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ABSTRACT

Even in the absence of any explicit semantic annotation, vast col-
lections of audio recordings provide valuable information for learn-
ing the categorical structure of sounds. We consider several class-
agnostic semantic constraints that apply to unlabeled nonspeech au-
dio: (i) noise and translations in time do not change the underlying
sound category, (ii) a mixture of two sound events inherits the cate-
gories of the constituents, and (iii) the categories of events in close
temporal proximity are likely to be the same or related. Without
labels to ground them, these constraints are incompatible with clas-
sification loss functions. However, they may still be leveraged to
identify geometric inequalities needed for triplet loss-based training
of convolutional neural networks. The result is low-dimensional em-
beddings of the input spectrograms that recover 41% and 84% of the
performance of their fully-supervised counterparts when applied to
downstream query-by-example sound retrieval and sound event clas-
sification tasks, respectively. Moreover, in limited-supervision set-
tings, our unsupervised embeddings double the state-of-the-art clas-
sification performance.

Index Terms— Unsupervised learning, triplet loss, sound clas-
sification.

1. INTRODUCTION

The last few years have seen great advances in nonspeech audio
processing, as popular deep learning architectures developed in the
speech and image processing communities have been ported to this
relatively understudied domain [1, 2, 3, 4]. However, these data-
hungry neural networks are not always matched to the available
training data in the audio domain. While unlabeled audio is easy
to collect, manually labeling data for each new sound application
remains notoriously costly and time consuming. We seek to allevi-
ate this incongruity by developing alternative learning strategies that
exploit basic semantic properties of sound that are not grounded to
an explicit labeling.

Recent efforts in the computer vision community have identified
several class-independent constraints on natural images and videos
that can be used to learn semantic representations [5]. For exam-
ple, object categories are invariant to camera angle, and tracking un-
known objects in videos can provide novel examples for the same
unknown category [6]. For audio, we can identify several analo-
gous constraints, which are not tied to any particular inventory of
sound categories. First, we can apply category-preserving transfor-
mations to individual events of unknown type, such as introducing
noise, translation in time within the analysis window, and small per-
turbations in frequency. Second, pairs of unknown sounds can be
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mixed to provide new, often natural sounding examples of both. Fi-
nally, sounds from within the same vicinity in a recording likely con-
tain multiple examples of the same (or related) unknown categories.

If provided a set of labeled sound events of the form X is an
example of category C, applying the above semantic constraints is
interpretable as regular labeled data augmentation. However, when
each example has unknown categorical assignment, standard classi-
fication loss functions can not be applied. We instead resort to deep
metric learning using triplet loss [7, 8, 9], which finds a nonlinear
mapping into a low dimensional space where simple Euclidean dis-
tance can express any desired relationship between examples of the
form X is more like Y than like Z. Critically, while labeled exam-
ples can be converted to triplets to explicitly learn a semantic em-
bedding (i.e., X has same class as Y , but different than Z), a triplet
relationship need not be anchored to an explicit categorical assign-
ment. This makes it a natural fit for our set of semantic constraints;
indeed, a noisy version of a sound event is more semantically similar
to the clean recording than another arbitrary sound. Moreover, since
we can generate as many triplets from as much unlabeled data as we
wish, we can support arbitrarily complex neural architectures.

To validate these ideas, we train embeddings using state-of-the-
art convolutional architectures on millions of triplets sampled from
the AudioSet dataset [10], both with and without using the label
information. We evaluate the learned embeddings as features for
query-by-example sound retrieval and supervised sound event clas-
sification. Our results demonstrate that highly complex models can
be trained from unlabeled triplets alone to produce representations
that recover up to 84% of the performance gap between using the
raw log mel spectrogram inputs and using fully-supervised embed-
dings trained on millions of labeled examples.

2. RELATED WORK

There have been multiple past efforts to perform unsupervised deep
representation learning on non-speech audio. Lee et al. [11] applied
convolutional deep belief networks to extract a representation for
speech and music, but not general purpose nonspeech audio. More
recently, a denoising autoencoder variant was used to extract features
for environmental sound classification [12]. While both approaches
produced useful representations for their respective tasks, neither ex-
plicitly introduced training mechanisms to elicit semantic structure
in their learned embeddings. Classical distance metric learning has
also been applied to music in the past [13].

Recent zero-resource efforts in the speech processing com-
munity have explicitly aimed to learn meaningful linguistic units
from untranscribed speech [14]. With this goal, several weak su-
pervision mechanisms have been proposed that are analogous to
what we attempt to achieve for nonspeech audio. For speech, the
relevant constraints are derived from the inherent linguistic hier-
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archy: repeated unknown words have the same unknown phonetic
structure [15], conversations with same unknown topic have shared
unknown words [16], etc. Various forms of deep metric learn-
ing [17, 18, 19, 20] have been successfully applied using these
speech-specific constraints.

Finally, so-called self-supervised approaches in the computer
vision community are analogous to what we propose in this pa-
per for audio. There, constraints based on egomotion [21], spa-
tial/compositional context [22, 23], object tracking [6], and coloriza-
tion [5] have all been evaluated. Recent efforts have extended this
principle of self-supervision to joint audio-visual models that learn
speech or audio embeddings using semantic constraints imposed by
the companion visual signal [24, 25, 26, 27].

3. LEARNING ALGORITHM

Our training procedure consists of two stages: (i) sampling train-
ing triplets from a collection of unlabeled audio recordings, and (ii)
learning a map from input context windows extracted from spec-
trograms (matrices with F frequency channels and T frames) to a
lower d-dimensional vector space using triplet loss optimization of
convolutional neural networks. We summarize the triplet loss met-
ric learning framework, and then formally define each of our triplet
sampling strategies.

3.1. Metric Learning with Triplet Loss

The goal of triplet loss-based metric learning is to estimate a map
g : RF×T → Rd such that simple (e.g.) Euclidean distance in
the target space correspond to highly complex geometric relation-
ships in the input space. Training data is provided as a set T =

{ti}Ni=1 of example triplets of the form ti = (x
(i)
a , x

(i)
p , x

(i)
n ), where

x
(i)
a , x

(i)
p , x

(i)
n ∈RF×T are commonly referred to as the anchor, pos-

itive, and negative, respectively. The loss is given by

L(T ) =

N∑
i=1

[
‖g(x(i)a )−g(x(i)p )‖22 − ‖g(x(i)a )−g(x(i)n )‖22 + δ

]
+
,

(1)
where ‖·‖2 is L2 norm, [·]+ is standard hinge loss, and δ is a non-
negative margin hyperparameter. Intuitively, the optimization is at-
tempting to learn an embedding of the input data such that positive
examples end up closer to their anchors than the corresponding neg-
atives do, by some margin. Notice that the loss is identically zero
when all training triplets satisfy the inequality (dropping index)

‖g(xa)− g(xp)‖22 + δ ≤ ‖g(xa)− g(xn)‖22. (2)

Thus we may also view the triplets as a collection of hard constraints
on the inputs. This is an extremely flexible construct: any pairwise
relationship between input examples that permits a relative ranking
(i.e., (xa, xp) are more similar than (xa, xn)) complies. The learned
distance then becomes a proxy for that pairwise relationship.

The map g can be defined by a fully-connected, d-unit output
layer of any modern deep learning architecture. The optimization
is performed with stochastic gradient descent, though training time
is greatly decreased with the use of within-batch semi-hard negative
mining [28]. Here, all examples in the batch are transformed under
the current state of g, and the available negatives are reassigned to
the anchor-positive pairs to make more difficult triplets. Specifically,
we choose the closest negative to the anchor that is still further away
than the positive (the absolute closest is vulnerable to label noise).

3.2. Triplet Sampling Methods

3.2.1. Explicitly Labeled Data

In standard supervised learning, we are provided a set of labeled
examples of the form Z = {(xi, yi)}, where each xi ∈ RF×T

and yi ∈ C for some set C of semantic categories. Triplet loss-
based metric learning was originally formulated for this setting, and
converting Z to a set of triplets is straightforward. For each c ∈ C,
we randomly sample anchor-positive pairs (xa, xp) fromZ such that
ya = yp = c. Then, for each sampled pair, we attach as the triplet’s
negative an example (xn, yn) ∈ Z such that yn 6= c. This procedure
sets the supervised performance topline in our experiments.

3.2.2. Gaussian Noise

Since the introduction of the denoising autoencoders, learning repre-
sentations that are invariant to small perturbations in the original data
space has been a standard tool for unsupervised learning. However,
when more complex convolutional architectures with pooling are de-
sired, inverting the encoder function is complicated [29]. However,
since we are not interested in actually reconstructing the inputs, we
can use triplet loss to effect similar representational properties us-
ing an arbitrary deep learning architecture. For each xi ∈ RF×T

in the provided set of unlabeled examples X , we simply sample one
or more anchor-positive pairs of the form (xi, xp), where element
xp,tf = xi,tf (1+|εtf |) for εtf ∼ N (0, σ2), a Gaussian distribution
with mean 0 and standard deviation σ (a model hyperparameter). For
each sampled anchor-positive pair, we simply choose another exam-
ple in X as the negative to complete the triplet.

3.2.3. Time and Frequency Translation

When processing long context windows of spectrogram, we are pro-
vided snapshots of the contained sound events with arbitrary tem-
poral offsets and clipping. A transient sound event with unknown
category that starts at the left edge of the window maintains its se-
mantic assignment if it begins somewhere in the center. However, in
the input space, this simple translation in time can produce dramatic
transformations of the training data. Similarly, small translations in
frequency may leave the semantics unchanged while greatly perturb-
ing the input space. To exploit this we generate training triplets as
follows. For each xi ∈ RF×T in the provided set of unlabeled ex-
amples X , we sample one or more anchor-positive pairs of the form
(xi, xp) where xp = TruncS(CircT (xi)). Here, CircT is a circu-
lar shift in time by an integer number of frames sampled uniformly
from [0, T − 1], where T is the number of frames in the example.
TruncS is a truncated shift in frequency by an integer number of
bins sampled uniformly from [−S, S] (missing values after shift are
set to zero energy). We again choose another example in X as the
negative to complete the triplet.

3.2.4. Example Mixing

Sound is often referred to as transparent, since we can superim-
pose sound recordings and still hear the constituents to some de-
gree. We can use this intuition to construct triplets by mixing sounds
together. One approach to this is forming a positive by mixing a
random example with the anchor. However, if we subsequently at-
tach a random negative, we can not guarantee we want to satisfy the
inequality of Eq. 2. For example, if the anchor is a dog bark, and
we mix it with a siren, we cannot assume a dog growl as the neg-
ative should be mapped further from the anchor than the mixture.
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To solve this, we can mix random anchor and negative examples to
form the positives. Given a random anchor xa and negative xn con-
taining energies in each time-frequency cell, we construct positive
xp = xa + α[E(xa)/E(xn)]xn, where E(x) is the total energy
of example x, and α is a hyperparameter. Note that this is the only
triplet type considered not strictly compatible with semi-hard nega-
tive mining, since negatives are not randomly sampled.

3.2.5. Temporal Proximity

Audio recordings from real world environments do not consist of
events drawn completely at random from the space of all possible
sounds. Instead, a given environment has limited subset of sound
creating objects that are often closely, or even causally, related. As
such, two events in the same recording more likely to be of the same,
or at least related, event categories than any two random events in a
large audio collection. We can use this intuition to sample triplets of
the form (xa, xp, xn) where xa and xp are from the same recording,
xn is from a different recording. We can further impose the con-
straint that |time(xa)−time(xp)| < ∆t, where time(x) is the start
time of example x, and ∆t is a hyperparameter. Note that if overlap-
ping context windows and sufficiently small values of ∆t are used,
this method is functionally similar to the time translation approach.

3.2.6. Joint Training

In supervised learning settings, it is not always trivial to combine
multiple data sources from separate domains with distinct label in-
ventories. For cases where simply using a classification layer that is
the union of the categories is not possible (e.g. mutual exclusivity is
not implied across the two class sets), we must resort to multi-task
training objectives. For triplet loss, this is not a problem. All triplet
sets produced using the sampling methods outlined in this section
can be simply mixed together for training a joint embedding that re-
flects them all to whatever degree possible. In general, if we have
preconceived notions of each constraint’s importance, we can either
introduce a source-dependent weight to each triplet’s contribution to
the loss function in Eq. 1 or, alternatively, use varying triplet sample
sizes for each source.

4. EXPERIMENTS

We evaluate embeddings that result from the triplet sampling meth-
ods of Section 3.2 in two downstream tasks: (i) query-by-example
semantic retrieval of sound segments, and (ii) training shallow fully-
connected sound event classifiers. The query-by-example task does
not involve any subsequent supervised training and thus directly
measures the intrinsic semantic consistency of the learned represen-
tation. The shallow model measures how easily a relatively simple,
non-convolutional classifier network can predict the sound event
categories given the labeled data. Finally, we also perform a lightly-
supervised classification experiment, where we repeat the shallow
model evaluation with only a small fraction of the labeled data. This
allows us to measure the utility of unlabeled data in reducing an-
notation requirements for any sound event classification application
where unlabeled data is plentiful.

4.1. Dataset and Features

We use Google’s recently released AudioSet database of manually
annotated sound events [10] for both training and evaluation. Au-
dioSet consists of over 2 million 10-second audio segments from

Table 1. Segment retrieval mean average precision (mAP) as func-
tion of: (left) Gaussian width σ for Gaussian noise triplets; (middle)
frequency shift range S for translation triplets; (right) and mixing
weight α for mixed example triplets. Best results in bold.

σ mAP
0.1 0.453

0.25 0.466
0.5 0.478
1.0 0.478

S mAP
0 0.461
2 0.492
5 0.493
10 0.508

α mAP
0.1 0.483

0.25 0.489
0.5 0.487
1.0 0.476

YouTube videos, each labeled using a comprehensive ontology of
527 sound event categories (minimum 120 segments/class). We use
an internal version of the unbalanced training set (50%-larger than
the released set), which we split into train and development subsets.
We report all performance metrics on the released evaluation set. We
compute 64-channel mel-scale spectrograms using an FFT window
size of 25 ms with 10 ms step. Triplets are sampled in this energy
domain since the some of our triplet sampling mechanisms require
an energy interpretation, but a stabilized logarithm is applied before
input to our models. We then process these spectrograms into non-
overlapping 0.96 second context windows, such that each training
example is an F=64 by T=96 matrix. Each embedding model was
trained on order 10 million triplets (40 million for joint model).

4.2. Model Architecture

Given its impressive performance on previous large-scale sound
classification evaluations [2], we use the ResNet-50 convolutional
neural network architecture. Each input 64×96 context window is
first processed by a layer of 64 convolutional 7×7 filters, followed by
a 3×3 max pool with stride 2 in both dimensions. This is followed
by 4 standard ResNet blocks and a final average pool over time
and frequency to a 2048-dimensional representation. Instead of the
classification output layer used in [2], all of our triplet models use a
128-unit fully-connected linear output layer. This produces a vector
of dimension d =128, which represents a factor of 48 reduction
from the original input dimensionality of 64×96. We also employ
the standard practice of length normalizing the network output be-
fore input to the loss function (i.e., g = h/‖h‖2, where h is the
output embedding layer of the network). This normalization means
the squared Euclidean distance used in the loss is proportional to
using cosine distance, a common choice for learned representations.
All training is performed using Adam, with hyperparameters opti-
mized on the development set. We use semi-hard negative mining
and a learning rate of 10−4 for supervised, temporal proximity, and
combined unsupervised models; otherwise 10−6 is used with mining
disabled. The margin hyperparameter δ is set to 0.1 in all cases.

4.3. Query-by-Example Retrieval

Our first evaluation task is query-by-example (QbE) segment re-
trieval. Here, no additional training is performed, making it a di-
rect measurement of inherent semantic representational quality. We
begin by mapping each 0.96 second context window in the evalua-
tion set to its corresponding 128-dimensional embedding vector and
average these across each AudioSet segment to arrive at a segment-
level embedding. For each sound event category, from the AudioSet
evaluation set we sample 100 segments where it is present, and 100
segments where it is not. We then compute the cosine distance be-
tween all 4,950 within-class pairs as target trials, and all 10,000
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Table 2. Mean average precision for segment retrieval and shallow model classification using original log mel spectrogram and triplet
embeddings as features. All embedding models use the same ResNet-50 architecture with a 128-dimensional linear output layer.

Classification Classification
QbE Retrieval (1 layer, 512 units) (2 layer, 512 units)

Representation mAP recovery mAP recovery mAP recovery
Explicit Label Triplet (topline) 0.790 100% 0.288 100% 0.289 100%

Log Mel Spectrogram (baseline) 0.423 0% 0.065 0% 0.102 0%
Gaussian Noise (σ=0.5) 0.478 15% 0.096 14% 0.114 6%
T/F Translation (S=10) 0.508 23% 0.108 19% 0.125 12%

Mixed Example (α=0.25) 0.489 18% 0.103 17% 0.122 11%
Temporal Proximity (∆t=10s) 0.562 38% 0.226 72% 0.241 74%

Joint Unsupervised Triplet 0.575 41% 0.244 80% 0.259 84%

Table 3. Lightly-supervised classifier performance averaged over
three trials, each trained with a different random draw of 20 seg-
ments/class (totaling 0.5% of labeled data).

Representation Classifier Architecture mAP
Log Mel Spectrogram Fully Connected (4x512) 0.032
Log Mel Spectrogram ResNet-50 0.072

Joint Unsupervised Triplet Fully Connected (1x512) 0.143

(present,not-present) pairs as nontarget trials. We sort this set of
pairs by ascending distance and compute the average precision (AP)
of ranking target over nontarget trials (random chance gives 0.33).
We repeat this for each class and average the per-class AP score to
produce the reported mean average precision (mAP).

Table 1 shows the retrieval mAP for three of the triplet sam-
pling mechanisms as a function of their associated hyperparameters.
In each case, the optimal performing setting on the validation set
also was optimal for eval (listed for each hyperparameter in bold).
For the Gaussian noise and example mixing, we observed relatively
weak dependence on sampling hyperparameter values. However,
we found for the translation method that allowing larger shifts in
frequency produce substantial improvements over time translations
alone. While this may be surprising from a signal processing point of
view, two-dimensional translations help to force increased spectral
localization in the early layers’ filters of the convolutional network,
which is observed in fully-supervised models. Note that since all
AudioSet clips are limited to at most 10 seconds, we did not explore
additional limiting of proximity (i.e., ∆t is effectively clip duration).

Table 2 shows the retrieval performance for each of the evaluated
representations. The fully-supervised topline uses explicitly labeled
data to sample the triplets. As a baseline, we evaluate the retrieval
performance achieved using the raw log mel spectrogram features
(each 64×96 context window is treated as a 6144-dimensional vec-
tor before segment-level averaging). For each of the unsupervised
methods, we tuned on the development set and the reported perfor-
mance here is on the separate evaluation set. At the bottom, we also
list the performance of the joint embedding, trained on a mixture of
all four unsupervised triplet types (approximately equal number of
triplets from each). Alongside each mAP value, we also list the per-
centage of the baseline-to-topline performance gap recovered using
each given unsupervised triplet embedding. We find that each un-
supervised triplet method significant improves retrieval performance
over the input features, with the joint unsupervised model improv-
ing mAP by 15% absolute over the input spectrogram features, and
recovering more than 40% of the performance gap.

4.4. Sound Classification

While the retrieval task measures how the geometric structure of the
representation mirrors AudioSet classes, we are also interested how
our unsupervised methods aid an arbitrary downstream supervised
task over the same or similar data. To test this, we use our various
embeddings to train shallow, fully-connected networks using labeled
AudioSet segments. For each feature, we consider classifiers with 1
and 2 hidden layers of 512 units each. The output layer consists of
independent logistic regression models for the 527 classes. For each
class, we compute segment-level scores (average of the frame-level
predictions) for the evaluation set and compute average precision.
We again report the mean average precision over the classes.

Table 2 shows the classification performance for each of rep-
resentation types. We again find substantial improvement over the
input features in all cases, with temporal proximity the clear stand-
out. Combining triplet sets provides additional gains, indicating
the learned representation’s ability to encode multiple types of se-
mantic constraints for downstream tasks. Notice that our approach
performs fully-unsupervised training of a ResNet-50 triplet embed-
ding model that achieves 85% (0.244/0.288) the mAP of a fully-
supervised ResNet-50 triplet embedding model, when both are cou-
pled to a single hidden layer downstream classifier.

Finally, Table 3 shows performance of lightly-supervised classi-
fiers trained on just 20 examples per class. To account for the vari-
ability in sample selection, we generate 3 random training samples,
run the experiment separately on each, and report average perfor-
mance. Here we evaluate three models: (i) a ResNet-50 classifier
model, (ii) a fully-connected model trained from log mel spectro-
grams, and (iii) a fully-connected model trained on the joint unsu-
pervised triplet embedding (last line of Table 2). Since our unsuper-
vised triplet embeddings are derived from the full AudioSet train set
(as unlabeled data), a single layer classifier trained on top doubles
the mAP of a full ResNet-50 classifier trained from raw inputs.

5. CONCLUSIONS

We have presented a new approach to unsupervised audio represen-
tation learning that explicitly elicits semantic structure. By sampling
triplets using a variety of audio-specific semantic constraints that
do not require labeled data, we learn a representation that greatly
outperforms the raw inputs on both sound event retrieval and clas-
sification task. We found that the various semantic constraints are
complementary, producing improvements when combined to train a
joint triplet loss embedding model. Finally, we demonstrated that
our best unsupervised embedding provides great advantage when
training sound event classifiers in limited supervision scenarios.
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huber, “Stacked convolutional auto-encoders for hierarchical
feature extraction,” Artificial Neural Networks and Machine
Learning–ICANN 2011, pp. 52–59, 2011.

130


