
SINGING STYLE INVESTIGATION BY
RESIDUAL SIAMESE CONVOLUTIONAL NEURAL NETWORKS

Cheng-i Wang

University of California, San Diego
Department of Music
La Jolla, CA, USA

George Tzanetakis

University of Victoria
Electrical and Computer Engineering

Victoria, BC, Canada

ABSTRACT
Investigating singing style is a difficult problem as individual
styles are intertwined with melodies from different songs. In
this paper, a methodology to investigate singing style is pro-
posed. The proposed approach utilizes convolutional neural
networks in a siamese architecture. In addition, we inves-
tigate variants of the networks to improve the audio feature
extraction process. The potential of the proposed method for
analyzing singing style is demonstrated using experiments on
pop music singing recordings. The results indicate that the
use of the proposed method is indeed effective in learning au-
dio features that are relevant for characterizing singing style.

Index Terms— music information retrieval, convolu-
tional neural network, singing voice, siamese neural network

1. INTRODUCTION

Singing is the most natural activity that allows human to
express themselves musically. There are general terms peo-
ple use to describe the styles or characteristics of a person‘s
singing, such as adenoidal, breathy, operatic, soft, rough,
etc. In this paper, a trainable algorithm capable of capturing
singing style or singing characteristics is proposed. The pro-
posed algorithm is a deep neural network that uses ResNeXt
convolutional blocks [1] to process spectral inputs, followed
by a feed-forward attention layer [2] handling temporal de-
pendencies and fully-connected dense layers to learn the
non-linear embeddings. Since there is not enough labeled
data describing the singing styles of singing recordings, a
proxy problem is defined to tackle this problem. The proxy
problem is to learn an embedding space that recordings sang
by the same singers are close to each other while the those
sang by different singers are far away from each other. The
assumption behind the proxy problem is that the singing
style is relatively more consistent across performances by
one singer than those by different singers. After such embed-
ding space is learned, the embedded singing recordings that
are closer together should ideally possess common singing
characteristics. Also the embedding task is more general than
singer identification in that there are too many singers in the

real world for classification to be practical. For training the
proposed neural networks and to evaluate its results, a newly
published dataset extending the DAMP [3] dataset named
DAMP-balanced1 is used. The DAMP-balanced dataset has
24874 unaccompanied solo singing recordings and provides
“unbiased” splits of the dataset such that singers included in
subsets from the splits all sang the same collection of songs.
Details of the DAMP-balanced dataset will be described later.

Previous works related to singer style investigation are
singer identification researches. Traditional approaches fo-
cus on melody enhancement and background music reduc-
tion so that the analysis could focus on the sang melodies
[4, 5, 6, 7]. Features used for speech such as LPC coefficients
or MFCCs [4, 5, 6, 7] are used as the main features for train-
ing the classifiers. Gaussian mixture models are the favorite
classifiers used to identify singer‘s identity [4, 5, 6, 7]. There
are two major differences between the pervious works and
the work done in this paper. The first one is that all of them
had to reduce the impact from background music which in-
troduced error whether it is during the singing voice detection
stage or singer classification stage. Since the recordings in
the DAMP-balanced dataset have only singing voices, and in
most cases only negligible background leaks, the work done
in this paper focuses on the singing voice itself. The sec-
ond difference is that all of the mentioned previous work did
not address the problem of “song” or “song collection” effect
except for [5] where 4 ∼ 6 performances from 13 singers
are collected by asking them to sing the same collection of
melodies. On the contrary, the DAMP-balanced dataset pro-
vides train/validation/test splits that all singers in each split
sang the same collection of songs.

2. SINGING PERFORMANCE EMBEDDING

To learn an embedding space that places performances by the
same singer close to each other while pushes those by dif-
ferent singers away from each other, a siamese network ar-
chitecture is used to learn such embedding [9, 2]. The in-
ner networks of the siamese networks start with convolutional

1https://ccrma.stanford.edu/damp/

116978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

G G

weights

Contrastive Loss

Input 1 Input 2 128, 1x1, 64

64, 5x5, 64
Group = 16

64, 1x1, 128

+

128-d in

128-d
out

A ResNeXt BlockSiamese Architecture

Fig. 1: (Left) A visualization of the siamese neural network architecture.
(Right) A visualization of the ResNeXt convolution block. The numbers in
boxes represent (# of input channels, kernel size, # of output channels.)

layers, followed by a feed-forward attention layer, then fully
connected layers with a linear output layer at the end.

2.1. Siamese Architecture

The siamese network architecture ties two identical neural
networks, with shared weights, by a loss function. A de-
piction of the siamese architecture can be seen in figure 1.
A siamese network learns the embedding by minimizing the
contrastive loss [9, 2]. Contrastive loss is defined over the dis-
tance between the outputs from the two identical inner neural
networks. In this paper, squared euclidean distance between
a pair of outputs from the siamese networks G given a pair of
inputs x1, x2 ∈ RD is used. Denote the squared euclidean
distance as D(x1, x2) = ‖G(x1) − G(x2)‖22 and y a binary
label that equals 1 when x1, x2 have the same identity and
equals 0 when their identities differ, the contrastive loss takes
the form

L(y, x1, x2) =
1

2
yD +

1

2
(1− y)max{0,m−D}.

By examining L, it could be concluded that reducing L will
have the effect of encouraging samples with the same identity
be close to each other while the ones with different identi-
ties be pushed away from each other. m is the target margin
between theembedded vectors having different identities and
m = 1 for all the experiments.

2.2. ResNeXt Convolutional Block

The specific convolutional operation used to process input
samples is the ResNeXt configuration [1]. A visualization
of the ResNeXt convolutional block can be seen in figure 1.
The ResNeXt configuration differs from a vanilla convolu-
tional operation in two aspects: 1) a skip connection skipping

2 vanilla convolutional layers, or skipping 3 layers with the
bottleneck design. 2) grouped convolution in the middle con-
volutional layers. The skipped connection allows a smoother
gradient back-propagation from the loss function to the 1st
layer in the networks. The grouped convolution generalizes
the partitioned convolution proposed in [10] and allows the
number of parameters to be reduced while keeping the learn-
ing effective.

2.3. Feed-Forward Attention

The feed-forward attention was proposed in [2] to aggregate
over time axis in neural networks without the training burden
brought by recurrent neural networks, and shown to improv-
ing the siamese neural network training [2] on spectral inputs.
The feed-forward attention is defined as follows: Given the
input matrixX ∈ RN×D representingN frames ofD dimen-
sional feature vectors, a weight vector σ ∈ RN over the time
frames is calculated via

σ = softmax(f(Xw + b))

where softmax(xm) = exm∑N
n=1 exn

and f is a non-linear func-

tion (tanh for the experiments done in this paper). w ∈ RD

and b ∈ R are the learnable parameters, which can be learned
by back-propagation. The output X̂ of the feed-forward at-
tention layer is calculated by

X̂ =

N∑
n=1

σnXn

and X̂ can be considered as a weighted average of X by
weights σ, determined by the learnable parameters w and b.

3. EXPERIMENTS

3.1. Datasets

The DAMP-balanced dataset contains 24874 solo singing
recordings from 5429 singers singing a collection of 14
songs. For this paper, a subset from the dataset splitting
the 14 songs into 6/4/4 train/validation/test sets having
276/88/224 performances sang by 46/22/56 singers are
used. Each singer in the train, validation and test set, sang
each of the 6/4/4 songs once respectively, thus making the
collections of performances “balanced” with respect to song
collections. Details of the split and list of songs could be
found in https://ccrma.stanford.edu/damp/.

3.2. Feature Extraction

Two spectral features are used and compared in this experi-
ment, constant-Q transformed spectrogram (CQT) and Mel-
scaled spectrogram (Mel-spectrogram). The frequency axis
of a CQT has equal number of bins per octave, so that the

117

0

1
Sample example - Voice Detection

C1

C3

C5

No
te

CQT

0:00 0:50 1:40 2:30 3:20
Time

512
1024
2048
4096
8192

Hz

Mel-Spectrogram

Fig. 2: (Top) Voice detection results, 1 being voiced and 0 otherwise. Green
line is the voice detection, blue line is RMSE, and orange line is the voice
confidence score. (Middle) CQT. (Bottom) Mel-spectrogram.

distances between different harmonics are the same between
different fundamental frequencies. Mel-spectrogram scales
its frequency axis according to human perception of pitch
height. For both CQT and Mel-spectrogram, raw audio sig-
nals are re-sampled to 22050Hz. Spectrograms are obtained
by STFT with a 2048 window length, 512 hop size, and a
Hanning window. Both CQT and Mel-spectrogram has 96
bins. For CQT, each octave has 24 bins to capture sharp/flat
pitches. The extracted spectrograms are squared to obtain the
power spectrogram which are then scaled into decibels (dB).
The values below−60dB are clipped to be zero and the whole
power spectrogram is offset to be between 0 and 60. Plots of
sampled CQT and Mel-spectrogram could be seen in the sec-
ond and third row in figure 2.

3.3. Voice Detection

A voice detection is done on the singing recordings to extract
regions that contain singing activities to ensure that the neural
networks learn singing styles instead of voice detection. A K-
means clustering with K = 2 is used as the voicing detector.
The inputs are the root mean squared energy (RMSE) from
the waveform and voicing confidence values. The voicing
confidence value is the maximum value of the normalized au-
tocorrelation at each analysis frame. The frames assigned to
the class having higher RMSE and voicing confidence values
are considered voiced. A sampled voice detection is shown
in figure 2 on the top row with sampled RMSE and voicing
confidence values as well. The CQT and Mel-spectrogram of
each recording are chopped into overlapping matrices each of
which has a duration of 6 seconds (256 time steps) and 20%
hop size. The chopped samples having more than half the
frames clustered as voiced from the voice detection are used
in the experiment.

3.4. Neural Networks Training

The gradient descent of the contrastive loss is optimized by
ADAM [11] with a learning rate 0.0001 and a batch size of
32. A drop out of 10% is applied at the last fully connected
dense layers. L2 weight regularizations with a weight 1e− 6

Feature Feed-Forward # of Test
Attention Parameters Loss

CQT No 200000k 0.3916
CQT Yes 5300k 0.3932

Mel-spectrogram No 200000k 0.3351
Mel-spectrogram Yes 5300k 0.3315

Table 1: Singing Performance Embedding Test Loss

are applied on all the learnable weights in the neural network.
The above hyper parameters are chosen by the Bayesian opti-
mization package SPEARMINT [12]. An early stopping test on
the validation set is applied every 50 epochs. The patience for
early stopping is 1000 epochs with at least 99.5% improve-
ment.

The parameters for constructing the neural networks are
as follows: the inputs are pairs of chopped CQT or Mel-
spectrogram in the shape of (256, 96). To train the siamese
networks, pairs of chopped samples from the same singer or
different ones are randomly sampled in a 1 : 1 ratio and fed
into the siamese networks. The first layer is a vanilla convo-
lutional layer with 128 channels, kernel size of (10, 10) and
strides (1, 1), followed by a max pooling layer with kernel
size (2, 2) and strides (2, 2). After the max pooling layer is
a ResNeXt convolutional block (as shown in figure 1). The
first convolutional layer inside the block has 64 channels with
(1, 1) kernel. The middle layer is the grouped convolution
layer that slices the input on the channel axis according to
the cardinality parameters. In this experiment, the cardinality
is 4, which means the incoming 64 channels are sliced into 4
partitioned “tunnels” with each “tunnel” contains 16 channels
from the incoming layer. For each “tunnel”, a convolutional
layer is applied with 16 channels of kernel size of (5, 5) and
strides (1, 1). The “tunnels” are concatenated back along the
channel axis after the grouped convolution. The last convolu-
tional layer inside the ResNeXt block takes the concatenated
layer (64 channels) and applies a 128 channel convolutional
layer with kernel size (1, 1). The skipped connection from the
input to the ResNeXt block is added to the output of the last
layer inside the block. Another max pooling layer having ker-
nel size (2, 2) and strides (2, 2) is applied after the ResNeXt
block. The feature maps from the last max pooling layer hav-
ing shapes (# of channels, height, width) are then reshaped
to having shapes (height, # of channels × width) and are fed
into the feed-forward attention layer, followed by fully con-
nected layers. The fully connected layers have 3 layers with
each layer having 1024 hidden units. Finally, a 16-dimension
linear layer accepts the output from the fully connected layer
is the output layer of the neural networks. The non-linear ac-
tivation function used in all convolutional and fully connected
layers is the ReLU function. Batch normalization is applied
before each activation functions in the convolutional blocks.

118

1 3 5 7
K

0.00

0.05

0.10

0.15

Ac
cu

ra
cie

s

Singer Classification

ResNeXt(Attention)
ResNeXt(No Aggregation)
Baseline

10 20 30 40
K

0.0

0.2

0.4

0.6

0.8

Song Classification

Fig. 3: Bar plots of k-nearest neighbor classification accuracies, on the em-
beddings learned from the embedding experiment. ResNeXt configurations
with/without feed-forward attention and the handcrafted features (baseline)
are used and four k values are experimented. Left bar plot is for singer clas-
sification, and the right plot is song classification.

4. SINGING STYLE INVESTIGATION BY
EMBEDDING

To evaluate the networks after the training is done. The test
set from the DAMP-balanced are fed into the trained neu-
ral networks to obtain their 16-dimensional embedded vec-
tors. In Table 1, results of either training with CQT or Mel-
spectrogram and of either using feed-forward attention or not
are shown. From Table 1, Mel-spectrogram has noticeably
better performance than CQT. To visualize how the embed-
ding captured the singing characteristic of individual singers,
the embedded vectors from the test set are projected onto
a 2-D space using t-SNE [13]. The visualization is shown
in figure 4. In order to better demonstrate how the learned
model is able to successfully capture singing styles rather than
melody or song characteristics, bag-of-feature vectors having
mean and standard deviation of chroma, MFCC, spectral cen-
troid, spectral roll-off, and spectral flux [14] extracted from
each ∼ 6 second clip are used as a baseline to compare to
our proposed embeddings. From figure 4, it is obvious that
song characteristics dominate the baseline audio features, not
singer characteristics. On the contrary, the embeddings from
the proposed models show the capability of clustering the
performances sang by the same singer closer to each other,
while making the embeddings invariant to song effects. To
have a quantitative assessment of the embeddings, leave-one-
out k-nearest neighbor classifications using the embedded 16-
dimensional vectors are used as training points. The “perfor-
mance” vectors are obtained by averaging over the ∼ 6 sec-
ond clips for each performance. Every sample is used as test
sample once and the classification accuracies are obtained by
averaging over the outcomes of every test sample for all k
and network configurations. The classification results with
multiple ks among the ResNeXt configurations with/without
feed-forward attention and the baseline features are shown in
figure 3. In addition, k-nearest neighbor classifications on
performed songs are also conducted to demonstrate the “song
effect”. From the k-nearest neighbor classification results on
singers and songs, it is evidential that the “song” effect exists
and the singing performance embedding learning is able to di-
lute the “song” effect while extracting features that are more
relevant to singer characterization. Also the feed-forward at-

ResNeXt (attention) - Singer ResNeXt (attention) - Song

ResNeXt (none) - Singer ResNeXt (none) - Song

Baseline - Singer Baseline - Song

Fig. 4: t-SNE projections of the embedded clips compared to baseline hand-
crafted audio features. The left column is colored by singer identities while
the right column is colored by song identities. Only performances from 10
singers from the test set are shown here for clearer visualization purposes.

tention layer helped the enhancement of “singer style” while
reducing “song effect” slightly by looking at the k-nearest
neighbor classification accuracies. It is worth mentioning that
the k-nearest neighbor classification on performed songs is
only possible due to the “balanced” nature of the dataset.

5. ACKNOWLEDGEMENT

The research work done in this paper was supported by
both the Center for Research in Entertainment and Learning
(CREL) at UCSD and the internship program at Smule, Inc,
with great help from Prof. Perry Cook, Mr. John Shimmin
and Mr. Stefan Sullivan and the audio/video team at Smule,
Inc.

119

6. REFERENCES

[1] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen
Tu, and Kaiming He, “Aggregated residual transfor-
mations for deep neural networks,” arXiv preprint
arXiv:1611.05431, 2016.

[2] Colin Raffel and Daniel PW Ellis, “Pruning subse-
quence search with attention-based embedding,” in
Acoustics, Speech and Signal Processing (ICASSP),
2016 IEEE International Conference on. IEEE, 2016,
pp. 554–558.

[3] Jeffrey C Smith, Correlation analyses of encoded music
performance, Ph.D. thesis, Stanford University, 2013.

[4] Youngmoo E Kim and Brian Whitman, “Singer iden-
tification in popular music recordings using voice cod-
ing features,” in 3rd International Society for Music In-
formation Retrieval Conference (ISMIR), 2002, vol. 13,
p. 17.

[5] Annamaria Mesaros, Tuomas Virtanen, and Anssi Kla-
puri, “Singer identification in polyphonic music us-
ing vocal separation and pattern recognition methods.,”
in 8th International Society for Music Information Re-
trieval Conference (ISMIR), 2007, pp. 375–378.

[6] Hiromasa Fujihara, Masataka Goto, Tetsuro Kitahara,
and Hiroshi G Okuno, “A modeling of singing voice
robust to accompaniment sounds and its application to
singer identification and vocal-timbre-similarity-based
music information retrieval,” IEEE Transactions on Au-
dio, Speech, and Language Processing, vol. 18, no. 3,
pp. 638–648, 2010.

[7] Mathieu Lagrange, Alexey Ozerov, and Emmanuel Vin-
cent, “Robust singer identification in polyphonic music
using melody enhancement and uncertainty-based learn-
ing,” in 13th International Society for Music Informa-
tion Retrieval Conference (ISMIR), 2012.

[8] Maria Panteli, Rachel Bittner, Juan Pablo Bello, and Si-
mon Dixon, “Towards the characterization of singing
styles in world music,” in Acoustics, Speech and Signal
Processing (ICASSP), 2017 IEEE International Confer-
ence on. IEEE, 2017, pp. 636–640.

[9] Raia Hadsell, Sumit Chopra, and Yann LeCun, “Dimen-
sionality reduction by learning an invariant mapping,”
in Computer vision and pattern recognition, 2006 IEEE
computer society conference on. IEEE, 2006, vol. 2, pp.
1735–1742.

[10] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke,
and Alexander A Alemi, “Inception-v4, inception-
resnet and the impact of residual connections on learn-
ing.,” in AAAI, 2017, pp. 4278–4284.

[11] Diederik Kingma and Jimmy Ba, “Adam: A
method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[12] Jasper Snoek, Hugo Larochelle, and Ryan P Adams,
“Practical bayesian optimization of machine learning al-
gorithms,” in Advances in neural information process-
ing systems, 2012, pp. 2951–2959.

[13] Laurens van der Maaten and Geoffrey Hinton, “Visu-
alizing data using t-sne,” Journal of Machine Learning
Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[14] Michael A Casey, Remco Veltkamp, Masataka Goto,
Marc Leman, Christophe Rhodes, and Malcolm Slaney,
“Content-based music information retrieval: Current di-
rections and future challenges,” Proceedings of the
IEEE, vol. 96, no. 4, pp. 668–696, 2008.

120

