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ABSTRACT

The introduction of large scale datasets such as ImageNet,
AudioSet, YouTube-8M and Kinetics has greatly advanced
the state-of-the-art in machine perception. These datasets
primarily focus on single modalities of audio or visual cues.
We seek to broaden the scope in machine perception to multi-
modal understanding with this work, which introduces the
Facebook Acoustic Events dataset. This is a human labeled
dataset which contains acoustic event labels of 500K seg-
ments from a random sample of public Facebook videos.
Combined with its visual counterpart, labeled with scenes,
objects and actions, we hope to make research in multi-modal
learning and video understanding more accessible and conve-
nient. We provide a well balanced dataset for acoustic event
classification together with comprehensive benchmarks on
both single and multimodal experiments on acoustic event
detection using novel CNN based architectures.

Index Terms— acoustic event detection, multi-modal
video understanding, machine perception, video database

1. INTRODUCTION

In the past, we’ve seen that the collation of larger and larger
datasets directly enabling the success of large scale percep-
tual understanding. However, most datasets focus on a single
modality of either audio or visual cues. We provide the Face-
book Acoustic Events dataset, a large scale human labeled au-
dio dataset for acoustic event classification. Combined with
the Facebook Visual Events dataset, which provides labels for
scenes, objects, and actions of the same video clips, we hope
to accelerate research in the area of multimodal representation
learning.

The Facebook Acoustic Events dataset consists of S00K
publicly available video clips each about 10s long and labeled
with 529 different audio classes. In order to provide the most
value to the research community, we have chosen to use the
AudioSet [1] ontology for labeling which provides a compre-
hensive catalog of acoustic events. This also enables research
across different datasets.

While AudioSet can be considered the closest work to
ours, both from the perspective of the data and scale, we be-
lieve that our dataset can provide additional value by
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e pairing it with the Facebook Visual Events dataset that
expands the label set to visual annotations of objects,
scenes, and actions

e a more balanced distribution of acoustic events with a
smoother long tail driven by a different distribution of
Facebook public available videos.

A review of the audio literature reveals a rich history in
the development of datasets and taxonomies. Nakatani et al.
[2] developed an ontology for computational auditory scene
analysis, Burger et al. [3] introduced a set of 42 distinct
noisemes for manual annotation of noise segments, Salamon
et al. [4] provided a dataset and taxonomy for urban sound re-
search, Sager et al. [5] developed a large scale semantic on-
tology for audio content analysis, and Piczak [6] introduced
a dataset for environmental sound classification. However,
these datasets are typically orders of magnitude smaller than
the 500k publicly available videos and approximate 2 million
annotations of the Facebook Acoustic Events dataset.

In the context of video understanding, there have been
many previous work such as [7], [8], [9], [10], [11], and
[12] which explore using multiple modalities. However, cur-
rent datasets such as YouTube8M [13], AVA [14], and Ki-
netics [15] tend to focus on a single modality only, i.e. audio,
video, and human actions respectively. With the combination
of the Facebook Acoustic Events Dataset and the Facebook
Visual Events dataset, we hope to facilitate advancements in
multi-modal video understanding, fusion and representation
learning.

In addition to describing the creation of the dataset and an-
alyzing its distribution, we also provide experimental results
for acoustic event detection using audio and audio-visual fea-
tures with comparisons across various CNN based architec-
tures.

2. DATASET

The Facebook Acoustic Events dataset provides audio labels
to 500k randomly selected video segments of roughly 10 sec-
ond duration from publicly available Facebook videos. While
this paper focuses on acoustic events, the visual counterpart
of this dataset with labeled scenes, objects, and actions.

On average, each of the 10 second video segments have 3
to 4 acoustic event labels, capturing the information of both
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Fig. 1: Distribution of the number of annotations per category in the
Facebook Acoustic Events dataset.

foreground and background sounds. The distribution of the
frequency of labels in the dataset is shown in Fig. 1, where
classes like SPEECH and VEHICLE can be seen to be of the
most frequently occurring classes. Music categories were not
the focus of this initial offering, but we are continuing to work
on expanding labels for future releases. More details on the
dataset distribution is shared in section 2.2.

The Facebook Acoustic Events dataset inherits the same
ontology as AudioSet, with one additional label: SLOW MO-
TION. We decided to use the AudioSet ontology because of
(1) its high coverage on different acoustic events occurring
in video data, and (2) to facilitate research across different
datasets and the ability for knowledge transfer between the
two different distributions of data. The reason that we intro-
duced the SLOW MOTION label is because of the prevalence
of videos which were taken in slow motion mode, making the
corresponding audio either very hard to distinguish or possess
different acoustic characteristics than the original video.

2.1. Dataset Construction

In this section we describe the construction of the Facebook
Acoustic Events dataset. This can be broken down into:

1. Generating the candidate set of videos to be included in
the dataset

2. Training a deep model on AudioSet data to provide po-
tential acoustic event labels for each video

3. A manual human review to remove incorrect labels

4. A second pass of human review to add back or revise
concepts to improve precision and recall

The video candidates are randomly selected from public avail-
able Facebook video posts and shot boundary detection [16]
is used to identify 10s segments of visual activity in each
video. The same segments are used for audio and visual la-
beling.

To accelerate the effort of human review, we trained a
deep convolutional neural network on the AudioSet data and
used this model to bootstrap a set of candidate annotations
per video clip. In order to remove the bias caused by the un-
balanced AudioSet data, we re-calibrate the model confidence
based on the recall of the ground truth labels as follows: For
each acoustic event class, we generate a calibration table that
maps model confidence to ground truth label recall. We pick
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a recall threshold r and find the corresponding model confi-
dence c; for each label at ». Now for each clip we use the
model to produce a score s; for each label and a ratio s;/c;.
We select the label candidates for each video as the labels
with the top k ratios. To define r and k we ran A/B tests with
the human annotators, asking them to rate which configura-
tion produced the best human rated labels. By doing this, we
found = 0.3 and k£ = 10 to work the best.

2.1.1. Quality Assurance

After pre-populating each video clip with acoustic event can-
didates, we do a manual review pass over the data by asking
the annotators to remove any incorrect concepts. Since there
are certain sounds which are hard to distinguish, we let the
annotators watch the 10 second video clip as well. However,
annotators are specifically told to only use the visual signal to
confirm acoustic concepts and to be careful to not accidentally
label an acoustic event because of the existence of matching
visual cues, e.g. annotating a ’dog barking” just because a
dog is seen in the video, but without barking being present in
the audio.

In order to calibrate and train annotators, we used a high
quality 2-pass annotated subset of video-clips. In addition,
different annotators overlapped on small subsets of the data.
The overlapping annotation results are used to compute a per-
formance metric for each annotator. To compute this met-
ric, we calculate the average percentage of overlapping labels
between the annotator and all other annotators labeling that
video. During auditing by a specially trained review team,
this performance metric is used to detect under performing
reviewers. In addition, a random subset of clips for each an-
notator is reviewed as well. In case an underperforming an-
notator has been detected, we roll back all annotation results
for re-labeling in order to ensure a high quality dataset.

After the first review pass to remove all incorrectly auto-
generated labels, we perform a second pass that adds in miss-
ing labels to improve recall.

2.2. Dataset Properties

With the above mentioned data collection methodology, we
have been able to annotate a total of 521, 547 video clips. A
detailed histogram of the number of annotations per video can
be seen in Fig. 2. On average, each video in the Facebook
Acoustic Events dataset has been annotated with 3.1 labels.
Given that video clips have a duration of approximate 10 sec-
onds, we can see that the data is quite densely labeled.

Fig. 3 dives deeper into the data and compares the distri-
bution of the top 30 most frequent classes of the Facebook
Acoustic Events dataset with AudioSet. The histogram in
blue belongs to the Facebook Acoustic Events dataset, while
the histogram in red belongs to AudioSet. It can be observed
that the class distribution in the Facebook Acoustic Events
dataset is more balanced than that of AudioSet. This helps to



significantly mitigate the bias of a prior data distribution.
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Fig. 2: Histogram of the number of annotations per video. A smooth
distribution can be observed. Most of the videos have around 2-4
labels, with an average of 3.1.
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Fig. 3: Visualization of the label frequency distribution on the 30
most occurring classes. Red is AudioSet, blue is Facebook Acous-
tic Event dataset. The top 30 concepts are different in the different
datasets.
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Fig. 4: Correlation between each acoustic concept and its most cor-
related visual concept in sorted order. The small bright region to the
right represents acoustic signals which are highly correlated with
one or more visual labels, whilst the larger, darker region on the left
shows a significant amount of acoustic events are uncorrelated with
any visual label.
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To analyze the relationship between visual and acoustic
labels in our dataset, we computed the class-wise correlations
between the acoustic and visual concepts.

Given K videos labeled with M acoustic classes and N
visual classes, we use matrix A € RM*¥K (where Ap, i TED-
resents the myj, label on the k;; video) to represent the audio
labels and V' € RN <K to represent the visual labels. We cal-
culate the correlation of the my;, acoustic concept and the nyy,
visual concept as:

(K> AL — CCARIIK Ve — (2 Va)]
where A,, is the m;y, column of A and V,, is the ny;, column
of V.

corr =
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The correlations of each acoustic event with its most
correlated visual signal are shown in Fig. 4. Each unit
on the x axis represents a different acoustic event and the
brighter the color, the higher the correlation to one or more
visual labels. We see a limited number of acoustic sig-
nals for which there is high synchronization with visual sig-
nals. These are the classes that one would intuitively expect,
such as ocean (visual concept) and waves_surf (acoustic
concept), computer_keyboard and typing, thunder and
thunderstorm etc. However, over 75.3% of the concepts
actually have correlation less than 0.1 as seen in the large
region of dark red on the left of the figure. This suggests
that the audio signal is bringing in new information, that is
not available from the visual modality. Because of this, we
believe that this introduces some evidence that using multi-
modal signals will be beneficial over single-modality signals
for video understanding.

2.3. Dataset Release

The Facebook Acoustic Events dataset will be released as a
structured file containing links to the publicly available videos
together with start and end times of the 10s segment labeled.

3. BENCHMARKS

Metrics
Model MAP | AUC
Single Visual Stream 10.83 | 54.62
Single Acoustic Stream [17] 30.91 | 80.29
Single Acoustic Stream VGG like 31.22 | 80.07
Two Stream with Simple Concat 31.73 | 78.08
Two Stream with Simple Add 32.05 | 81.56
Two Stream with Content Gating 3346 | 81.51

’ Two Stream with Multi-Task Training H 34.27 \ 81.58

With the release of the Facebook Acoustic Events dataset,
we provide benchmarks that help evaluating other models
trained on the same dataset and demonstrate the value of mul-
timodal training for acoustic event detection. In section 3.1,
we describe a baseline architecture for the acoustic event de-
tection task and compare the numbers to the modified ResNet
in [17]. This provides baseline numbers for understanding
the complexiy of the dataset. In section 3.2, we present and
evaluate several simple late fusion strategies for multimodal
joint training. We show that improvements in the accuracy
of acoustic event detection can be obtained by using the raw
visual features for training as well as by using visual labels
as supervision and training towards labels of both modalities.
The audio signal is preprocessed to 128 dimensional log-mel
spectrogram while the visual signal follows the configuration
of [18], using a single RGB image as input.

The 521547 video clips have been divided into a training
and test set. 90% of the video clips are used for training, the
remaining 10% for testing.



3.1. Acoustic Event Understanding

We have evaluated both a VGG like model and the modified
ResNet model from [17] The VGG like model is composed
of 12 convolutional layers and 5 pooling layers. Each of the
3 x 3 (stride 1 x 1) convolutional layers is followed by batch-
normaliztion and a ReLU activation. After each two such con-
volutional layers, we perform pooling with a kernel of 2 x 2
and stride of 2 x 2. The ResNet model that was evaluated is the
same as described in [17], with the stride of 2 removed from
first 7 x 7 convolution. Both models have a global pooling
layer at the end. The last convolutional layer is followed by a
sigmoid activation and the model is trained with cross-entropy
loss. From table 3, we can see the VGG like model performs
0.31% better on the Facebook Acoustic Events dataset.

3.2. Multi-Modal Joint Training

Acoustic
Feature

Self-Gating
Sigmoid(BN(wx+b))x

Self-Gating -

Sigmoid(BN(wx+b))ox

ResNet 50

Visual

Feature ResNet 50

Fig. 5: Multi-Modal Joint Training Architecture.

To analyze the potential of the dataset for research on joint
modeling, we evaluated the performance of raw acoustic and
visual features alone for detecting acoustic events. To fairly
compare the performance between using only acoustic or only
visual features, we opted to use a ResNet-50 like architecture
for both modalities. When using only the visual signal to pre-
dict acoustic labels with a single stream ResNet-50, we obtain
a MAP of 10.83%. Compared to the baseline of 30.91% MAP
of using acoustic signal as input to predict acoustic labels, we
can see that visual information alone has its limitations in dif-
ferentiating the acoustic information. This is in line with our
observation in section 2.2 that there are a significant number
of visual and acoustic event which have low correlation with
any of the concepts in the other modality.

As a next step, we evaluated the use of both visual and
acoustic information. We decided to use a two stream archi-
tecture [18] [19], where one stream is used for the acoustic
information while the other stream is used for the visual in-
formation. We used the similar ResNet-50 architecture for
both streams of the network, but for the acoustic stream, we
enlarged the size of the final pooling kernel to make sure
the entire audio can be fed into the network. For the visual
stream, we randomly selected one frame from the clip as per
Simonyan et al. in [18]. We then applied different strate-
gies to fuse the two streams (late fusion). These strategies
include concatenation, outer product, element-wise multipli-
cation, and element-wise addition. We found that the MAP
when using a simple concatenation is already slightly bet-
ter than the single stream model. However, using element-
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wise addition outperforms the other approaches with a MAP
of 32.05% clearly showing that visual information adds addi-
tional value for acoustic event detection. We omit the results
of the other fusion strategies for brevity since they were not
as performant.

We also explored more complex architectures and are
proposing an architecture that uses a self-gated activation
function [20] with batch normalization [21] as a learn-
able content gating [22] layer on each stream. This is
then fused by element-wise addition. The self-gated acti-
vation function can be formulated as: given input x and
learnable weights w and bias b, it computes the output
y = sigmoid(BN(wz + b)) ® x [20] as a learnable con-
tent gate [22] on each stream, where ® is the Hadamard
product. We observed that end-to-end training without batch-
normalization in the self-gated activation function yielded
poor performance. With this model, we achieved an addi-
tional 1.31% gain in MAP compared to the best performing
element-wise fusion. We believe that the context gating is
learning to suppress features from both modalities that are
irrelevant to the task and emphasize the important features.

Finally, we adopt our best performing model and conduct
multi-task training. Both acoustic and visual signals are used
as supervision to predict acoustic and visual concepts. In
order to have consistent evaluation metrics, we only report
the performance on the acoustic events. We can see that this
achieves the best performance with an MAP of 34.27%, prov-
ing that the additional signal from a different modality can
help to learn a more discriminative representation [23] and
gain a better understanding of the task.

4. CONCLUSION

With this paper, we introduce the Facebook Acoustic Events
dataset, a collection of 500K labeled 10s publicly available
video clips with a label ontology inherited from AudioSet.
Combined with the Facebook Visual Events dataset, which
provides labels for scenes, objects, and actions of the same
video clips, we hope to accelerate research in the areas of
machine perception such as acoustic event detection as well
as multimodal video understanding. Moreover, we have pro-
vided benchmarks using CNNs for acoustic event detection
using audio as well as audio-visual modalities. We showed
that (1) models trained on audio-visual signals outperform
audio or visual only models and (2) the best performance of
34.27% MAP and an AUC of 81.58% can be achieved us-
ing a two stream architecture with content gating trained in a
multi-task fashion.
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