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ABSTRACT

In this paper, we present a gated convolutional neural net-
work and a temporal attention-based localization method for
audio classification, which won the 1st place in the large-scale
weakly supervised sound event detection task of Detection
and Classification of Acoustic Scenes and Events (DCASE)
2017 challenge. The audio clips in this task, which are ex-
tracted from YouTube videos, are manually labelled with one
or more audio tags, but without time stamps of the audio
events, hence referred to as weakly labelled data. Two sub-
tasks are defined in this challenge including audio tagging and
sound event detection using this weakly labelled data. We
propose a convolutional recurrent neural network (CRNN)
with learnable gated linear units (GLUs) non-linearity applied
on the log Mel spectrogram. In addition, we propose a tempo-
ral attention method along the frames to predict the locations
of each audio event in a chunk from the weakly labelled data.
The performances of our systems were ranked the 1st and the
2nd as a team in these two sub-tasks of DCASE 2017 chal-
lenge with F value 55.6% and Equal error 0.73, respectively.

Index Terms— DCASE2017 challenge, weakly super-
vised sound event detection, audio tagging, attention, gated
linear unit

1. INTRODUCTION

Audio classification is a task to classify audio recordings into
different classes. Weakly labelled audio data contains only
the presence or absence of the audio events but without the
time stamps of the audio events [1]. Weakly labelled au-
dio classification has many applications in information re-
trieval [2], surveillance of abnormal sound in public area and
industry use [3]. Some challenges divide audio classifica-
tion into subtasks including audio scene classification [4] and
sound event detection [4]. Recently a large-scale weakly su-
pervised sound event detection task was proposed as a part
of the Detection and Classification of Acoustic Scenes and
Events (DCASE) 2017 challenge [5]. In this challenge, the
data set is a subset of Google Audio Set [6] containing both
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transportation and warning sounds. This task includes an au-
dio tagging (AT) [7] subtask and a weakly supervised sound
event detection (SED) [8] subtask. The AT task aims to pre-
dict one or several labels of an audio recording and SED needs
to predict the time stamps of the audio events.

Many audio classification methods are based on the bag
of frames [9] assumption, where an audio recording is cut
into segments and each segment inherits the labels of the au-
dio recording. However this assumption is incorrect because
some audio events only happen for a short time in an audio
clip. Multi-instance learning (MIL) [1] has been applied to
train on weakly labelled data. Recently state-of-the-art audio
classification methods [10, 11] transform the waveform to the
time-frequency (T-F) representation. Then the T-F representa-
tion is treated as an image which is fed into CNNs. However,
unlike image classification where the objects are usually cen-
tered and occupy a dominant part of the image, audio events
may only occur in a short part in an audio recording. To solve
this problem, some attention models [12] for audio classifica-
tion are applied to attend to the audio events and ignore the
irrelevant features.

In this paper, we propose a unified neural network model
which fits for both the audio tagging task and the weakly la-
belled sound event detection task, simultaneously. The first
contribution of this paper is to apply the learnable gated lin-
ear unit (GLU) [13] to replace the ReL.U activation [14] af-
ter each layer of the convolutional neural network for audio
classification. This learnable gate is able to control the infor-
mation flow to the next layer. When a gate value is near to
1, the corresponding T-F unit is attended. When a gate value
is close to O, then the corresponding T-F unit is ignored. Fol-
lowing the convolutional layers, the recurrent layer is used to
exploit the temporal information. Then a temporal attention
method is proposed to localize the audio events in a chunk.
This attention part helps to capture the audio events and ig-
nore unrelated audio segments hence it is able to detect sound
events from weakly labeled data.

The paper is organized as follows. Section 2 introduces
the gated linear units in the neural network. Section 3 pro-
posed the localization method for audio events from the
weakly labeled data. Section 4 shows experiments. Section 5
summarizes and suggests the future work.
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Fig. 1. The proposed unified model for audio tagging (AT) and weakly supervised sound event detection (SED). The final
outputs are the AT results. SED predictions are extracted from the intermediate localization module. One gated convolutional
block is shown in the dashed rectangle and the whole system has three similar blocks in total.

2. PROPOSED GATED LINEAR UNITS IN CRNN
FOR AUDIO TAGGING

In this section, the convolutional recurrent neural networks
(CRNNSs), mini-batch data balancing, gated linear unit (GLU),
and system fusion will be introduced.

2.1. CRNN

CRNNs have been successfully used in audio classification
tasks [15, 11]. For audio tagging, a CRNN-based method has
been proposed in [16, 12] to predict the audio tags. First the
waveforms of the audio recordings are transformed to T-F rep-
resentations such as log Mel spectrogram. Then convolutional
layers are applied to the T-F representations to extract high
level features. Then a bi-directional recurrent neural network
(Bi-RNN) is adopted to capture the temporal context informa-
tion, and is followed by a feed-forward neural network (FNN)
to predict the posteriors of each audio class at each frame. Fi-
nally, the predicted probability of each audio tag is obtained
by averaging the posteriors of all the frames.

In the training phase, we apply binary cross-entropy loss
between the predicted probability and the ground truth of an
audio recording. The weights of the neural network can be
updated by the gradient of the loss function computed using
back-propagation. The loss can be defined as:

N
Z (P,log0,, + (1 —P,)log(1 —0,)) (1)
n=1

where F is the binary cross-entropy, O,, and P,, denote the es-
timated and reference tag probability vector of the n-th audio
clip, respectively. The number N represents the mini-batch
size.
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2.2. Mini-batch data balancing

The data set defined in this challenge is highly unbalanced,
such that the number of samples of each class varies signifi-
cantly. For example, the ‘car’ class occurred 25744 times in
the data set while ‘car alarm’ only occurred 273 times. This
highly unbalanced data will bias the training to the class with
a large number of occurrences. As we are using mini-batch
to train the network, there is an extreme situation where all
the samples in a mini-batch are ‘car’. To solve this problem
we balance the frequency of different classes in a mini-batch
to ensure that the number of most frequent samples is, on av-
erage, at most 5 times than the least frequent samples in a
mini-batch.

2.3. Gated linear units in CNNs

We propose to use gated linear units (GLUs) [13] as activation
functions to replace the conventional ReLU [14] activation
functions in the CRNN model. GLUs were first proposed in
[13] for language modeling. The motivation of using GLUs
in audio classification is to introduce the attention mechanism
to all the layers of the neural network. The GLUs can control
the amount of information of a T-F unit flow to the next layer.
If a GLU gate value is close to 1, then the corresponding T-F
unit is attended. If a GLU gate value is near to O, then the
corresponding T-F unit is ignored. By this means the network
can learn to attend to audio events and ignore the unrelated
sounds. GLUs are defined as:

=(W+X+b)®o(V+X+e) )

where o is a sigmoid function and ©® is the element-wise prod-
uct and * is the convolution operator. W and V are convolu-
tional filters, b and ¢ are biases. X denotes the input T-F rep-



resentation in the first layer or the feature maps of the interval
layers.

The framework of the model is shown in Fig. 1. A pair
of convolutional networks are used to generate the gating out-
puts and the linear outputs. These GLUs can reduce the gra-
dient vanishing problem for deep networks [13] by providing
a linear path for the gradients propagation while keeping non-
linear capabilities through the sigmoid operation. The output
of each layer is a linear projection (W * X + b) modulated
by the gates o(V * X 4 ¢). Similar to the gating mechanisms
in long short-term memories (LSTMs) [17] or gated recurrent
units (GRUs) [18], these gates multiply each element of the
matrix (W x X + b) and control the information passed on in
the hierarchy [13]. From the feature selection view, the GLUs
can be regarded as an attention scheme on the time-frequency
(T-F) bin of each feature map. This scheme can attend to the
T-F bin with related audio events by setting its value close to
one otherwise to zero.

2.4. Fusion of system results

Fusion of system results is empirically important to improve
the robustness of systems. In this work, we adopt two-level
fusion strategies. As neural networks are trained by the gra-
dient based optimization algorithm with a fixed or dynami-
cally changing learning rate, the performance will be grad-
ually better but fluctuant along the epochs. Hence, our first
fusion strategy is conducted among the epochs in the same
system. This will improve its stability of the system. The sec-
ond fusion strategy is to average the posteriors from different
systems with different configurations.

3. PROPOSED LOCALIZATION FOR WEAKLY
SUPERVISED SOUND EVENT DETECTION

Different from the audio tagging task without requiring to
predict the temporal locations of each audio event which is
presented in Sec. 2, the sound event detection (SED) task
needs to predict the temporal locations of each occurring
audio event. The problem would be more difficult if there
were no strong labels, namely frame-level labels. This is the
so-called weakly supervised SED defined in the task 4 of
DCASE2017 challenge.

As shown in the localization module of Fig. 1, an addi-
tional feed-forward neural network with softmax as the ac-
tivation function is introduced to help to infer the temporal
locations of each occurring class. To keep the time resolution
of the input whole audio spectrogram, we adjust the pool-
ing steps in the CNNs shown in Fig. 1 by only pooling on
the spectral axis while not pooling on the time axis. So the
feed-forward network with sigmoid as the activation function
shown in Fig. 1 will perform classification at each frame,
meanwhile the feed-forward with softmax as the activation

123

function shown in Fig. 1 will attend to the most salient frames
for each class.

If we define the FNN-softmax output Zo.(t) € RX as the
localization vector where K is the number of output classes,
then it is multiplied with the classification output O(t) € R¥
at each frame to obtain O'(t) € RX:

O'(t) = O(t) ® Zioe (1) 3)

where © represents element-wise multiplication. To obtain
the final acoustic event tag predictions, O’ (¢) should be aver-
aged across the time axis in an audio clip to obtain the final
output O” € RX which is defined as the weighted average
of O'(t) as following,

T—1 ~/

=0 O'(t)

T—1

t=0 Zloc(t)
where T is final frame number and the division is element
wise division. The back-propagation loss is the same as in the

audio tagging task by comparing the reference labels with the
final output O”.
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4. EXPERIMENTS AND RESULTS

4.1. Experimental setup

The task4 of DCASE2017 challenge employs a subset of
Google Audio Set [6]. Audio Set consists of an large ontol-
ogy of 632 sound event classes and a collection of 2 million
human-labeled sound clips (mostly 10-second length) drawn
from 2 million YouTube videos. The ontology is specified
as a hierarchical graph of event categories, covering a wide
range of human and animal sounds, musical instruments and
genres, and common everyday environmental sounds. The
subset used in the task consists of 17 sound events divided
into two categories: “Warning” and “Vehicle”.

Log Mel filter banks and Mel frequency cepstral coeffi-
cients (MFCCs) are used as features in our system. Each au-
dio recording feature has 240 frames by 64 mel frequency
channels. As shown in Fig. 1, three gated convolutional
neural network blocks are adopted. Each convolutional net-
work has 64 filters with 3*3 size. The pooling size is 2*2
for the audio tagging sub-task while the pooling size 1*2 for
the sound event detection sub-task, which means no pooling
is applied along time axis to maintain the time resolution for
sound event detection. One bi-directional gated recurrent neu-
ral network with 128 units is used. The feed-forward neural
network has 17 output nodes where each of them is corre-
sponding to an audio event class. Adam [19] optimizer is ap-
plied and the learning rate is fixed to be 0.001. These hyper-
parameters are selected empirically.

The source codes for this paper can be downloaded from
our webpage on Github'.

Ihttps://github.com/yongxuUSTC/dcase2017_task4_
cvssp



4.2. Results

In this section, the audio tagging results and the weakly su-
pervised sound event detection results will be given.

4.2.1. Audio tagging

Table 1 presents the F value (F1), precision and recall [5]
comparisons for the audio tagging sub-task on the develop-
ment set and the evaluation set. “CRNN-logMel-noBatchBal”
denotes the CRNN system trained without mini-batch data
balancing strategy. The DCASE2017 baseline model was a
multilayer perceptron (MLP) based method [5]. Our proposed
CRNN systems show much better performance. Comparing
the CRNNs with and without mini-batch balancing, we see
that data balancing is important to get higher all of F1, preci-
sion and recall scores. The proposed gated CRNN also gains
effective improvement. The final fusion system combines the
systems trained on different features, namely log Mel and
MFCC. On the evaluation set which is a blind test, our sys-
tem ranks st in this audio tagging challenge according to the
more comprehensive F1 score. Our CNN-ensemble [20] and
Frame-CNN [21] ranks 2nd and 3rd, respectively. Note that
our final fusion system has a notable absolute 3% improve-
ment over the 2nd system [20].

Table 1. F1, Precision and Recall comparisons for the audio
tagging sub-task on the development the evaluation sets.

Dev-set F1  Precision Recall
DCASE2017 Baseline [5] 10.9 7.8 17.5
CRNN-logMel-noBatchBal  42.0 47.1 38.0
CRNN-logMel 52.8 499 56.1
Gated-CRNN-logMel (i) 56.7 53.8 60.1
Gated-CRNN-MFCC (ii) 52.1 51.7 52.5
Fusion (i+ii) 57.7 56.5 58.9
Eval-set F1  Precision Recall
DCASE2017 Baseline [5] 18.2 15.0 23.1
CNN-ensemble [20] 52.6 69.7 42.3
Frame-CNN [21] 49.0 53.8 45.0
Our gated-CRNN-logMel 54.2 58.9 50.2
Our fusion system 55.6 61.4 50.8

4.2.2. Weakly supervised sound event detection (SED)

The results of F1 and Error rate comparisons on the devel-
opment set and the evaluation set for the 2nd SED task are
given in Table 2. Our proposed gated-CRNN-logMel method
outperforms the DCASE2017 baseline [5]. With the fusion
system, we rank 2nd as a team in the sound event detection
sub-task. The 1st place team achieves 0.66 Error rate and
55.5% F1 score [20]. However, [20] used independent one
frame input for SED, and it assumed that audio events oc-
curred everywhere along the chunk. Our method is a unified
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Fig. 2. An example for predicting locations along 240
frames for “10i60V1RZkQ_210.000_.220.000.wav” using the
proposed localization method.

method without any assumption. Attention based localization
seems to be more reasonable for weakly supervised SED.

Fig. 2 shows an example for predicating temporal loca-
tions along 240 frames for occurring audio events, namely
‘train’ and ‘train horn’. Our proposed localization method can
almost successfully detect the accurate temporal locations for
occurring events, except for the small segment false alarm for
the ‘train horn’.

Table 2. The results of F1 and Error rate comparisons on the
development set and the evaluation set for the sound event
detection sub-task among several methods across the 17 au-
dio event tags.

Dev-set F1 Error rate
DCASE2017 baseline [5]  13.8 1.02
Gated-CRNN-logMel 47.20 0.76
Fusion 49.7 0.72
Eval-set F1 Error rate
DCASE2017 baseline [5] 28.4 0.93
Gated-CRNN-logMel 47.50 0.78
Fusion 51.8 0.73

5. CONCLUSIONS

In this paper, we proposed a unified method for audio tag-
ging and weakly supervised sound event detection. A gated
CRNN method is proposed, where the learnable gated linear
units can help to select the most related features correspond-
ing to the final labels. A temporal attention based localization
method is also proposed to localize the occurred events along
the chunk in a weakly supervised mode. The final system
puts us in the 1st place with 57.7% F1 score on the audio tag-
ging sub-task of DCASE2017 challenge. We also rank 2nd as
a team in the weakly supervised sound event detection sub-
task. In the near future, we will evaluate our proposed gating
and attention methods on Google Audio Set [6].
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