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ABSTRACT 
Automatic bird species identification from audio field recordings is 
studied in this paper. We first used a Gaussian mixture model 
(GMM) based energy detector to select representative acoustic 
events. Two different feature sets consisting of spectral pattern and 
texture features were extracted for each event. Then, a ReliefF-
based feature selection algorithm was employed to select 
distinguishing features. Finally, classification was performed using 
support vector machine (SVM). The main focus of the proposed 
method lies in the fusion of a spectral pattern feature with several 
texture descriptors, which extends our previous work. Experiments 
used an audio dataset comprised of field recordings of 11 bird 
species, containing 2762 bird acoustic events and 339 detected 
“unknown” events (corresponding to noise or unknown species 
vocalizations). Experimental results demonstrate superior 
classification performance compared with that of the state-of-the-
art method, which renders the proposed method more suitable for 
real-field recording analysis. 
Index Terms—bird species identification, spectral pattern feature, 
texture descriptor, feature selection, support vector machine 

1. INTRODUCTION 
Recent developments of technology have already provided 
considerable support to biodiversity monitoring. Birds have been 
used widely as indicators of biodiversity because they are 
distributed over a wide range of natural habitat and are relatively 
easy to detect. There is also a significant amount of existing 
knowledge on the biology of most of the species by expert 
ornithologists through field observations, providing enormous 
support to relevant research. As a complement to traditional 
human-observer-based survey methods, acoustic analysis of bird 
vocalizations can be used for automated species identification, 
leading to a promising non-intrusive method for bioacoustic 
monitoring [1, 2].  

The first stage of acoustic bird species identification is usually 
to segment the continuous recordings into isolated acoustic events. 
Some studies involved manual segmentation [3, 4], which is 
extremely laborious and time-consuming. Recently, various 
methods have been employed for automated segmentation [5, 6]. In 
particular, modeling the distribution of short-term energy with a 
Gaussian mixture model (GMM) is a more sophisticated acoustic 
activity detection approach that has been widely used in noisy 
environments [7]. Note that bird vocalizations can be divided into 

two categories: calls and songs, where the former usually refer to 
isolated monosyllabic sounds and the latter contain a few syllables. 
In this paper, an acoustic event refers to either a call or a syllable. 

After segmentation, each segment is represented by a set of 
features that can discriminate between different classes of bird 
sounds. Then, a recognition algorithm is employed to identify the 
bird species based on the extracted features. In general, features 
developed for acoustic bird species classification roughly include 
two categories: frame-level and event-level features [7]. Frame-
level features are calculated in each frame, such as Mel-frequency 
cepstral coefficients (MFCCs), linear predictive coding coefficients 
(LPCCs), peak frequency, short-time bandwidth, as well as their 
changes between adjacent frames [8, 9, 10]. In contrast, event-level 
features focus on a whole acoustic event, rather than a single frame 
within it. A variety of event-level features have been investigated, 
including highest frequency, average or maximum bandwidth, 
duration, maximum power, and different combinations of these 
features [3, 11]. Besides, some more complex descriptors have also 
been proposed, such as harmonic structure, spectral peak tracks, 
spectrogram ridge, and MPEG angular radial transform (ART) 
descriptor [4, 12, 13, 14]. However, features of both categories 
were usually investigated using datasets that only involved the 
species of interest. Considering that the classifier will have to 
assign some acoustic events not well suited to any existing classes 
to an unknown class when working with real-world datasets, we 
proposed a novel spectral pattern feature in our most recent study 
[7]. This parameterized feature depicts the species-specific spectral 
pattern, contributing to superior robustness in real-world scenarios.  

More recently, texture descriptors have been investigated and 
successfully applied to the task of face recognition [15] and image 
retrieval [16]. It is worth remarking that fusion of different feature 
sets has been used for automatic acoustic classification of anurans 
and proved efficient in performance improvement [9]. Based on 
these recent studies, we propose a new method by combining the 
spectral pattern feature with texture descriptors in this paper, 
extending our previous work. Note that considering the “curse of 
dimensionality” problem, it's not always appropriate to simply 
concatenate a series of features. Thus, the ReliefF algorithm [17] is 
employed for feature ranking and selection, helping to reduce the 
misclassification rate and computational demands. Experimental 
results demonstrate that a distinguishing subset of the features 
obtained by feature selection can improve performance for 
automatic bird species identification. 

2. PROPOSED METHOD 
In summary, for those numerous methods developed for automatic 
bird sound detection and species identification, a typical analysis 
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workflow could contain following three steps: automated 
segmentation, feature extraction and classification. In accordance 
with this workflow, the overall block diagram of our method is 
depicted in Fig. 1. The individual processing steps are described in 
the following subsections.  
2.1. Automated segmentation 
After each field recording is divided into frames, the distribution of 
log-energies of frames is modeled by a GMM of two mixtures. In 
this model, one mixture component is fitted to the distribution of 
the low-energy frames and the other works for the high-energy 
frames. Then, the crossing point of the two components is usually 
selected as the decision threshold [18]. 

Specifically, given the sampling frequency of 32kHz, a 
recording is divided into frames of 320 samples with an overlap of 
160 samples between adjacent frames. Short-time Fourier 
transform (STFT) is then implemented to each frame using a 
Hamming window with length 512. Finally, the corresponding 
spectrogram S(k,l) is fed into the subsequent step with k and l the 
indices of Fourier coefficient and frame number, respectively.  

Considering a recording with spectrogram S(k,l), the energy as 
well as the log-energy of the l-th frame is denoted as 
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standard deviation of the m-th Gaussian component, respectively. 
The maximum likelihood solution for the parameter set 
{ }, , , 1,2m m mw mµ σ =  can be obtained by the widely used 
expectation-maximization (EM) algorithm. With the threshold 
chosen as the crossing point of the two Gaussian components, most 
of the promising high-energy frames are selected. Then, every 
cluster of consecutive selected frames is grouped into a single 
event, i.e. a segment. Those events that are shorter than 20ms will 
be discarded. 

Note that after the above GMM-based event detection step, 
there are still some events with faintish energy that cannot be 
identified with certainty even by ornithologists to be selected. 
Therefore, an event-energy-based post-processing procedure is 
needed to eliminate them. To be more specific, given an initial 
candidate events set { }1 2, , , KD AE AE AE= 

 
with K events being 

detected, the k-th event-energy is calculated as 
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The maximum is denoted as max kk
ME EAE= . As for the k-th 

event, if 20kME EAE dB− ≥ , this event will be discarded. Finally, 
the remaining events constitute the set RD. 

After the event-energy-based sifting and manual inspection on 
the output of automated segmentation, bird species events and 

“unknown” events (corresponding to noise or unknown species 
vocalizations) are obtained. Then, they are fed into the following 
feature extraction step. 
2.2. Feature extraction 
In this step, a feature fusion using the spectral pattern feature and 
five texture descriptors is explored for bird species classification. 
Furthermore, a feature selection algorithm is incorporated to 
reduce feature dimension and increase accuracy. 
2.2.1. Spectral pattern feature 
The spectral pattern feature is first proposed in our previous work  
[7]. Given an event in RD, its spectrogram is first filtered by a Mel-
scaled filter bank containing 32 equal-height triangular band-pass 
filters within the frequency range from 1kHz to 16kHz, leading to 
32 subband time-series x1, ..., x32. Then, an AR model is used to 
characterize the spectral pattern property for each subband. As for 
the i-th subband, the AR model is 
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where zi(l) is a zero-mean white noise excitation and the model 
order Mi is determined by the Akaike information criterion (AIC) 
with the maximum being experimentally set to 10 in this paper. 
The coefficients of the AR model constitute the subband feature 
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Afterwards, the corresponding spectral pattern feature vector is 
denoted as 1 2 32[ , , , ]T T T T=sp sp sp sp . It is worth noting that the 
species-specific feature with respect to certain acoustic event is 
conveyed by the model coefficients. This parameterization process 
can deal with a variety of bird acoustic events with either different 
durations or different sound unit shapes.   
2.2.2. Texture descriptors 
Since the spectrogram can be viewed as an image, it is feasible to 
use texture descriptors to depict bird sound events. The state-of-
the-art texture descriptors [19] incorporated in this work are briefly 
described as follows: 

(1) ULBP: a uniform local binary pattern (ULBP) descriptor 
denoted as lbp. The local binary pattern (LBP) is first computed at 
each pixel, considering the binary differences between the gray 
values of a central pixel and those of P pixels in a circular 
neighborhood with radius R pixels. In this work, R and P were set 
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Fig. 1. Overall block diagram of the proposed method. 
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to 1 and 8, respectively. Compared with LBP, ULBP is an 
improved descriptor in which the number of transitions in the 
binary code sequence between 0 to 1 or 1 to 0 is less than or equal 
to two, producing a feature vector with length 59. 

(2) LBPHF [20]: a LBP histogram Fourier (LBPHF) 
descriptor denoted as lbf. LBPHF is a rotation-invariant image 
descriptor that is computed from discrete Fourier transforms (DFT) 
of LBP histograms. Given the histogram h(UP(n,r)) where UP(n,r) 
represents a specific uniform LBP pattern with P neighboring 
sampling points, n denotes the row number and r defines the 
rotation of the pattern, we set =( , )H n ⋅  to be the DFT of the n-th 
row of histogram. The LBPHF feature with length 38 refers to 
corresponding magnitude spectrum. 

(3) LPQ [21]: a local phase quantization (LPQ) descriptor 
denoted by lpq. Given a rectangular M×M (M was set to 3 in this 
work) neighborhood Nx at each pixel position x of the image f(x), 
corresponding 2-D DFT is first computed. Then, the DFT 
coefficients are quantized into a two bit code: first bit for real part 
and second bit for imaginary part. This gives 8-bit code from four 
quantized coefficients. Finally, after decorrelation and quantization, 
a histogram of quantized coefficients from all image positions is 
composed and used as a 256-dimensional feature vector. 

(4) HASC: the heterogeneous auto-similarities of 
characteristics (HASC) descriptor. HASC is applied to 
heterogeneous dense features maps that simultaneously encode 
linear relations by covariances (COV) and nonlinear associations 
through entropy and mutual information (EMI). For a given 
rectangular patch P in a d-dimensional feature image extracted 
from original image (d was set to 6 in this work), containing K 
pixels, the COV and EMI matrices are calculated. Then, we 
vectorize both matrices, obtaining cov and emi. Finally, HASC is 
defined by concatenation as

 
[ , ]T T T=hac cov emi  with length 42. 

(5) GF: the Gabor filter (GF) descriptor. We used 5 different 
scale levels and 8 different orientations. The mean-squared energy 
and the mean amplitude were calculated for each scale and 
orientation. In this way a feature vector gf  of size 80 is obtained. 

2.2.3. Feature fusion and feature selection 
After all the features above are extracted, a fusion stage is further 
incorporated to obtain a compact feature representation for each 
acoustic event. Specifically, for the i-th event, the concatenated 
feature vector obtained is 

        
, , , , , , 1,2,

TT T T T T T
i i i i i i i i K = =  …,lbp lbf lpq hac gfv sp fc
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where K is the total number of events. 
It is worth noting that this simple concatenation leads to a 

high-dimensional feature vector, which will increase the 
computational burden and potentially cast an adverse effect on 
subsequent classification performance. In this context, feature 
selection, aiming to choose a discernible subset of features to 
reduce the fusion feature length with the lowest information loss, 
can be employed to remove irrelevant and/or redundant features. 
As one of the filter based feature selection methods, the Relief 
algorithm [22] is an effective approach to feature weight estimation. 
ReliefF [17] extends two-class Relief algorithm to deal with multi-
class problem. With the help of ReliefF algorithm, an attribute 
weight was calculated for each feature, ranging from -1 to 1 with a 
high positive weight assigned to an important attribute. Then we 
sorted out N most important features as the effective subset. 
According to our preliminary study, we selected N=400 according 
to the best performance for the following classification step. 

2.3. SVM-based classification 
SVM is a robust supervised learning method that has been 
extensively studied for classification and regression. SVM 
classifiers use a hyperplane and a kernel function for nonlinear 
classification of two class data. As for the multi-class classification, 
we employed the “one-versus-one” strategy  [23]. Besides, we used 
the radial basis function (RBF) as the kernel function. 

3. EXPERIMENTAL EVALUATIONS 

3.1. Field recordings description 
In order to evaluate our method, the field audio recordings used in 
this work were downloaded from the Xeno-canto Archive 
(http://www.xeno-canto.org/) and the details can be found in [7]. 
Note that these are all real-world recordings and each recording 
potentially contains vocalizations of several animal species and 
competing noise originating from wind, rain, or anthropogenic 
interference. The recordings were resampled to a uniform sampling 
frequency of 32 kHz. There are 11 bird species in the recordings 
that can be divided into five types based on sound unit shapes, 
including constant frequency (CF), frequency modulated whistles 
(FM), broadband pulses (BP), broadband with varying frequency 
components (BVF), and strong harmonics (SH) [1]. After manual 
inspection on the result of the automated segmentation described in 
subsection 2.1, a total of 2762 acoustic events for 11 bird species 
and simultaneously 339 “unknown” events were available. We 
provide the description of the dataset used in this study in Table 1.  
3.2. Experimental setup 
For each detected event, the spectral pattern feature and 5 texture 
descriptors were calculated and ReliefF algorithm was employed to 
select discriminative features. The two parameters of the RBF 
kernel, gamma and cost, were set to 0.0625 and 8. The baseline 
method only utilized the spectral pattern feature [7]. 10 trials were 
conducted to compare the performance of the proposed method 
and the baseline one. In each trial the dataset was split randomly 
into 60% training set and 40% testing set to acquire statistically 
relevant results. Meanwhile, the percentage of each class was kept 
as same as 60:40.  
3.3. Performance metrics 
Both methods were evaluated by means of three performance 
metrics for each class including precision (P), recall (R) and F-
score which are denoted as 

TPP
TP FP

=
+  

          
TPR

TP FN
=

+         

2- PRF score
P R

=
+       

(7) 

where TP is the number of detected true positive events for each 
class. FP and FN are the numbers of false positive and false 
negative events for each class, respectively. After 10 trials, 
averaged metrics for each method were calculated. 

Meanwhile, the overall performance was measured in terms of 
the classification accuracy defined as ( )e 100%CA TCA N N= ×  
where NCA is the number of correctly classified events and NTe is 
the total number of testing events. 

4. RESULTS AND DISCUSSION 
In this section, we first present the comparative results among 
different features in Table 2 after 10 trials. In order to guarantee a 
fair comparison, all features were equipped with the same SVM 
classifier. It can be observed that the worst classification accuracy 
achieved is 86.6% when only those texture descriptors were   
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Table 1. Details of species and corresponding field recordings 
used in this work. 

Bird species Call/ 
Song 

Sound 
unit  shape 

Number 
of events 

 
Blue Jay (B-J) Call SH 251 

Song Sparrow (S-S) Call SH 259 
Marsh Wren (M-W) Call BP 249 

Common Yellowthroat (C-YT) Call BP 256 
Chipping Sparrow (C-S) Call FM 253 

American Yellow Warbler (A-Y-W) 
  

Call FM 247 
Great Blue Heron (G-B-H) Call BVF 247 

American Crow (A-C) Call BVF 253 
Cedar Waxwing (C-WW) Call CF 246 

House Finch (H-F) Song SH 249 
Indigo Bunting (I-BT) Song FM 252 

Table 2. Comparison of various features in terms of classification 
accuracy (CA) . 

Features Dimension of 
feature vector 

CA 
(%) 

SP (baseline method) 320 93.7 
HASC+LBP+LPQ+LBPHF+GF 475 86.6 

SP+HASC+LBP+LPQ+LBPHF+GF 
without feature selection 795 94.0 

SP+HASC+LBP+LPQ+LBPHF+GF 
with feature selection (this work) 400 96.7 

combined. At the same time, fusion of spectral pattern feature with 
texture descriptors without feature selection achieved similar 
performance to that using only spectral pattern feature (baseline 
method) in terms of classification accuracy. However, the fusion of 
spectral pattern feature with texture descriptors plus ReliefF-based 
feature selection (this work) clearly outperformed the methods 
above, approximately 2.7% higher than the method without feature 
selection. This demonstrates that feature selection algorithm can 
sort out more robust and discriminating feature subset, which has a 
dimension of 400, only 50.3% of the original concatenated feature 
defined in Eq. (6).  

In order to further investigate and compare the performance 
between the proposed method and baseline one, the averaged 
performance metrics of the two methods for each class are 
provided in Table 3. One should note that the performance metrics 
of the proposed method are almost all greater than those of the 
baseline method, except the precision of C-WW and Unknown 
class, which merely decreased by 0.3% and 0.4%. It is worth 
remarking that a simple comparison on these metrics, however, is 
not completely reliable since the winning algorithm may 
occasionally perform well due to the randomness in data split. 
Hypothesis test is usually employed for statistically reliable 
comparison between algorithms. 

Here, we used Mann-Whitney test [24], which aims to assess 
the statistical significance of the differences between two groups. 
The MannWhitney test is the non-parametric equivalent of the 
independent samples t test. For both the proposed method and the 
baseline one, we calculated the classification accuracy values for 
10 trials. Then, the Mann-Whitney test was employed to compare 
the statistical difference of the two methods. The significance level 
α was set to 0.05 and the corresponding estimate value           

Table 3. Averaged precision and recall as well as the 
corresponding F-score for each species between the proposed 
method with the baseline method.  

 Recall (%) Precision (%) F-score 
Classes This 

work 
Baseline 
method 

This 
work 

Baseline 
method 

This 
work 

Baseline 
method 

B-J 98.7 97.9 99.0 97.9 0.989 0.979 
S-S 97.0 92.6 95.4 88.4 0.962 0.904 

M-W 96.8 90.1 97.5 94.5 0.971 0.922 
C-YT 95.6 91.0 95.1 89.6 0.953 0.903 
C-S 97.7 93.8 97.0 94.2 0.973 0.940 

A-Y-W 97.7 93.8 99.0 90.7 0.983 0.922 
G-B-H 96.3 91.4 98.1 94.8 0.972 0.930 

A-C 99.2 97.9 99.5 96.7 0.994 0.973 
C-WW 96.8 95.6 98.7 99.0 0.977 0.973 

H-F 95.1 94.7 95.3 92.4 0.951 0.935 
I-BT 95.7 94.0 94.5 93.3 0.950 0.936 

Unknown 95.2 91.7 94.0 94.4 0.945 0.930 

41.55 10 0.05p −= × <  , suggesting that there is significant 
difference between the two methods. Most recent study in 
cognitive science confirmed that spectral shape is the primary cue 
to bird sounds recognition [25, 26]. Therefore, in our previous 
study [7], the spectral pattern feature was proposed to describe the 
spectral shape information of bird vocalizations, achieving 
comparable identification performance with respect to the species 
of interest and superior robustness in real-world scenarios when 
compared with other recent approaches. In this work, considering 
the results of classification accuracy (Table 2), performance 
metrics for each class (Table 3) and the hypothesis test, we can 
conclude that the proposed method provides comparable 
robustness in real-field environments as well as superior 
identification performance regarding the species of interest—that is, 
the proposed approach outperforms the baseline method. This 
improvement can be attributed to the fact that the feature subset 
obtained by feature fusion and feature selection can depict the 
species-specific spectral shape information of the time-frequency 
distribution in each sub-band, as well as the spatial variation and 
arrangement of orientations information in the full-band. 

5.  CONCLUSIONS 
Aiming to improve the audio parameterization process in bird 
species identification tasks, we proposed an automatic acoustic 
classification method based on feature fusion in this work. After 
GMM-based acoustic event detection and event-energy-based post-
processing procedure, representative acoustic events were selected. 
For each event, two different feature sets, the spectral pattern 
feature and texture descriptors, were extracted. As for the 
combination of the two sets, ReliefF-based feature selection 
algorithm was employed to select a distinguishing feature subset. 
Experimental results using real-world recordings showed that the 
proposed method outperformed the state-of-the-art robust approach. 
The improved performance makes the proposed method more 
effective for the application of acoustic monitoring in terrestrial 
environments. 
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