source : https://arxiv.org/abs/1603.02720
/ ->1 \ 1 / 1 -r21 \ / ->2 \
( ) = --- ( ) ( )
\ <-1 / t12 \ r12 t12 t21 - r12 r21 / \ <-2 /
The transfer matrix between to medium with indices n1 and n2 and propagation angle th1 and th2 (n1 sin(th1) = n2 sin(th2)) is given by
1 /n1 cos(th1) + n2 cos(th2) n1 cos(th1) - n2 cos(th2)\
I_s = ------------- ( )
2 n1 cos(th1) \n1 cos(th1) - n2 cos(th2) n1 cos(th1) + n2 cos(th2)/
for the S polarisation. And by
1 /n2 cos(th1) + n1 cos(th2) n2 cos(th1) - n1 cos(th2)\
I_p = ------------- ( )
2 n1 cos(th1) \n2 cos(th1) - n1 cos(th2) n2 cos(th1) + n1 cos(th2)/
for the P polarisation. For the interface, the transfer matrix reduces to
1 /1 r12\
I = --- ( )
t12 \r12 1/
1 /n1 cos(th1) 1\ /1 1\
I_s = ------------- ( ) ( )
2 n1 cos(th1) \n1 cos(th1) -1/ \n2 cos(th2) -n2 cos(th2)/
-------------- A_1s -------------- ----------- B_2s -----------
for the S polarisation. And
1 /n1 cos(th1)\ /cos(th2) cos(th2)\
I_p = ------------- ( ) ( )
2 n1 cos(th1) \n1 -cos(th1)/ \n2 -n2/
-------------- A_1p -------------- ----------- B_2s -----------
for P polarisation
Propagation in medium with complex refractive index. Where n sin(th)
is real.
/ 1/psi 0 \
J = ( ) with psi = exp(i 2pi n d / lambda_0 cos(th))
\ 0 psi /
where d
is the layer thickness and lambda_0
is the wavelength.
For a two layer :
M = I_01 J_1 I_12 J_2 I_23
A_0 (B_1 J_1 A_1) (B_2 J_2 A_2) B_3 = A_0 C_1 C_2 B_3
---- C_1 ---- ---- C_2 ----
/c -i s / cos(th) / n \
C_s = ( )
\-i s n cos(th) c /
/c -i s cos(th) / n \
C_p = ( )
\-i s n / cos(th) c /
with c = cos(2pi n d / lambda_0 cos(th))
s = sin(2pi n d / lambda_0 cos(th))