spawner to emigrant transition models

mark sorel

9/17/2020

Possible models (From Barrowman et al. 2003 Eco. Apps.)

Beverton-Holt

$$
R_{s,l,t} = \frac{\alpha_{s,l} S_{s,l,t}}{1/\alpha_{s,l} + S_{s,l,t}/(R_{\text{max},s,l})} e^{\varepsilon_{s,l,t}}
$$

Intrinsic productivity $\alpha_{l,s}$ for life history *l* in stream *s* Asymptotic median recruitment *R*max*,l,s* Annual errors *εs,l,t*

- Depensatory Beverton-Holt I
	- **–** I think depensation could fit depensation as well as density dependant migration (i.e., fewer early emigrants at low spawner density), which is evident in the data.

$$
R_{s,l,t} = \frac{\alpha_{s,l} S_{s,l,t}^{\gamma_{s,l}}}{1/\alpha_{s,l} + S_{s,l,t}^{\gamma_{s,l}}/(R_{\text{max},s,l})} e^{\varepsilon_{s,l,t}}
$$

extent of depensation *γs,l*

Smooth hockey stick

$$
R_{s,l,t} = \alpha_{s,l} \theta_{s,l} \mu_{s,l} \left(1 + e^{-1/\theta_{s,l}} \right) \times \left\{ \frac{S_{s,l,t}}{\theta_{s,l} \mu_{s,l}} - \log \left[\frac{1 + e^{(S_{s,l,t} - \mu_{s,l})(\theta_{s,l} \mu_{s,l})}}{1 + e^{-1/\theta_{s,l}}} \right] \right\} \quad \times e^{\varepsilon_{s,l,t}}
$$

 $\mu_{s,l}$ is inflection point of spawner abundance *θs,l* is a smoothness paramater chosen *a priori*

Alternative depensation

Any model can be multiplied by $\frac{S_{s,l,t}}{S_{s,l,t}+d_{s,l}}$. $d_{s,l}$ controls depensation extent. Interpretable as number of spawners that reduce expected recruits by 50%. Original model obtained when $d = 0$.

Model parameters

Switching from subscript to square bracket notation here.

- Intrinsic productivity $\alpha[s, l]$ in stream *s* for life history *l*
- Asymptotic median recruitment *R*max[*s, l*] (Beverton-Holt) or inflection point (Smooth hockey stick) $\mu[s,l]$
- Depensation $\gamma[s, l]$ or $d[s, l]$
- Annual errors $\varepsilon[s, l, t]$ in year t

Possible modeling of intrinsic productivities *α*[*l, s*], but asymptotic median recruitment *R*max[*l, s*], inflection points $\mu_1 s, l$, and depensation paramaters $\gamma[l, s]$ or $d[l, s]$ would be modeled in the same way. Annual errors will be modeled differently because of the extra time dimension. See below.

$$
log(\alpha[l, s]) = \beta_{\alpha} + \delta_{\alpha}[l] + \epsilon_{\alpha}[s] + \zeta_{\alpha}[l, s]
$$

$$
\delta_{\alpha}[l] \sim N(0, \sigma_{\delta_{\alpha}})
$$

$$
\epsilon_{\alpha}[s] \sim N(0, \sigma_{\epsilon_{\alpha}})
$$

$$
\zeta_{\alpha}[l, s] \sim N(0, \sigma_{\zeta_{\alpha}})
$$

Note: Buhle et al. 2018 modeled covariance among paramaters (i.e., between α , and R_{max}), wheras Barrowman et al. 2003 found that modeling covariance between paramaters had little effect and so modeled them as independant.

Modeling lognormal annual errors $\varepsilon[l, s, y]$.

$$
\varepsilon[l, s, y] = \beta_{\varepsilon} + \delta_{\varepsilon}[t] + \epsilon_{\varepsilon}[l, t] + \zeta_{\varepsilon}[s, t] + \eta_{\varepsilon}[l, s, t]
$$

$$
\delta_{\varepsilon}[t] \sim N(0, \sigma_{\delta_{\varepsilon}})
$$

$$
\epsilon_{\varepsilon}[s, t] \sim N(0, \sigma_{\varepsilon_{\varepsilon}})
$$

$$
\zeta_{\varepsilon}[l, t] \sim N(0, \sigma_{\zeta_{\varepsilon}})
$$

$$
\eta_{\varepsilon}[l, s, t] \sim N(0, \sigma_{\eta_{\varepsilon}})
$$

Alternatively, some or all of these could be AR1 if the errors are correlated. I think what Mark was suggesting was an AR1 for $\delta_{\varepsilon}[t]$ and independant errors like I have written for $\eta_{\varepsilon}[l, s, t]$.