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ABSTRACT
Source separation (SS) aims to separate individual sources
from an audio recording. Sound event detection (SED) aims
to detect sound events from an audio recording. We propose
a joint separation-classification (JSC) model trained only on
weakly labelled audio data, that is, only the tags of an au-
dio recording are known but the time of the events are un-
known. First, we propose a separation mapping from the
time-frequency (T-F) representation of an audio to the T-F
segmentation masks of the audio events. Second, a classifi-
cation mapping is built from each T-F segmentation mask to
the presence probability of each audio event. In the source
separation stage, sources of audio events and time of sound
events can be obtained from the T-F segmentation masks. The
proposed method achieves an equal error rate (EER) of 0.14
in SED, outperforming deep neural network baseline of 0.29.
Source separation SDR of 8.08 dB is obtained by using global
weighted rank pooling (GWRP) as probability mapping, out-
performing the global max pooling (GMP) based probability
mapping giving SDR at 0.03 dB. Source code of our work is
published.

Index Terms— Sound event detection, source separation,
weakly labelled data.

1. INTRODUCTION

Sound event detection (SED) aims to detect specific audio
events from an audio recording. SED has many applications
in our daily life, for example, detecting a baby cry at home,
detecting the tapping sound in an office and monitoring the
fire alarm or gunshot [1] in a public area. On the other hand,
source separation (SS) aims to separate individual sources
from a recording [2] and can be used in SED [3].

Many current SED models are trained using supervised
learning methods [4, 5, 6]. These supervised learning meth-
ods need labelled onset and offset time of the audio events,
which we call strongly labelled data (SLD). Labelling the
SLD is time consuming and difficult to scale [4]. In addition,
the onset and offset time of some audio events are ambigu-
ous due to the fade in and fade out effect, for example, the
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approaching and moving away of a car. In contrast to the
SLD, many audio datasets contain only the tags, that is, the
presence or absence of audio events in an audio recordings.
This is referred to as weakly labelled data (WLD) [7]. Many
audio tagging datasets are weakly labelled [8, 9, 10] and are
often larger than strongly labelled SED datasets [4, 9]. To
utilize the WLD, some methods including joint detection-
classification (JDC) model [11], attention and localization
model [12] and multi-instance learning methods [7] have
been used. Source separation can be used for sound event
detection [3]. Unsupervised source separation methods in-
cluding computation audio scene analysis (CASA) uses time-
frequency (T-F) masking to emulate how human performs
source separation [13]. Supervised source separation meth-
ods need clean sources for training [2] and have achieved
state-of-the-art performance.

In this paper, a joint separation-classification (JSC)
model is proposed to train the source separation model on
the WLD. The proposed framework consists of two parts.
The first part is a separation mapping from the T-F represen-
tation of an audio signal to the T-F segmentation masks of
each audio event. The second part is a classification mapping
from each segmentation mask to its corresponding audio tag.
In the source separation stage, separated sources of different
classes can be obtained from the T-F segmentation masks.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses convolutional neural network. Section 3 pro-
poses the source separation framework. Section 4 shows ex-
perimental results. Section 5 concludes and proposes the fu-
ture work.

2. CONVOLUTIONAL NEURAL NETWORK

Convolutional neural networks (CNNs) are used initially in
image classification [14] and recently have been very success-
ful in audio processing, including speech recognition and au-
dio classification [15]. In audio classification, the waveform
is transformed to T-F representations which are treated as an
image and fed as input to a CNN [15]. A CNN consists of
several convolutional layers and each contains several train-
able filters trained to learn some local patterns in the feature
map. Downsampling usually follows some convolutional lay-
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Fig. 1. Framework of the joint separation-classification
model.

ers to reduce the size of the feature maps. Finally a global
max pooling on each feature map [15] is usually used to se-
lect the most prominent T-F unit in each feature map followed
by a fully connected neural network for classification [15].

3. PROPOSED JOINT
SEPARATION-CLASSIFICATION MODEL

In this section, a joint separation-classification (JSC) model
trained on WLD is proposed. This idea is related to the ob-
ject localization from weakly labelled images [16, 17], where
only the labels of an image are known, but the location of
the objects are unknown. In [16] a class activation mapping
(CAM) is applied to highlight the class-specific discrimina-
tive regions to localize objects from weakly labelled data.

Similar to the weakly labelled image data [16, 17], many
audio datasets [4] only contain the tags of an audio recording,
but the happening time of the events are unknown. The pro-
posed separation-classification model is shown in Fig. 1. The
input audio waveform x is transformed to a time-frequency
(T-F) representation X(t, f) such as a spectrogram or log Mel
spectrogram. To simplify the notation we abbreviate X(t, f)
as X . The first part of the model is a separation mapping
g1 : X 7→ h from the input T-F representation X to the T-F
segmentation masks h = [h1, ..., hK ], where K is the num-
ber of audio tags and hk is the T-F segmentation mask of the
k-th audio tag. The values on each segmentation mask are be-
tween 0 and 1 for source separation. The mapping g1 can be
parametrized by trainable parameters. The second part of the
model is a classification mapping g2 : hk 7→ yk, k = 1, ...,K
from each segmentation mask to its corresponding audio tag,
where yk ∈ [0, 1] represents the presence probability of the
k-th event in an audio recording. A compound model g2 ◦ g1
is a mapping from the input T-F representation X to the audio
tags yk, k = 1, ...,K. In the training phase, the model can be
trained end-to-end from X to yk, k = 1, ...,K. In the sep-

aration stage, the T-F representation of an input waveform is
passed through the mapping g1 to get the segmentation masks.
Then the input T-F representation is multiplied by each seg-
mentation mask to obtain the separated T-F representation of
each event with corresponding audio tag. Then an inverse T-F
transform is applied on each separated T-F representation of
each audio tag using the phase of the original waveform to
obtain its separated waveform of each audio tag (Fig. 1). Fi-
nally, SED result of each audio event can be obtained from its
corresponding segmentation masks.

3.1. Separation mapping

We apply log Mel spectrogram as input T-F representation,
which is a good representation for audio tagging [15]. We
apply a CNN to model the separation mapping g1. The CNN
modeled JSC model is shown in Fig 2. We remove all the
downsampling layers to keep the resolution of each T-F seg-
mentation mask the same as the input T-F representation. This
high resolution T-F segmentation mask is useful for source
separation. The number of feature maps in the last convolu-
taional layer is the same as the number of audio events to sep-
arate followed. Then a sigmoid nonlinearity is applied on the
feature maps to obtain the segmentation to ensure the values
on segmentation masks are between 0 and 1. This segmen-
tation mask of this T-F representation is similar to the class
activation mapping (CAM) in weak image localization [16].

3.2. Classification mapping

The classification mapping g2 maps each segmentation mask
to the presence probability of its corresponding tag. Classifi-
cation mapping can be modeled by, for example, global max
pooling (GMP) [16], global average pooling (GAP) [18, 16]
or global weighted rank pooling (GWRP) [19].

3.2.1. Global max pooling

Global max pooling (GMP) [15] is defined as follows:

g(hc) = max
t,f

hc(t, f) (1)

where hc represents the c-th segmentation mask and t, f are
indexes of time and frequency bin. GMP returns the highest
value on each feature map. GMP performs well in classifica-
tion but tends to underestimate the T-F units of events in each
segmentation mask [16] because only the T-F unit with the
highest value is passed to the next layer (Fig. 3).

3.2.2. Global average pooling

Global average pooling (GAP) [18] is defined as:

g(hc) =
1

M

∑
t,f

hc(t, f) (2)
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Fig. 2. Convolutional neural network (CNN) based weak source separation. Log Mel spectrogram is used as T-F representation.
Separation mapping is modeled by a CNN. Classification mapping is applied on each T-F segmentation mask to obtain the
prediction of audio tags. In separation stage, the separated waveforms are obtained from the segmentation masks.

where M is the number of time frames multiplied number of
frequency bins. In contrast to GMP, GAP averages all the
values of T-F units on a segmentation mask, which tends to
overestimate the events in a segmentation mask [19] (Fig. 3).

3.2.3. Global weighted rank pooling

Global weighted rank pooling (GWRP) is proposed in [19]
and is a generalization of GMP and GAP. Define Ic =
{i1, ...in} as an index set in descending order of the val-
ues on feature map hc, i.e. (hc)i1 ≥ (hc)i2 ≥ ... ≥ (hc)in .
Then GWRP is defined as

g(hc) =
1

Z(dc)

N∑
j=1

(dc)
j−1(hc)ij (3)

where 0 ≤ dc ≤ 1 is a hyper parameter and N = TF is
the number of T-F units in a segmentation mask and Z(dc) =∑N

j=1(dc)
j−1 is a normalization term. When dc = 0 and

dc = 1, GWRP simplifies to GMP and GAP, respectively.

3.3. Sound event detection

The segmentation masks obtained from the JSC model con-
tains the presence of the audio events in a T-F representation
(Fig 3). Hence we achieved sound event segmentation in T-F
domain. In this paper we simply average out the frequency
axis to obtain the SED in the time axis.

4. EXPERIMENTS

In this section we apply the proposed JSC model on the mod-
ified detection of rare audio sound events dataset from Task
2 of DCASE 2017 challenge [10]. This dataset consists of
rare events including “babycry”, “gunshot” and “glassbreak”.
The background sounds come from the acoustic scene dataset

from Task 1 of the DCASE 2017 data challenge [10]. To in-
vestigate WLD, we extract several rare audio events from the
dataset and mix the rare audio events with 4 second clips from
the acoustic scene dataset. Altogether 1008 clips are created
for training, with 1/3 are single labelled and 2/3 are multil-
abelled. Only the presence or absence of the audio events in
an audio clip is known. The audio mixtures are converted to
monaural, and the sampling rate is 16 kHz. A log Mel spec-
trograms with 64 frequency bins are used as the T-F represen-
tation. In the Fourier transform a Hamming window with size
of 1024 and overlap of 280 samples is used to ensure that there
are 128 frames in each 4 seconds clip. We apply a Visual Ge-
ometry Group [14] like CNN consists of 8 convolutional lay-
ers. Each layer consists of 64 feature maps followed by batch
normalization (BN) [20] and ReLU nonlinearity. Dropout rate
of 0.3 is applied to regularize overfitting. The value of dc in
GWRP is set as 0.999. These hyper-parameters are chosen
empirically, but they do not affect the result much.

The learned segmentation masks using different classifi-
cation mappings are visualized in Fig 3. The first column
shows the log Mel spectrogram of a “babycry”, a “glassbreak”
and a “gunshot”. The second column shows the ideal binary
mask (IBM) [21] of the audio events. Column 3 to 5 shows the
segmentation masks learned using GMP, GAP and GWRP as
classification mapping, respectively. It can be observed that
GMP tends to underestimate the presence of the audio events
in the T-F segmentation mask. GAP and GWRP performs
better in learning the T-F segmentation mask on this dataset.

Table 1 shows the separation results of different audio tags
evaluated on SDR, SIR and SAR [22]. The results of IBM
[21] and without separation are listed as baselines. GWRP
performs better in terms of SDR and SAR in babycry, glass-
break, gunshot and background than without separation, GMP
and GAP. Table 1 shows that source separation using the pro-
posed JSC model outperforms significantly the baseline with-
out separation. Table 1 also shows how far JSC is from the
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Fig. 3. Visualization of the segmentation masks using different global pooling strategy. The first column shows the log Mel
spectrogram of babycry, glassbreak and gunshot sound in noisy background. The second column shows the ideal binary mask.
The third to the fifth column shows the T-F segmentation masks learned using global max pooling (GMP), global average
pooling (GAP) and global weighted rank pooling (GWRP), respectively.

Table 1. Separation results of mixed rare events with background sound using different methods.
Babycry Glassbreak Gunshot Avg.
SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR

w/o separation -3.66 -3.66 inf -7.52 -7.52 inf -6.48 -6.48 inf -5.89 -5.89 inf
IBM 20.14 34.73 20.32 18.62 37.35 18.70 15.24 33.04 15.35 18.00 35.04 18.12
Proposed GMP 2.99 15.43 5.85 -1.79 0.79 10.05 -1.11 1.66 9.84 0.03 5.96 8.58
Proposed GAP 9.58 22.61 10.21 6.35 17.81 8.49 2.25 13.05 4.73 6.06 17.82 7.81
Proposed GWRP 13.36 24.61 14.20 12.29 28.06 12.86 -1.41 13.93 -0.28 8.08 22.20 8.93

Table 2. Frame wise equal error rate (EER) of mixed rare
events with background sound using different method.

babycry glassbreak gunshot avg.
baseline DNN 0.27 0.26 0.34 0.29
weak GMP 0.27 0.30 0.32 0.30
weak GAP 0.11 0.12 0.19 0.14
weak GWRP 0.11 0.10 0.20 0.14

IBM in source separation.

Table 2 shows the frame wise sound event detection equal
error rate (ERR) using different global pooling strategies.
GAP and GWRP outperforms the baselines DNN and GMP.
The results are correspondent to the visualization of segmen-
tation masks in Fig 3. and Table 1. We published source code
of our work1.

1https://github.com/qiuqiangkong/ICASSP2018_joint_separation_classification

5. CONCLUSION

In this paper a joint separation-classification (JSC) model has
been presented for sound event detection and source separa-
tion. A separation mapping from the input time-frequency
representation to the segmentation masks and a classification
mapping from each segmentation mask to each audio tag are
proposed. We obtain frame wise sound event detection EER
of 0.14, which outperforms the DNN baseline, and average
source separation SDR of 8.08 using global weighted rank
pooling compared to SDR of 0.03 using global max pooling.
In future, we will research more on improving the source sep-
aration quality using the JSC model.
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