that a  vertex in G , corresponds to a  cluster in T  
and an  edge between two vertices in GT  corresponds to a  
common via candidate between some two clusters in T. 
Thus in F ig. 13, if v!, and  vS, are connected by edge eh, 
which crosses some ctrcuit Ci, the two clusters sj and  sk m  
T  (corresponding to vS, and  vSk, respectively, in GT) must 

‘k 

Fig. 13. An example of graph CT. 

Fig. 14. Corresponding T of G, in Case (a) of the proof of Theorem 1. 

Fig. 15. Corresponding T of CT in Case (b) of the proof of Theorem 1. 

be joined by a  common via candidate h, satisfying one of 
the following cases: 

Case (a): Cluster sj overlaps some clusters correspond- 
ing to Ci, as shown in F ig. 14. 

Case (b): Cluster sk overlaps some clusters corre- 
sponding to’Ci, as shown in F ig. 15; or 

Case (c): Both clusters sj and  sk are joined at a  via 
candidate which is also a  common via candidate to two of 
those clusters corresponding to Ci, as shown in F ig. 16. 

However, both Cases (a) and  (b) violate the properties of 
clusters that no  two of them overlap; and  in Case (c), the 
corresponding subgraph must contain three similar edges 
(denoted by eh,), as shown in F ig. 17, with some two of 
these edges contained in the circuit and  no  crossing, thus 
contradicting our assumption (as illustrated in F ig. 13). 
Hence G , must be  planar. 

IV. VIAMINIMIZATIONPROBLEMANALYSIS 

It has been shown in the preceding section how a  tran- 
sient routing T  can be  represented by a  planar graph G ,. 
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Fig. 16. Corresponding T of G, in Case (c) of the proof of Theorem 1. 

. “Sj 

Y i-! ” 

‘i+l eh x =3 
. 

eh . 
x . 

v 

ehx 
‘i 

v 
=k 

Fig. 17. The corresponding G, of T shown in Fig. 16. 

We will demonstrate next how the via minimization prob- 
lem can be attacked by solving an equivalent graph-theo- 
retic problem. 

Consider a given transient routing T; separate all the 
clusters in T into two classes C, and C, as defined in 
Section II. Similarly, all the vertices of G, will also be 
divided into two classes C, and C,. Note that assigning all 
the vertices of G, to two classes, C, and C,, is equivalent 
to assigning all the line segments of the transient routing to 
the two layers of the board. 

Next note that in G,, an edge eh! connecting two vertices 
v~, and v~, will correspond to a via m the physical routing if 
and only if vsP and vsos4 are assigned to the same class (C, or 
C,). For example, in Fig. 18(a), v,,, vs2, and vs4 have been 
assigned to class C,; hence, two similar edges with label eh, 
of Fig. 18(a) correspond to one via as shown in Fig. 18(b). 
If G, is a bipartite graph, the physical routing will contain 
no vias. In general, G, will not be a bipartite graph. Hence, 
vias do exist, and the total number of vias in a physical 
routing P is equal to the number N of distinct labels used in 
identifying similar edges in G, which connect vertices of 
the same class. The number N is referred to as the Boolean 
curdinafity (or simply the cardinality) of edges in G,. For 
example, in Fig. 19, the total number of edges corre- 
sponding to vias is 3. However, the edges with the same 
label represent a single via. Hence, the Boolean cardinality 
of this set of edges is 1. 

Next, the following definitions will be introduced and 
used in our theoretical development of the via minimiza- 

0: c1uster ‘j l-l 

64 

---_ : line segments on layer I 

-: line segments on layer II 

. : via 

(b) 

Fig. 18. (a) Transient routing T,,and its corresponding G,. (b) Final 
solution of physical routmg P3 corresponding to TX. 

c1 

cl: Class Cl 

Fig. 19. An example of the cardinality of edges. 

tion algorithm. A circuit that consists of an odd number of 
edges is referred to as an odd circuit. A set of edges whose 
removal leaves a subgraph free of odd circuits is called an 
odd circuit cover (OCC). Such a subgraph is always bipar- 
tite [8]. Thus it follows from the discussion in the preceding 
paragraph that the total number of vias in a physical 
routing P is equal to the cardinal&y of edges in an OCC of 
G,. Among all possible OCc’s in G,, those with minimum 
cardinality of edges will be called minimum odd circuit 
covers (MOCC ‘s). Consequently the problem of finding 
the minimum number of vias in P is equivalent to the 
problem of finding an MOCC of G,. Note that the noncir- 
cuit edges (i.e., those edges not contained in any circuit) in 
G, may be removed since they will not create any vias, and 
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W  

(4 
Fig. 20. An example of graph G, and  its dual  Gk  with an  MOCC and  

an  MOVP. (a) Graph G,. (b) Dual graph G>. (c) Resultant subgraph of 
G, after removing edges  e,+aud e,,,. (d) Resultant subgraph of G; after 
contract ing edges  e;l, and  e,,,. 

hence their removal will not affect the final assignment of 
vias. 

Note also that it is more convenient to work with the 
dual graph G$- of G , in order to obtain an  MOCC in G , 
since in determining an  MOCC, one must first identify the 
odd circuits in G ,, and  in so doing it is easier to deal with 
the degrees of the vertices in G& than to work with the 
lengths of the circuits in G ,. The  subgraph of Gk which 
corresponds to the subgraph G ,(h,) of G , will be  called 

G’&h,). The  edges of G i(hi) are also called the similar 
edges with respect to hi. For example, the dual graph Gk of 
a  given G ,, shown in F ig. 20(a), is illustrated in F ig. 20(b). 
In G ;, subgraph Gk(h,) has two vertices, 0,: and  of, and  
two similar e;, edges. 

In G ;, a  set of edges whose contraction leaves a  sub- 
graph free of vertices of odd  degree (hereafter referred to 
as odd vertices) is called an  odd vertex pairing (OVP). It has 
been shown that an  edge set is an  OCC of a  planar graph G  
if and  only if the corresponding edge set in its dual graph 
G’ is an  OVP of G’ [9], [lo]. Thus the total number  of vias 
in P is equal  to the cardinality of edges in an  OVP of the 
dual graph G&. Also, a  m inimum odd vertex pairing 
(MOVP) is def ined as an  OVP with the m inimum cardi- 
nality of edges among all possible OVP’s in a  graph G . 
Consequently, the problem of finding an  MOCC of G , is 
equivalent to the problem of determining an  MOVP of Gk. 
For example, in F ig. 20(a), the set of edges (eh4, eh,} of G , 
is an  MOCC because its removal leaves the resultant 
subgraph bipartite, and  is shown in F ig. 20(c). The  set of 
edges { eAl, e;,} in G& of F ig. 20(b) is the corresponding 
edge set of {eh4, eh,} in G ,. Hence, in G&, (eL,,eL,} is an  
MOVP whose contraction leaves the resultant subgraph 
free of odd  vertices, as illustrated in F ig. 20(d). 

To  form an  OVP, one need only contract those paths 
which connect the odd vertices (refer to F ig. 20(d)). Fur- 
thermore, it has been shown that for any graph an  MOVP 
(with m inimum cardinality of edges) consists of a  collec- 
tion of paths P having odd vertices as endpoints. Each odd 
vertex is used once and only -once as an  endpoint [9]. 
Consequently, an  MOVP of Gk can be  determined by 
finding a  collection of paths P with the m inimum cardinal- 
ity of edges. 

V. AN ALGORITHM FOR MINIMIZING THE NUMBER 
OF VIAS 

In this section an  algorithm for m inimizing the number  
of vias for a  given physical routing will be  developed. It 
will be  shown that, under  certain cases, the algorithm will 
provide the m inimum number  of vias. 

A method for finding an  MOVP in G> which can be  
executed in polynomial time  will now be  given. In order to 
facilitate the discussion, the following terms are intro- 
duced. 

A matching is a  set of edges which have no  common 
vertices. A full matching in a  graph G  is a  matching 
containing all the vertices of G . 

Also a  m inimum (maximum) weighted matching in a  
weighted graph is def ined as a  full matching for which the 
sum of the weights of the edges is m inimum (maximum). A 
path connect ing endpoints v, and  vb in graph G  with 
m inimum cardinality of edges is referred to as a  shortest 
path between v, and  vb. 

Next, to develop the method for determining an  MOVP 
in G&, a  complete weighted graph G ,,, is def ined and 
constructed as follows: 

Step 1: Represent each’ of the odd vertices in G ; by a  
vertex in G ,,,. 
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Step 2: For each pair of odd vertices v: and vh in G$., 
create an edge e, in G,,, between the corresponding vertices 
v, and vb, respectively. 

Step 3: Assign the weight wi to each edge e, where wi is 
the cardinality of edges of a shortest path connecting 
endpoints vi and v6 in Gk. 

Note that the number of odd vertices in any graph is 
always even. Hence, the number of vertices in G,,, will be 
even. Further, each edge e, in G, will correspond to a 
shortest path between some odd vertices in G& It follows, 
from the discussion in Section IV, that a full matching in 
G,,, corresponds to an OVP in G&. Consequently, the prob- 
lem of finding an MOVP of G; can be translated into that 
of finding a minimum weighted matching of G,,,. Each edge 
ei in the minimum weighted matching of G, corresponds to 
a shortest path Pi connecting VA and vb in Gk (i = 1,). . . , t 
where t is one half of the total number of vertices in G,,,). If 
there is more than one such path between v: and 06, choose 
one of them arbitrarily. The edges contained in Pi belong 
to an MOVP. It follows that an MOVP consists of the set 
of edges contained in P, U Pz U - . - U P,. 

Now, the algorithm for minimizing the number of vias 
for a given physical routing P is stated as follows: 

The overall methodology for via minimization is sum- 
marized below. 

the minimum weighted matching of G,,, 

the minimum number of vias in P 

Now, the algorithm for minimizing the number of vias 
for a given physical routing P is stated as follows: 

Step 1: Obtain the transient routing T from the given 
physical routing P by superimposing all the line segments 
of one layer on the other layer. 

Step 2: Partition T into clusters. 
Step 3: Construct the corresponding graph G, of T as 

described in Section III. 
Step 4: Obtain the graph CT by contracting all the 

noncircuit edges (if any) in Gr. 
Step 5: Obtain the dual graph CT of CT. 
Step 6: Scan all the odd vertices of pT, find a shortest 

path between each pair of odd vertices, and construct the 
complete weighted graph G,. 

Step 7: Find a minimum weighted matching of G,,, ob- 
tained from Step 6. 

Step 8: Obtain the set of edges, MOVP, in gT which 
corresponds to the minimum weighted matching found in 
Step 7. 

1 I 

%-----+ I I 4 ---- I -El I I I I I I 

II’,- 

I I I --._-_ - ‘--“--+ . 

12--- 
-- -_--- ----- _ __ ---I I ---_ ----- 

-------- - ---_- i: 

------ I 
-- 

--------------- ,1 1 -- _--- 
----. : line segments on layer I 

: line segments on layer II 

I , : components 

. : via* 

. : intersections 

Fig. 21. Physical routing Pd. 

+ : via candidate h. 

- : via candidate z&e h. 
I 

Fig. 22. Transient routing T4 of Pd. 

Step 9: In G,, remove set of edges, MOCC, which 
corresponds to the MOVP found in Step 8 such that the 
resultant graph is bipartite. If any similar edge eii is 
contained in the MOVP of @r, all the corresponding edges 
eh in G, are also removed. 

‘Step 10: Starting from any arbitrary vertex, assign class 
C, or C, alternately, to each adjacent vertex in each 
connected bipartite subgraph. 

Step II: Assign each line segment of each cluster in T to 
a particular layer of the board according to the class 
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Fig. 23. 

via candidate hi 

via candidate zone hk 

cluster *j 

Partitioning T, into clusters. 

Fig. 24. Graph G,of T4. 

Fig. 25. Graph CT of graph G,. 

Step 2: Transient routing is partit ioned into clusters, as 
shown in F ig. 23. 

Step 3: Graph G , of T4  is obtained, as illustrated in F ig. 
24. 

assignment in Step 10, assign two same axis line segments Step 4: Graph CT of G , is obtained, as illustrated in 
in each VCZ (if any), and  the process is complete. F ig. 25. 

The  following example illustrates the steps of the algo- Step 5: Dual graph cr of CT is obtained, as shown in 
rithm. F ig. 26. 

Example I: M inimize the number  of vias in a  given Step 6: Graph G , of CT is obtained and is illustrated in 
physical routing P4, as shown in F ig. 21. F ig. 27.. 

Step 1: Transient routing T4  of P4 is obtained, as shown 
-- 

in F ig. 22. 
Step 7: The  m inimum weighted matching {v,v,,v~v,} is 

found. 
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Fig. 26. Dual graph eT of CT. 

Fig. 27. Graph G, of CT, 

Step 8: The edges ucue and U~U, of G, found in Step 7 
correspond to two shortest paths between odd vertices, u: 
and ui, I&, and u;, in cr. Thus the MOVP {e;,, e;,, ek,,} of 
pr is obtained. 

Step 9: The MOCC {ehs,ehs, eh,*} of G, is obtained. 
Edge e,,2 (self-loop), and all the similar edges e*,‘s and 
ehx’s (with respect to h, and h,, respectively) of G, are 
removed, as shown in Fig. 28. 

Step IO: To each adjacent vertex is assigned class C, or 
C, alternatively in each bipartite subgraph, as shown in 
Fig. 28. Isolated vertices may be assigned to classes arbi- 
trarily. 

Step II: The final assignment for P is shown in Fig. 29. 
Note, any point in a VCZ can be a via. 
Thus three vias (A,, h,, and h,,) are necessary for the 
given physical routing Pd. 

The algorithm given above does not guarantee the 
minimum number of vias for all cases because Step 7 
carries out the summing of weights arithmetically, and it 
cannot determine the Boolean cardinality of edges in a 
given path. Thus nonminimal solutions will result in the 
cases in which any two paths in an MOVP have similar 
edges in common. 

For example, the graph, as shown in Fig. 30, is the dual 
graph QT of a given physical routing P (omitted here due 
to its complexity). In this figure, there are 8 odd vertices u:, 
06, uf, vi, vi, u;, u$ and uk. Edges labeled e& and eA2 are 
the only similar edges. The corresponding complete 

v 
% 3 

cP?3 

0 
“3 cl’c2 

eh6 
eh7 

” 
c2 s9 

30 C2 

Fig. 28. Bipartite subgraph after removing edges e,,,*, ehs, and e,,,. 

-I I----- --- ---- ---T---a 

I I I I I I 
L-j-j 

I 

----- : line segments on layer I 
- : line segments on layer II 

. : via* 

Fig. 29. Final assignment of Pd. 

weighted graph G, is illustrated in Fig. 31. In the 
figure, only the weights of edges less than 5 are shown 
for clarity. The minimum weighted matching of G,,,, -- -- 
(u~u~, u,u,, u, Us, u~uJ, has weight 13. However, there exists -- -- 
another matching, M, in G,,,, {u,u,,u,u~, u~u~,u&, sum of 
whose weights is 14 (not minimum). The Boolean cardinal- 
ity of edges of the OVP in Fr which corresponds to 
matching M of G, is 12, one less than the minimum, 13. 
Therefore, the solution obtained from the proposed algo- 
rithm is not optimal. 

However, it is worth noting that this example is some- 
what artificial. In this case the nonminimal solution requires 
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dual of cr, we state the following theorem giving the 
condit ion in which the algorithm will provide an  optimal 
solution. 

c  

Fig. 30. An example of cr corresponding to P. 

Fig. 31. Graph G, of cr, as  shown in Fig. 30. 

13 vias (other than 12, the m inimum number),  only one  
more via than that required in the m inimal solution. Fur- 
ther, it is bel ieved that such a  case (with a  nonminimal 
solution) will not be  encountered frequently in actual layout 
applications.2 

As ment ioned earlier, since a  nonminimal solution oc- 
curs when there exist common similar edges between two 
paths in a  m inimum odd vertex pairing (MOVP) in Fr, the 

*A survey was conducted among some electronic firms in the Bay Area 
(GTE-Lenkurt,  GTE-Sylvania, Computer  Vision, and  SilvarLisco) and  in 
Japan (Nippon Electric Co. and  Sony). Also, detai led inspections were 
made  of a  number  of PC layouts at several PC board manufacturers in the 
Bay Area (Printex, Norcal, M. B. C., and  San Jose Circuits). The  results 
were that the potentially nonminimal cases (i.e., each via candidate of 
degree 4,or more) occurred in less than 1  percent of all (over 2000)  the 
layouts exammed.  

Theorem 2: For a  given physical routing, the proposed 
algorithm always provides the m inimum number  of vias 
when every subgraph Gk(hi) of @  has three or few 
vertices. 

Proof: W e  shall prove the theorem by contradiction. 
However, to facilitate our discussion in the proof we shall 
first define the following terms. 

For an  OVP, O ,, in cr, 0, = {Pi, Pi; . -, P/} where each 
Pi term is the set of all edges in a  shortest path between 
some two odd vertices in cr and  t is one  half of the total 
number  of odd  vertices in er. 

u(oi)~P~UP;u *-. UP/. 
BC( U( O ,)} e  the Boolean cardinality of the 

edges in U(O,), and  
CO, p  the sum of the Boolean cardinalities of 

all the pi terms in O i. 
Since, for any given OVP, we have 

COi >/ BC{U(Oi)}. 0) 
based on  the above definitions. 

Note that the solution generated by the proposed algo- 
rithm with the number  of vias equal  to CO, is m inimum 
when the equality sign holds in (1) i.e., CO, = BC{U( O ,)}; 
and  is nonminimal otherwise. In the following, we shall 
show that COi = BC(U(O,)} must hold when each GL(hi) 
of cr contains three or fewer vertices. 

Let O j = { P(, f2j,. . f , Pj} be  one of those OVP’s having 
the m inimum BC{U(O,)}, name ly an  MOVP, among all the 
OVP’s. Also assume that O j has the m inimum COj among 
all the MOVP’s. 

Next, consider an  OVP, O ,,,, in pr which is not an  
MOVP but has the m inimum CO, among all the OVP’s. It 
follows that 

and  
BC{U(o~))’ BC(U(oj))  (2) 

co, =s coj. (3) 
Also, 

CO,,, a  BC{ U( O,)}. (4) 
From (2) (3) and  (4) we have 

CO, z=- BC{ U( O j)}. (5) 
This exists only when O j includes at least two paths, say 

P( and Pi, which have common similar edges e;,.. 
Since each subgraph Gk(hi) has at most 3  vertices, there 

always exists another pair of paths, P; and  P;, such that 
one  of them, say P,“, bypasses Gk(hi), as shown in F ig. 32. 
It is seen that the similar edges e,,,‘s are no  longer common 
to paths Pf and  PT. 

Hence, another OVP exist in cr, name ly 

0, = {p;, P;, PJ,:. .,P/} (6) 
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@  : odd vertices 

Fig. 32. An example of subgraph Gh(hi) with 3 vertices 

which is obtained by replacing P( by Pi’ and Pi by P; in 
Oj. From Fig. 32, 

and 

BC{U(Oj)} = BC{U(O,)} (7) 

co”=coj-l. (8) 

Equation (7) shows that 0, is an MOVP. However, from 
(8), we have 

co, -c coj (8) 

which contradicts our initial assumption that COj is m ini- 
mum among all MOVP’s. It follows that 0, must be an 
MOVP with the m inimum CO, consisting of a set of 
shortest paths in which no two of them contain any com- 
mon similar edges (i.e., CO,, - BC{U(O,)} = 0). Hence, 0, 
(a solution generated by the algorithm with the m inimum 
-CO,) corresponds to an optimal solution. This completes 
the proof. 

In Example 1, the algorithm ensures the m inimum num- 
ber of vias because each Gk(hi) of cr. has at most 3 
vertices although in the given physical routing there exists 
a via candidate (h,) of degree 6. 

In general, the routing in which each via candidate hi is 
of degree 3 or less, the corresponding Gk(hi) has at most 
three vertices. Therefore, the following corollary is evident 
and the proof is omitted. 

Corollary 1. In a transient routing T, if each via candi- 
date is of degree 3 or less, the algorithm always provides 
the m inimum number of vias. 

VI. COMPLEXITYOFTHEALGORITHM 

In the proposed algorithm given earlier, each step can be 
carried out using techniques that can be executed in poly- 
nomial time. In Step 2, each line segment is searched once. 

Thus the total time spent on Step 2 is O(L2) where L is the 
total number of line segments in T. In Step 3, G, is 
obtained and is represented by its incidence matrix. This 
process is implemented by the procedure OM in program 
GRAPH-GT [ll]. Inspection of the listing of OM shows the 
algorithm has a worst-case time bound of 0( u3) where u is 
the total number of via candidates in T. In Step 4, G, is 
obtained by contracting the noncircuit edges within G,. 
The process is implemented by the procedure REDUCE in 
program GRAPH-GT. Inspection of the listing of REDUCE 
shows the total time spent on Step 4 is 0( u3) where u is the 
number of via candidates in T. In Step 5, the dual graph 
Er of Gr. can be obtained directly from the mesh matrix of 
G, which in duality is an incidence matrix of @r. The 
process is implemented by the procedure MESH in program 
GRAPH-GT. Inspection of the listing of procedure MESH 
shows the overall time spent on Step 5 is O(u) where u is 
the total number of via candidates in T. In Step 6, Dijkstra’s 
algorithm [ 121 can be applied to the graph which is ob- 
tained from cr by adding the similar edges e<s, if any, to 
make each _Gk(hi) a complete subgraph in G> to form a 
new graph G& the m inimum path length between any two 
vertices is equal to the shortest path between the two 
vertices. Hence, the time spent on Step 6 is O(n3) where n 
is the number of vertices in cr. In Step 7, the task of 
finding a m inimum weighted matching of G,,, may be posed 
as a maximum matching problem by assigning the weight 
Wi = K - wi to each edge, ei, in G,, where K is any integer 
greater than the maximum weight of all edges in G,,,, and wi 
is the weight of edge e, in G,. The resulting complete 
weighted graph will be denoted cW. Consequently, with 
this new assignment of weights to the edges of G,,,, the 
problem of finding a m inimum weighted matching in G, is 
equivalent to that of finding a maximum weighted match- 
ing in G,, which can, in turn, be solved by applying the 
well-known algorithm of Edmonds [ 131. The complexity of 
the algorithm of Edmonds is 0( m3) where m  is the number 
of all odd vertices in cr. In Step 8, the determination of 
the MOVP from @  requires negligible execution time. In 
Step 9, each edge of G, is scanned once, therefore, the time 
spent on Step 9 is O(u) when u is the number of via 
candidates in T. In Step 10, the total time spent on class 
assignment to the vertices of G, is O(U) where u is the 
number of vertices in G,. In Step 11, since each line 
segment is scanned once, the total time spent is O(L2) 
(similar to Step 2). Therefore, the overall computational 
complexity of the algorithm is of order equal to 
m={O(n3), O(u3), O(L2N. 

VII. CONSIDERATIONSONPREASSIGNMENT 

In some instances, certain requirements are placed on 
physical routings; e.g., some line segments may have to be 
placed on a particular layer of the board due to prescribed 
board or component constraints. This requirement will be 
referred to as the preassignment of the line segments (or 
preussignment for short). The preassignment of certain line 
segments to particular layers of the board is equivalent to 
assigning the clusters which contain these line segments to 
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Fig. 33. An example of a  graph G,. 

Fig. 34. Modif ied graph G, of Fig. 33  of Case (a). 

Fig. 35. Modif ied graph CT of Fig. 33  of Case (b). 

a particular class (class C, or C,). On ly two cases need be  
considered: 

Case (a): The  preassignment requires that a  pair of 
cluster, say si and  sj, be  assigned to the same class in the 
transient routing T, and  

Case (b): The  preassignment requires that si and  sj be  
assigned to two different classes in T. 

After constructing G  r, preassignment is accompl ished 
by mod ifying the graph G , as follows: 

Case (a): Coalesce the vertices v~, and  v~, in G , which 
correspond to clusters si and  sj, respectively. 

Case (b): Add D edges’ between vertices v,, and  v~,. The  
edges in G> which correspond to these parallel edges will 
form a  path whose length is large enough to preclude 
selection as a  shortest path in Gk. Therefore, v~, and  v~, will 
always be  assigned to different classes. 

For example, consider the graph G , in F ig. 33. If the 
preassignment involving us1 and v~, corresponds to Case (a), 
G , is mod ified as shown in F ig. 34; if the preassignment of 
v~, and  vs corresponds to Case (b), G , is mod ified as shown 
in F ig. 33. 

There is an  important case associated with preassign- 
ment which may arise in a  given physical routing P, 
name ly the existence of cruxes. When  constructing the 
graph G ,, we regard a  crux zone, xi, as a  via candidate 
zone and construct the graph G , as described in Section 
III. Since. vias are not al lowed in crux zones, the class 

31t is sufficient to let D equal  the total number  of edges  in CT. 

------ --- ----- -- -- 
1  !h 

.I] _--- 
‘T  I -- --- --_  .: l ine 

- : line 

-- - x : crux 

, : via 

Fig. 36. Physical routing Ps. 
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Fig. 37. Physical routing P6. 

segments 

segments 

on layer I 

on layer II 

on layer I 

on layer II 

via candidate h 

Fig. 38. Transient routing T of Ps( P6). 

assignment of the clusters adjoining a  crux zone may be  
thought of as a  form of preassignment. 

The  specific preassignment will depend on  the structure 
of the physical routing. The  clusters which adjoin each crux 
zone must be  observed in order to determine whether the 
preassignment corresponds to Case (a) or to Case (b). The  
graph G , will then be  mod ified accordingly, i.e., coalescing 
vertices or adding parallel edges. Furthermore, all similar 
edges in the mod ified form of G ,, which correspond to the 
crux zone xi, will be  removed. 

Consider two physical routings, PS and P6, shown in 
F igs. 36  and 37, respectively. The  transient routing T  and 
the graph G , which correspond to PS and Ps have the same 
structure. They are shown in F igs. 38  and 39, respectively. 
Examination of F ig. 36  indicates that clusters sA, sB, and  
sc, of F ig. 38  belong to the same class. 

On  the other hand, F ig. 37  indicates that clusters sB and 
so belong to one class while cluster sA belongs to the other 
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w 
Fig. 39. Graph G, of T shown in Fig. 38. 

ehl 

Fig. 40. Modified CT of Ps shown in Fig. 36. 

Fig. 41 Modified G, of P6 shown in Fig. 31 

class. Hence, the modified Gr’s which correspond to Ps 

and P6 are different as illustrated in Figs. 40 and 41, 
respectively. 

In general, coalescing vertices and adding edges in G, 
may result in a nonplanar graph. In that case Step 5 of the 
via minimization algorithm will not be applicable. How- 
ever, if the preassignment involves adjacent vertices only, 
the modified G, will remain planar. 

A given physical routing with arbitrary preassignments 
may not result in a global minimal solution. Without 
modifying G,, apply the via minimization algorithm di- 
rectly through Step 10. Then in the bipartite subgraph 
which results from Step 10, assign those vertices (each of 
which corresponds to a cluster containing those preas- 
signed line segments) to a particular class. Next proceed to 
Step 11. It follows that the number of vias will be increased 
by the Boolean cardinality of edges which connect vertices 
of the same class in the graph as described above. 

It has been shown that the via minimization problem of 
the Hashimoto-Stevens type can be translated into the 
problem of finding a maximum cut in a planar graph, 
which, in turn, can be solved in polynomial time by using 
Hadlock’s algorithm [9]. Furthermore, any planar graph G 
has a corresponding physical routing P of the 
Hashimoto-Stevens type [9]. Assume that a preassignment 
exists; i.e., some clusters are assigned to the same class. 
The modified graph G, due to the preassignment, is ob- 
tained by coalescing vertices in G. This may result in a 
nonplanar graph. Consequently, the problem of finding the 
minimum number of vias in P can be ‘translated into that 
of finding a maximum cut in G. In general, G may be 
nonplanar. Since the problem of finding a maximum cut in 
a general graph is NP-complete [14], it follows that .a 
problem involving an arbitrary preassignment cannot be 

solved in polynomial time even in the case of the simplest 
type of problems, e.g., problems of the Hashimoto-Stevens 
type. 

VIII. CONCLUDING REMARKS 

Based on the graph-theoretic model, an algorithm for 
minimizing the number of vias in two-layer PC boards has 
been developed. Examples have been presented to illustrate 
various aspects of the algorithm. Further, it has been 
shown that the algorithm is of a polynomial order of 
complexity and always results in the minimum number of 
vias for routings whose via candidates are of degree 3 or 
less (under the assumption that no restrictions are imposed 
on the location of the via candidates): In actual applica- 
tions, routings containing via candidates of degree 4 or 
more are rarely encountered. Therefore, the algorithm pro- 
vides the minimum number of vias for most practical 
problems. 

The algorithm developed in this paper represents a sig- 
nificant improvement over the most recent algorithms which 
have appeared in the literature [6], [7]. For the algorithm 
developed by Stevens and vancleemput [6], the location of 
the via candidates is restricted to a given set of vias. Their 
algorithm does not allow for the introduction of additional 
via candidates which might achieve a net reduction in the 
number of vias that appear in the final routing. The 
proposed algorithm in this paper is more general in that 
the constraints imposed on the positions of the via candi- 
dates are removed. The algorithm developed by Ciesielski 
and Kinnen [7] represents a layer assignment algorithm. 
Although it is more general in that via candidates of degree 
3 or more are considered and may handle preassignment of 
the line segments, it cannot be executed in polynomial 
time. The algorithm developed herein has been shown to be 
executable in polynomial time. Furthermore, it has been 
demonstrated that the solutions are minimal in the event 
that all via candidates are of degree 3 or less. Finally, it is 
hoped that this work will stimulate further research efforts 
to solve the via minimization problem for multilayer PC 
boards with algorithms that can be executed in polynomial 
time. 
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