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1 Handling absorbing states in G-PCCA
The G-PCCA algorithm consists of two stages:

1. computing the generalized Schur vectors

2. transforming the generalized Schur vectors (simplex algorithms)

For step (2), degeneracy of the eigenvalue λ0 = 1 can be problematic. The stan-
dard algorithm assumes that the eigenspace of the eigenvalues is spanned by the
constant vector 1 = (1, . . . , 1)> and possibly other vectors, depending on the
multiplicity of the eigenvalue 1. In the degenerate case which occurs for transi-
tion matrices with absorbing states, there is not guarantee that eigensolvers or
related methods will return 1 = (1, . . . , 1)> as an eigenvector. Other bases for
the eigenspace are possible and will be selected by the numerical routines. This
is at odds with the requirement of the second stage of the (G-)PCCA algorithm.
Here I propose to reformulate the first stage of the (G-)PCCA algorithm such
that the eigenvector 1 is treated explicitly and appears as a basis vector for the
eigenspace.
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1.1 Removing the mean in the computation of the spectral
components

Let Cτ be the count matrix and let C0 = diag(Cτ1) be the matrix with the
number of state exits on its diagonal. Formally Cτ and C0 are covariance
matrices, that can be computed form the sequence of microstates as explained in
the following. Let D ∈ R(N+`)×n be the one-hot encoded microstate trajectory,
where N + ` is the total number of time steps, ` is the lag-time expressed in
units of time steps, and n is the number of different microstates. Let X ∈ RN×n
be the N first rows (time steps) of D and let Y ∈ RN×n be the N last rows of
D. Using these definitions, the count matrices can be computed as follows:

C0 = X>X (1)

Cτ = X>Y (2)

We will now perform an affine coordinate transform, where the empirical
mean x = 1

NCτ1 will be removed from X and the empirical mean y = 1
NC>τ 1

removed from Y. The transformed trajectories are

X̄ = X− 1x> (3)

Ȳ = Y − 1y> (4)

The covariance matrices computed form the mean-free data are

C̄0 = (X− 1x>)>(X− 1x>) = C0 −X>1x> − x1>X + x1>1x> (5)

= C0 −Nxx> −Nxx> +Nxx> (6)

= C0 −Nxx> = diag(x)−Nxx> (7)

and

C̄τ = (X− 1x>)>(Y − 1y>) = Cτ −X>1y> − x1>Y + x1>1y> (8)

= Cτ −Nxy> −Nxy> +Nxy> (9)

= Cτ −Nxy> (10)

One sees that the generalized eigenproblem,

C0v = λCτv (11)

is unchanged by this transformation except for the eigenpair λ0 = 0, v(0) = 1.
To see this, compute

C̄01 = diag(Nx)1−Nxx>1 = Nx−Nx = 0 (12)
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C̄τ1 = Cτ1−Nxy>1 = Nx−Nx = 0 (13)

from which follows

C̄01 = 0C̄τ1 (14)

that is 0 is the new eigenvalue to the eigenvector 1. By truncating the spectrum,
i.e. by removing the spectral components with small magnitude of the eigen-
value, the eigenvector 1 will be removed too. Since presence of 1 is essential for
the PCCA algorithm, it will be to be added again explicitly.

Note 1: The generalized eigenvalue problem remains unchanged if C0 and Cτ

are scaled by the same factor. Therefore one can effectively always set N = 1.

Note 2: ∑
i

xi =
∑
i,j

Ci,j = N

Note 3: Our notation can be mapped to the one of Weber /Reuter via

Cτ = NDηP

η =
1

N
Cτ1 = x

y =
1

N
C>τ 1 = (η>P)>

1.2 Solving the generalized Schur decomposition (with mean
removed)

Let the transition matrix in mean-free and whitened basis be

P̃ = C̄
− 1

2
0 C̄τ C̄

− 1
2

0 (15)

Since C̄0 is no longer diagonal here, we will use principal component analysis
to compute the square root of the pseudo-inverse C̄

− 1
2

0 .

C̄
− 1

2
0 = QΛ−

1
2 Q> (16)

where Q and Λ are the eigenvectors and eigenvalues of C̄0 i.e. C̄0 = QΛQ>.
[Alternative would be Cholesky decomposition?] Spectral components with very
small eigenvalues Λii are discarded (like when computing the pseudo-inverse).
The shifted singular vector 1 (with eigenvalue 0) is removed too.

Inserting yields

P̃ = QΛ−
1
2 Q>C̄τQΛ−

1
2︸ ︷︷ ︸

=:W

Q> (17)
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Now, perform the Schur decomposition of the inner part W = UTU>. We find
for P̃

P̃ = QU︸︷︷︸
Ṽ

T̄U>Q>︸ ︷︷ ︸
Ṽ>

(18)

which is still a Schur decomposition of P̃ since QU is orthonormal (by the group
property of orthonormal matrices).

In the last step, we will go back to the untilded basis. Call Ṽ = QU.
The matrix of generalized Schur vectors V̄ (coefficients) in the untilded (but
mean-free) basis can then be computed as (see equation XX in [Weber])

V̄ = C̄
− 1

2
0 Ṽ = QΛ−

1
2 Q>QU = QΛ−

1
2 U (19)

For the later PCCA stages, we need one Representative per Markov state in
the original basis. The latter PCCA stage does not require any time ordering
of the states. Algorithmically, we can therefore prepare an artificial trajectory
Xsweep
ij = δij that visits all the microstates and map this trajectory to the space

of generalized Schur vectors

V:,2:n = X̄sweepV̄ = (Xsweep − 1x>)V̄ = V̄ − 1x>V̄ (20)

where x is the mean of the original data that was used to estimate V̄ (and not
the mean of Xsweep). Since the constant Schur vector was removed together with
the mean, we need to add it back explicitly. We set V:,1 = (1, . . . , 1)>/

√
N .

Together we have

V = (1/
√
N | V̄ − 1x>V̄) (21)

It can be shown that the columns of V fulfill the definition of generalized
Schur vectors for the original count matrices that include the contributions from
the mean, namely

V>C0V = Idn×n (22)

and
V>CτV = T (23)

where the matrix T̄ must be extended as follows (see below for proof) and which
is still triangular.

T =

(
1
√
N(y> − x>)V̄

0 T̄

)
(24)

Note 4: Since V̄ ∝ 1√
N
, all scalings with

√
N are consistent.
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2 Proofs

2.1 Proof of V>C0V = Id:
• Non-constant Schur vectors

(V̄ − 1x>V̄)>C0(V̄ − 1x>V̄) =

V̄>C0V̄ − V̄>C01x>V̄ − V̄>x1>C0V̄ + V̄>x1>C01x>V̄ =

V̄>C0V̄ −NV̄>xx>V̄ −NV̄>xx>V̄ +NV̄>xx>V̄ =

V̄>C0V̄ −NV̄>xx>V̄ =

V̄>(C0 −Nxx>)V̄ =

V̄>C̄0V̄
2.3
= Id

• Constant Schur vector

(V̄ − 1x>V̄)>C01 = N(V̄ − 1x>V̄)>x = NV̄>x−NV̄>x1>x = 0

where I have used
∑
i xi = 1.

• Finally
1√
N

1>C0
1√
N

1 =
N

N
= 1

2.2 Proof of V>CτV = T:
• Non-constant Schur vectors

(V̄ − 1x>V̄)>Cτ (V̄ − 1x>V̄) =

V̄>Cτ V̄ − V̄>Cτ1x>V̄ − V̄>x1>Cτ V̄ + V̄>x1>Cτ1x>V̄ =

V̄>Cτ V̄ −NV̄>xx>V̄ −NV̄>xy>V̄ +NV̄>xx>V̄ =

V̄>Cτ V̄ −NV̄>xy>V̄ =

V̄>(Cτ −Nxy>)V̄ =

V̄>C̄τ V̄
2.4
= T

• Constant Schur vectors (compute the missing entries of T):

T2:n,1 = (V̄ − 1x>V̄)>Cτ1 = N(V̄ − 1x>V̄)>x = 0

(see above)

T1,2:n =
1√
N

1>Cτ (V̄ − 1x>V̄)

=
√
Ny(V̄ − 1x>V̄)

=
√
Ny>V̄ −Ny>1x>V̄

=
√
Ny>V̄ −Nx>V̄

=
√
N(y> − x>)V̄
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T1,1 =
1√
N

1>Cτ
1√
N

1 =
N

N
= 1

2.3 Verification of V̄>C̄0V̄ = Id:

V̄>C̄0V̄ = U>Λ−
1
2 Q>C̄0QΛ−

1
2 U

= U>Λ−
1
2 Q>QΛQ>QΛ−

1
2 U = Id

2.4 Verification of V̄>C̄τV̄ = T̄:
First step:

C̄τ V̄ = C̄0V̄T̄⇔

C̄τQΛ−
1
2 U = C̄0QΛ−

1
2 UT̄⇔

C̄τ = QΛQ>QΛ−
1
2 UT̄U>Λ

1
2 Q> ⇔

C̄τ = QΛQ>QΛ−
1
2 Λ−

1
2 Q>C̄τQΛ−

1
2 Λ

1
2 Q> = C̄τ

Second step:

C̄τ V̄ = C̄0V̄T̄⇔

V̄>C̄τ V̄ = V̄>C̄0V̄T̄
2.3
= T̄

3 Kinetic map
The Schur vectors, multiplied by the triangular matrix induce a kinetic map
γ(i) := Vi,:T. To shows this, we write the transition matrix as

P = VTV−1 = VTV>C0

since
V−1 = (C

− 1
2

0 Ṽ)−1 = Ṽ>C
1
2
0 = V>C0

When written out in components, this becomes

pij =
∑
l,h

vilTlhvhjcj

The squared kinetic distance between Markov states i and j is defined as (see
for instance [ Noé and Clementi, JCTC,11 5002 (2015)])

D2(i, j) :=
∑
k

(pik − pjk)2

ck
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Inserting the Schur decomposition yields

D2(i, j) =
∑
k

∑
l,h

vilTlhvhkck −
∑
l,h

vjlTlhvhkck

2

c−1k

=
∑
k

∑
l,h

(vil − vjl)Tlhvhk
√
ck

2

With the definition δ(i,j)l := vil−vjl, we can write (suppressing the fixed indices
i and j)

D2 =
∑
k

∑
l,h

δlTlhvhk
√
ck

2

=
∑
k

∑
l,h,l′,h′

δlTlhvhk
√
ckδl′Tl′h′vh′k

√
ck

=
∑

l,h,l′,h′

δlTlhδl′Tl′h′

∑
k

vh′kckvhk︸ ︷︷ ︸
δh′h (Kronecker)

=
∑
h

(∑
l

δlTlh ·
∑
l′

δl′Tl′h

)
= δ>TT>δ =

∥∥T>δ∥∥2 ≥ 0

Note that this object is symmetric, since exchanging i, j is equivalent to δ → −δ,
which leaves D2(i, j) unchanged. Importantly, this also holds if T only contains
the dominant Schur block.

D2(i, j) =
∥∥∥δ>T

∥∥∥2 = ‖(Vi,: −Vj,:)T‖2

The Schur decomposition therefore induces a kinetic map {γ(i)}i with

γ(i) := Vi,:T

such that
D2(i, j) = ‖γ(i)− γ(j)‖2

3.1 Ambiguity of the kinetic map
[TODO] The kinetic map can be transformed with an additional orthogonal
transform O
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γ′(i) = Vi,:TO = Vi,:T
′

such that D2
ij is conserved for all i, j. For instance O could be a permutation

matrix that reorders the columns of T (permutation cannon change T form
upper triangular to lower triangular, can a general orthonormal transform do
this?). From the QR-decomposition, we know that any matrix A can be de-
composed as the product of a orthogonal matrix and triangular matrix. That
is TO = T′. From this follows that for the definition of the kinetic map, the
matrix T can be a general matrix and does not have to be triangular.

3.2 Choice of upper or lower triangular form
[TODO] T can be chosen to be upper or lower triangular. The type of the Schur
determined the interpretation of the kinetic map. For the upper triangular form:
increasingly more components V:,j are used to build γj(i) as j is increased.
Lower form: increasingly less components V:,j are used to build γj(i) as j is
increased. The first choice is more interpretable: the first Schur vector is the
best 1-D approximation to the distance. A superposition of the first two Schur
vectors is the best 2-D approximation etc. [TODO: check upper/lower]
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