Skip to content
No description, website, or topics provided.
Jupyter Notebook C++ Python
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
doc
.gitignore
README.md
compare with tmm.ipynb
thinfilm.cc
thinfilm.hh
thinfilm.py

README.md

Thinfilm

source : https://arxiv.org/abs/1603.02720

Transfer Matrix

 / ->1 \     1   / 1                    -r21 \   / ->2 \
(       ) = --- (                             ) (       )
 \ <-1 /    t12  \ r12     t12 t21 - r12 r21 /   \ <-2 /

Dielectric interface Transfer Matrix

The transfer matrix between to medium with indices n1 and n2 and propagation angle th1 and th2 (n1 sin(th1) = n2 sin(th2)) is given by

           1         /n1 cos(th1) + n2 cos(th2)    n1 cos(th1) - n2 cos(th2)\
I_s = ------------- (                                                        )
      2 n1 cos(th1)  \n1 cos(th1) - n2 cos(th2)    n1 cos(th1) + n2 cos(th2)/

for the S polarisation. And by

           1         /n2 cos(th1) + n1 cos(th2)    n2 cos(th1) - n1 cos(th2)\
I_p = ------------- (                                                        )
      2 n1 cos(th1)  \n2 cos(th1) - n1 cos(th2)    n2 cos(th1) + n1 cos(th2)/

for the P polarisation. For the interface, the transfer matrix reduces to

     1   /1   r12\
I = --- (         )
    t12  \r12   1/

Decomposition of the Transfer Matrix

            1        /n1 cos(th1)    1\   /1                       1\
I_s = ------------- (                  ) (                           )
      2 n1 cos(th1)  \n1 cos(th1)   -1/   \n2 cos(th2)  -n2 cos(th2)/
      -------------- A_1s --------------   ----------- B_2s -----------

for the S polarisation. And

            1         /n1      cos(th1)\   /cos(th2)         cos(th2)\
I_p  = ------------- (                  ) (                           )
       2 n1 cos(th1)  \n1     -cos(th1)/   \n2                    -n2/
       -------------- A_1p --------------   ----------- B_2s -----------

for P polarisation

Propagation Transfer Matrix

Propagation in medium with complex refractive index. Where n sin(th) is real.

     / 1/psi     0 \
J = (               )      with psi = exp(i 2pi n d / lambda_0 cos(th))
     \ 0       psi /

where d is the layer thickness and lambda_0 is the wavelength.

Multilayer Transfer Matrix

For a two layer :

M =   I_01   J_1   I_12    J_2   I_23
    A_0 (B_1 J_1 A_1) (B_2 J_2 A_2) B_3  = A_0 C_1 C_2 B_3
        ---- C_1 ---- ---- C_2 ----

       /c    -i s / cos(th) / n \
C_s = (                          )
       \-i s n cos(th)        c /

       /c      -i s cos(th) / n \
C_p = (                          )
       \-i s n / cos(th)      c /

with c = cos(2pi n d / lambda_0 cos(th))
     s = sin(2pi n d / lambda_0 cos(th))
You can’t perform that action at this time.