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Problem formulation

The given problem is to find a flow

~x∗ = {x∗ij : (i, j) ∈ A}

that, among flows ~x ∈ C satisfying constraints, minimizes∑
(i,j)∈A

aijxij . (1)

The arc set A often contains a subset B of bookkeeping arcs that do not
themselves indicate the presence or absence of a match. In the standard
representation of full matching problems, aij = 0 for all (i, j) ∈ B, making
(1) the same as

∑
(i,j)∈A\B aijxij .

Our method of solving this problem begins by up-shifting and discretiz-
ing arc costs:

given dij :=

{
εd0.5 + aij/εe, (i, j) ∈ A \ B
0, (i, j) ∈ B

minimize
∑

(i,j)∈A

dijxij over ~x ∈ C (2)

for some ε > 0. The up-shift ensures all costs are positive, while the dis-
cretization satisfies a requirement of the solver. Given that ~x∗ minimizes
(2), what can we say about∑

(i,j)∈A\B

aijx
∗
ij −min

~x∈C

∑
(i,j)∈A\B

aijxij , (3)

the regret? Here are two general strategies.
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Minorization

Let f be an real-valued function to be minimized over S. Let g be another
function on the same domain. Say g minorizes f if g ≤ f . By minimizing g
we don’t necessarily minimize f , but we obtain a lower bound for the infi-
mum of f . Specifically, if x∗ = arg minx∈S g(x), then f(x∗)−minx∈S f(x) ≤
f(x∗)− g(x∗).

I claim that ∑
(i,j)∈A\B

(dij − 1.5ε)xij minorizes
∑

(i,j)∈A\B

dijxij ,

because dij−1.5ε ≤ aij . (It can be checked that x 7→ x−1.5ε is the smallest
downward shift enabling minorization.)

Does minimization of (2) entail minimization of
∑

(i,j)∈A\B(dij−1.5ε)xij?
A sufficient condition for this is that the minimizer ~x∗ of (2) maximizes
~x 7→

∑
(i,j)∈A\B xij over C. In these cases we can find ~x∗ minimizing (2),

infer that ~x∗ also minimizes
∑

(i,j)∈A\B(dij − 1.5ε)xij , then compare the
values of (1) and this minimizing function at ~x∗ for a regret bound.

Problems (A,B, C) representing pair matching and matching with k con-
trols enjoy the property that solutions of (2) maximize ~x 7→

∑
(i,j)∈A\B xij

over C, in virtue of that function begin constant over ~x ∈ C. These prob-
lems having a separate invocation (pairmatch()) in optmatch, it would be
sensible for optmatch regret calculators, and summary.optmatch(), to treat
them a bit separately also.

But first we should consider prospects for saying something about full-
matching problems also. These certainly permit that ~x 7→

∑
(i,j)∈A\B xij ,

which we might term the number of active arcs, not be at its maximum over
C as

∑
(i,j)∈A dijxij is minimized over C; solutions keeping the number of ac-

tive arcs well below its maximum are generally preferred. For example, the
“stability increments” discussed in Hansen and Klopfer (2006) add to the
optimization objective a penalty proportional to the number of active arcs.
In ordinary full matching problems, more active arcs means more sharing of
controls; see Figure 1. If we can conceptualize minimization of the sharing
of controls as a secondary matching objective, then our minorization bound
becomes interpretable as a bound on regret relative to a Pareto optimum of
the original problem. (Pareto regret?)

This “Pareto regret” story applies to ordinary full matching problems,
i.e. problems that:

1. may or may not set omit.fraction to a nonzero value, but if they do
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∑
(i,j)∈A\B

xij = 7; neff = 3.1
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∑
(i,j)∈A\B

xij = 5; neff = 4.3

Figure 1: Two candidate solutions to a hypothetical unrestricted full match-
ing problem. If the candidate at left achieves a smaller sum of matched
distances, it does so at the cost of greater reuse of controls, leading to its
effective sample size, neff =

∑
s[(n

−1
st + n−1

sc )/2]−1, being smaller.

then they set it to a positive value, indicating that it’s a fraction of
the eligible control reservoir that’s to be left out;

2. may or may not impose max.controls limits on treatment:control
ratios by matched set, but if they do those limits do not require sharing
of controls (max.controls ≤ 1/2).

A (sub)-problem not meeting both of Conditions 1 and 2 is termed “flipped,”
and is handled by flipping the roles of the treatment and control groups be-
fore transforming the matching problem into its min-cost flow representation
(A,B, C). Consequently, in flipped subproblems larger numbers of active arcs
correspond to larger numbers of control subjects sharing the same matched
treatment-group counterpart.

This complicates our “Pareto regret” story at least somewhat. The sec-
ondary objective needs to become something along the lines of:

Minimize sharing of controls by multiple members of the treat-
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ment group — unless treatments are so plentiful relative to con-
trols that some are being discarded, in which case it’s the sharing
of treatment group members by multiple members of the control
group that’s to be minimized.

(If the problem was flipped because it fails Condition 2, then its forbids one-
many [one treatment/multiple controls] matched sets, and the secondary ob-
jective is automatically met. So the one edge case we’re left worrying about
is failure of Condition 1, i.e. negative omit.fractions.) Without flipping,
one aims for one-many matched sets only, or failing that to keep many-one
matched sets to a minimum; with flipping it’s the reverse.

Can this secondary objective be posed in terms of effective sample size?
Something along those lines making it simpler to state?

Duality

(Duality-based regret bounds flow from standard sources. Still, remains to
tell the story.)
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