
PYROOMACOUSTICS: A PYTHON PACKAGE FOR AUDIO ROOM SIMULATION AND
ARRAY PROCESSING ALGORITHMS

Robin Scheibler,1 Eric Bezzam,1 Ivan Dokmanić,2

1École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
2University of Illinois Urbana-Champaign, USA

robin.scheibler@epfl.ch, eric.bezzam@epfl.ch, dokmanic@illinois.edu

ABSTRACT

We present pyroomacoustics, a software package aimed at the rapid
development and testing of audio array processing algorithms. The
content of the package can be divided into three main components:
an intuitive Python object-oriented interface to quickly construct dif-
ferent simulation scenarios involving multiple sound sources and
microphones in 2D and 3D rooms; a fast C implementation of the
image source model for general polyhedral rooms to efficiently gen-
erate room impulse responses and simulate the propagation between
sources and receivers; and finally, reference implementations of pop-
ular algorithms for beamforming, direction finding, and adaptive fil-
tering. Together, they form a package with the potential to speed up
the time to market of new algorithms by significantly reducing the
implementation overhead in the performance evaluation step.

Index Terms— RIR, simulation, rapid prototyping, reference
implementations, reproducibility

1. INTRODUCTION

As in all engineering disciplines, objective evaluation of new (ar-
ray) audio processing algorithms is essential to the assessment of
their value. The gold standard for such evaluation is to design and
carry out an experiment in a controlled environment with a real mi-
crophone array and careful calibration of the locations of all sound
sources. The time and effort needed to setup these experiments nat-
urally limit the number of replications of the experiments and the
number of scenarios that can be explored. In the exploratory phase
of research, numerical simulation is an attractive alternative. It al-
lows one to quickly test and iterate a large number of ideas. In addi-
tion it makes it possible to finely tune parameters for the algorithm
before going to experiments in the physical world.

There are typically three components in a simulation system.
First, a programming language to describe the scenarios to simulate.
Second, a computer program implementing a model that simulates
the relevant physical effects, in our case the propagation of sound
in air. Finally, we need computer programs implementing the algo-
rithms under investigation.

While low level languages like C and FORTRAN are the most
efficient when it comes to speed, they come at a significant cost in
terms of implementation complexity. High level scripting languages
have long been a popular alternative for describing simulations. In
particular, MATLAB has been historically the industry, and often
academic, standard for signal processing numerical experiments. Its
high level syntax based on linear algebraic operations is indeed par-
ticularly well suited for algorithms in this field. It comes however

with significant drawbacks: high cost, closed source, and a clunky
syntax for anything other than linear algebra. In recent years Python
has come to prominence as an attractive alternative to MATLAB for
high level scientific computing [1]. Its focus on code readability and
extensibility makes it a candidate of choice for reproducible scien-
tific code [2]. The numpy and scipy modules extend Python with the
same powerful linear algebra primitives that MATLAB enjoys. An
aspect of special interest for DSP engineers is the massive adoption
of Python in the machine learning community as exemplified by the
scikit-learn [3] or speech recognition packages [4]. Finally, Python
is a community supported free and open source project that includes
robust tools for distribution (http://pypi.python.org), doc-
umentation (http://readthedocs.io), and continuous inte-
gration (http://travis-ci.org).

For a simulation to yield useful information and practical in-
sight, it is vital that it models accurately enough real conditions.
In room acoustics, simulation based on the image source model
(ISM) has been used extensively for this purpose and has well-
known strengths and weaknesses [5]. This model replaces reflec-
tions on walls by virtual sources playing the same sound as the
original source and builds a room impulse response (RIR) from the
corresponding delays and attenuations. Its strength is its simplic-
ity. The model is accurate only as long as the wavelength of the
sound is small relative to the size of the reflectors, which it assumes
to be uniformly absorbing across frequencies. Nevertheless, these
assumptions are not too far from reality in many environments of
interests such as offices. The original model can be extended to con-
vex and non-convex polyhedral rooms in two and three dimensions
[6]. Our wishlist for an RIR generator is: affordable, open source,
and flexible. A number of generators are available, and most if not
all are shared online free of charge, e.g. the popular generator from
Emanuël Habets [7]. Unfortunately, none allow room shapes other
than rectangular. Furthermore, most rely on MATLAB. Faced by the
limitations of available RIR generators, we decided to develop our
own.

We provide pyroomacoustics, a comprehensive Python package
for audio algorithms simulation. The package includes both a fast
RIR generator based on the ISM and a number of reference imple-
mentations of popular algorithms for beamforming, direction of ar-
rival (DOA) finding, and adaptive filtering. A short time Fourier
transform (STFT) engine allows for efficient frequency domain pro-
cessing. The object oriented features of Python are used to provide
a LEGO-like interface to these different blocks. This paper gives an
overview of the usage and content of pyroomacoustics. The software
itself is available under a permissive open source license through the

351978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

Image
Source
Model

Room

MicsSources

Images

Input Output

RIRs

Fig. 1: Structure of the sound propagation simulator. The lines ter-
minated by a bullet indicate attribute relationship. Arrows indicates
parameters to functions.

standard Python package manager1 or on github2.

2. PYROOMACOUSTICS CORE

The pyroomacoustics package exploits the object oriented features of
Python to create a clean and intuitive application programming in-
terface (API) for room acoustics simulation. The three main classes
are Room, SoundSource, and MicrophoneArray. On a high
level, a simulation scenario is created by first defining a room to
which a few sound sources and a microphone array are attached.
The actual audio is attached to the source as a raw audio sample. The
ISM is then used to find all image sources up to a maximum spec-
ified order and RIRs are generated from their positions. The RIR
generator is described in more details in Section 3. The microphone
signals are then created by convolving the audio samples associated
to sources with the appropriate RIR. Since the simulation is done on
discrete-time signals, a sampling frequency is specified for the room
and the sources it contains. Microphones can optionally operate at a
different sampling frequency; a rate conversion is done in this case.
A simple code example and its output are shown in Figure 4.

2.1. The Room Class

A Room object has as attributes a collection of Wall objects, a mi-
crophone array, and a list of sound sources. The room can be two
dimensional (2D), in which case the walls are simply line segments.
A factory method from corners can be used to create the room
from a polygon. In three dimensions (3D), the walls are two dimen-
sional polygons, namely a collection of points lying on a common
plane. Creating rooms in 3D is more tedious and for convenience a
method extrude is provided to lift a 2D room into 3D space by
adding vertical walls and a parallel “ceiling” (see Figure 4b). The
Room is sub-classed by ShoeBox which creates a rectangular (2D)
or parallelepipedic (3D) room. As will be detailed in Section 3, such
rooms benefit from an efficient algorithm for the ISM.

2.2. The SoundSource Class

A SoundSource object has as attributes the locations of the source
itself and also all of its image sources. This list is usually gener-
ated by the Room object containing the source. The reason for this

1pip install pyroomacoustics
2https://github.com/LCAV/pyroomacoustics

Fig. 2: Block diagram of STFT domain beamforming.

C

BA

3

2

1

Fig. 3: Image source model for arbitrary polyhedral rooms. Sources
A and B are visible from all microphones. Source C is only visible
in the shaded/green area due to the obtuse angle. Microphone 2 is
hidden due to obstruction by a re-entrant wall.

structure is to anticipate scenarios where the room is defined by the
locations of the image sources, for example in room inference prob-
lems [8]. The source object also contains the methods to build an
RIR from the image sources locations. The image sources are con-
veniently available through the overloaded bracket operator. This
comes handy to select only a subset of image sources, such as when
building acoustic rake receivers [9].

2.3. The MicrophoneArray and Beamformer Classes

The MicrophoneArray class is essentially an array of micro-
phone locations together with a sampling frequency. It has in ad-
dition a record method that wraps potential rate conversions when
the simulation and microphones are at different rates.

The Beamformer class inherits from MicrophoneArray
and can be used instead. In that case, beamforming weights (in the
frequency domain) or filters (in the time domain) can be computed
according to several methods (see Section 4.1). Figure 5 shows
an example of a delay-and-sum (DS) beamformer in a rectangular
room.

In addition, the Beamformer class packs an STFT engine for
efficient frame processing in the frequency domain (see Figure 2).
The engine allows for variable size zero-padding, overlap, and the
use of different analysis and synthesis windows. Alternatively, direct
filtering in the time domain is also possible. Specialized methods can
convert weights to a corresponding filter and vice-versa. In case of
mismatch in size, a least squares fit of the beamforming weights to a
smaller filter is done.

352

(a) The room

(b) The RIRs

1 i m p o r t numpy as np
2 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
3 i m p o r t p y r o o m a c o u s t i c s a s p r a
4

5 # C r e a t e a 2D room from t h e c o r n e r s o f a po lygon
6 f l o o r = np . a r r a y ([[0 , 0 , 6 , 6 , 3 , 3] , # x−c o o r d i n a t e s
7 [0 , 3 , 3 , 1 . 5 , 1 . 5 , 0]]) # y−c o o r d i n a t e s
8 room = p r a . Room . f r o m c o r n e r s (f l o o r , f s =16000 ,
9 max orde r =12 , a b s o r p t i o n = 0 . 1)

10

11 # L i f t t h e room i n 3D s p a c e
12 room . e x t r u d e (2 . 4)
13

14 # Add a sound s o u r c e
15 room . a d d s o u r c e ([1 . 5 , 1 . 2 , 1 . 6])
16

17 # P l a c e two mic rophones i n t h e room
18 R = np . a r r a y ([[3 . , 4 . 2] , [2 . 2 5 , 2 . 1] , [1 . 4 , 1 . 4]])
19 bf = p r a . MicrophoneArray (R , room . f s)
20 room . a d d m i c r o p h o n e a r r a y (b f)
21

22 # Run image s o u r c e model and show room and 2nd o r d e r images
23 room . i m a g e s o u r c e m o d e l ()
24 room . p l o t (i m g o r d e r =3 , a s p e c t = ’ e q u a l ’)
25

26 f i g = p l t . f i g u r e ()
27 room . p l o t r i r ()
28 p l t . show ()

(c) Python code to generate these figures

Fig. 4: (a) An example of a non-convex room containing one source and two microphones with up to 3rd order image sources drawn. (b) The
two RIRs between the source and the microphones produced by pyroomacoustics. (c) The Python code used to generate the first two figures.

3. ROOM IMPULSE RESPONSE GENERATOR

The RIR generator is based on the ISM and considers two cases:
shoe box, i.e. rectangular, and arbitrary polyhedral rooms. For shoe
box rooms, the original algorithm from Allen and Berkley [5] is
used. In this case, symmetries limit the number of image sources to
grow quadratically and cubically in 2D and 3D, respectively, in the
order of reflections. In addition, image sources are always visible
from anywhere in the room. The situation for arbitrary polyhedral
rooms is not that simple. The number of image sources grows expo-
nentially in the order of reflections and the visibility of sources must
be checked. When obtuse angles occur between walls, the reflections
from these walls will not be visible in the whole room. In addition,
if the room is not convex, i.e. re-entrant walls occur, they might
obstruct the path between image sources and microphones. Both
situations are illustrated in Figure 3. The algorithm is explained in
detail in the original paper by Borish [6]. In practice, we found its
pure Python implementation to be too slow to be practical and hence
moved to compiled C code for that part of the package.

Once the location of image sources and their visibility from each
microphone is determined, they can be used to construct the RIRs
themselves. For a microphone placed at r, a real source s0, and a set
of its visible image sources Vr(s0), the impulse response between r
and s0, sampled at Fs, is given by

ar(s0, n) =
∑

s∈Vr(s0)

(1− α)gen(s)

4π‖r − s‖ δLP

(
n− Fs

‖r − s‖
c

)
, (1)

where gen(s) gives the reflection order of source s, α ∈ [0, 1] is the
absorption factor of the walls, c is the speed of sound, and δLP is the

windowed sinc function

δLP(t) =

{
1
2

(
1 + cos

(
2πt
Tw

))
sinc(t) if −Tw

2
≤ t ≤ Tw

2
,

0 otherwise.
(2)

The parameter Tw controls the width of the window and thus the
degree of approximation to a full sinc. Note that for simplicity we
assumed the absorption factor to be identical for all walls. Neverthe-
less, the package allows to specify a different absorption factor for
each wall. Two RIRs produced this way can be seen in Figure 4b.

4. REFERENCE IMPLEMENTATIONS

When evaluating the performance of new algorithms, a large amount
of time is spent re-implementing competing methods to run com-
parisons and benchmarks. While these algorithms are well-known,
the devil is always in the details and their correct practical imple-
mentation can be very time consuming. The availability of robust,
tested reference implementations for popular algorithms has the po-
tential to speed up considerably the time-to-market of new research
projects. We provide implementations of several algorithms for
beamforming, direction of arrival (DOA) finding, adaptive filtering,
and source separation.

4.1. Beamforming and Source Separation

As described in Section 2.3, both frequency and time domain
beamformers can be computed by calling methods from the
Beamformer class. The classic beamforming algorithms are in-
cluded as special cases of the acoustic rake receivers of [9]. Namely,
by including only the direct source, we recover the DS [10] and

353

2 kHz 4 kHz 6 kHz
(a) DS Beamformer

1 i m p o r t numpy as np
2 i m p o r t m a t p l o t l i b . p y p l o t a s p l t
3 i m p o r t p y r o o m a c o u s t i c s a s p r a
4

5 # C r e a t e a 4 by 6 m e t r e s shoe box room
6 room = p r a . ShoeBox ([4 , 6] , f s =16000)
7

8 # Add a s o u r c e somewhere i n t h e room
9 room . a d d s o u r c e ([2 . 5 , 4 . 5])

10

11 # c i r c u l a r a r r a y wi th 4 mic rophones and r a d i u s 4 cm
12 R = p r a . c i r c u l a r 2 D a r r a y ([2 , 1 . 5] , 8 , 0 , 0 . 0 4)
13 bf = p r a . Beamformer (R , room . f s)
14 room . a d d m i c r o p h o n e a r r a y (b f)
15

16 # Now compute t h e d e l a y and sum w e i g h t s
17 room . micArray . r a k e d e l a y a n d s u m w e i g h t s (
18 room . s o u r c e s [0] [: 1])
19

20 # p l o t t h e room and r e s u l t i n g beamformer
21 room . p l o t (f r e q =[2000 , 4000 , 6 0 0 0] , i m g o r d e r =0)
22 p l t . show ()

(b) Python code generating figure (a)

Fig. 5: (a) Beampatterns for a circular delay-and-sum beamformer at 2, 4, and 8 kHz. (b) The code that produced the figure.

MVDR [11] beamformers. Options are available to add cancellation
of one or more interferers. Both far and near field formulations can
be used. In addition, the blind source separation algorithm TRINI-
CON [12] is included.

4.2. DOA Finding

A base DOA class defines the API of direction finding methods. The
constructor is responsible for setting the different options of the al-
gorithms. A locate sources method taking at least one fre-
quency domain frame of the input signal as argument is responsible
for computing the sources locations. The DOA class is extended to
implement several popular algorithms: the popular multiple signal
classification (MUSIC) [13] and steered response power phase trans-
form (SRP-PHAT) [14], as well as coherent signal subspace method
(CSSM) [15], weighted average of signal subspaces (WAVES) [16],
and test of orthogonality of projected subspaces (TOPS) [17]. All
implementations cover both localization in 2D and 3D.

4.3. Adaptive Filtering

Adaptive filters also share a common structure whereas a base class
AdaptiveFilter defines a simple interface. The constructor is
responsible for passing options of specific algorithms. A method
update taking a new input sample and a new reference sample up-
dates the current filter estimate. The base class is extended to provide
implementations of the least mean squares (LMS), normalized LMS
(NLMS), and recursive least squares (RLS) [18].

4.4. STFT Engine and Real-Time Processing

While the Beamformer class includes STFT processing, its imple-
mentation is a one shot, that is it processes the whole signal at once.
This is not suitable for streaming or real-time data sources. A sec-
ond implementation of STFT processing is thus given to cover this
use case. It is implemented as an STFT class with the constructor
providing the FFT size, length of zero-padding, windows and other
parameters. Methods analysis and synthesis decompose one
frame of the signal into time-frequency representation and put it back

together using overlap-add, respectively. In between the two, some
frequency domain processing is possible. Options to use efficient
FFT libraries such FFTW [19] (through pyfftw) or the Intel Math
Kernel Library are available.

5. CONCLUSION

We presented the pyroomacoustics Python package for audio
processing. Under an intuitive API, the package includes a small
room acoustics simulator based on the ISM and a number of ref-
erence implementations for popular algorithms for beamforming,
DOA finding, and adaptive filtering. A full STFT engine makes it
easy to get started on frame based processing. This comprehensive
set of tools makes it a great starting point for rapidly prototyping and
evaluating new audio processing algorithms.

We plan to continue extending this package in the hope that it
can benefit the audio signal processing community. The current ver-
sion of pyroomacoustics only supports omnidirectional sources and
microphones. The ability to add directivity patterns to loudspeakers
and microphones is critical to bridge the gap between simulation and
experiments. Ideally, both parametric patterns (e.g. cardioid micro-
phones) and measured ones should be supported.

Currently the definition of intricate room geometries is awk-
ward, especially for non-convex 3D rooms. One way of simpli-
fying this is to implement set operations of polygons and polyhe-
dra, e.g. union, difference, etc, making it possible to build complex
shapes from a set of basic ones such as rectangles and triangles. An-
other way is to write a parser for files produced by conventional CAD
software (e.g. SketchUp, AutoCAD).

6. REFERENCES

[1] T. E. Oliphant, “Python for scientific computing,” Computing
in Science & Engineering, vol. 9, no. 3, pp. 10–20, 2007.

[2] M. Lutz, Programming Python. O’Reilly, 2011.

[3] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, and D. Cournapeau,

354

“Scikit-learn: machine learning in Python,” The Journal of Ma-
chine Learning Research, vol. 12, pp. 2825–2830, 2011.

[4] A. Zhang, “Speech recognition (version 3.6),” https://github.
com/Uberi/speech recognition#readme, 2017, [Software].

[5] J. B. Allen and D. A. Berkley, “Image method for efficiently
simulating small-room acoustics,” J. Acoust. Soc. Am., vol. 65,
no. 4, pp. 943–950, 1979.

[6] J. Borish, “Extension of the image model to arbitrary polyhe-
dra,” J. Acoust. Soc. Am., vol. 75, no. 6, pp. 1827–1836, 1984.

[7] E. A. Habets, “Room impulse response generator,” Technische
Universiteit Eindhoven, Tech. Rep. 2.2.4, 01 2010.

[8] I. Dokmanić, R. Parhizkar, A. Walther, Y. M. Lu, and M. Vet-
terli, “Acoustic echoes reveal room shape,” Proc. Natl. Acad.
Sci., vol. 110, no. 30, 6 2013.

[9] I. Dokmanić, R. Scheibler, and M. Vetterli, “Raking the cock-
tail party,” IEEE J. Sel. Topics Signal Process., vol. 9, no. 5,
pp. 825–836, 2015.

[10] I. J. Tashev, Sound Capture and Processing, ser. Practical Ap-
proaches. Chichester, UK: John Wiley & Sons, 7 2009.

[11] J. Capon, “High-resolution frequency-wavenumber spectrum
analysis,” Proc. IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[12] H. Buchner, R. Aichner, and W. Kellermann, “TRINICON: a
versatile framework for multichannel blind signal processing,”
in IEEE ICASSP, Montreal, 2004, pp. iii–889–92 vol.3.

[13] R. Schmidt, “Multiple emitter location and signal parameter
estimation,” IEEE Trans. Antennas Propag., vol. 34, no. 3, pp.
276–280, 1986.

[14] J. H. DiBiase, “A high-accuracy, low-latency technique for
talker localization in reverberant environments using micro-
phone arrays,” Ph.D. dissertation, Brown University, Provi-
dence, RI, USA, 2000.

[15] H. Wang and M. Kaveh, “Coherent signal-subspace processing
for the detection and estimation of angles of arrival of multi-
ple wide-band sources,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 33, no. 4, pp. 823–831, 8 1985.

[16] E. D. di Claudio and R. Parisi, “WAVES: Weighted average of
signal subspaces for robust wideband direction finding,” IEEE
Trans. Signal Process., vol. 49, no. 10, pp. 2179–2191, 10
2001.

[17] Y.-S. Yoon, L. M. Kaplan, and J. H. McClellan, “TOPS: New
DOA estimator for wideband signals,” IEEE Trans. Signal Pro-
cess., vol. 54, no. 6, pp. 1977–1989, May 2006.

[18] S. Haykin, Adaptive filter theory. Prentice Hall, 2014.

[19] M. Frigo and S. G. Johnson, “The design and implementation
of FFTW3,” Proc. IEEE, vol. 93, no. 2, pp. 216–231, 2005.

355

