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huy.phan@eng.ox.ac.uk, {krawczyk,gerkmann}@informatik.uni-hamburg.de,
mertins@isip.uni-luebeck.de

ABSTRACT

We present in this paper two loss functions tailored for rare au-
dio event detection in audio streams. The weighted loss is de-
signed to tackle the common issue of imbalanced data in back-
ground/foreground classification while the multi-task loss enables
the networks to simultaneously model the class distribution and the
temporal structures of the target events for recognition. We study
the proposed loss functions with deep neural networks (DNNs) and
convolutional neural networks (CNNs) coupled with state-of-the-art
phase-aware signal enhancement. Experiments on the DCASE 2017
challenge’s data show that our system with the proposed losses sig-
nificantly outperforms not only the DCASE 2017 baseline but also
our baseline which has a similar network architecture and a standard
loss function.

Index Terms— audio event detection, convolutional neural net-
works, deep neural networks, weighted loss, multi-task loss

1. INTRODUCTION
There is an ongoing methodological trend in computational auditory
scene analysis, shifting from conventional methods to modern deep
learning techniques [1, 2, 3, 4, 5, 6]. However, most of the works
have focused on the aspect of network architectures which have been
usually adapted from those successful in related fields, such as com-
puter vision and speech recognition. Little attention has been paid to
loss functions of the networks. Although the common loss functions,
such as the cross-entropy loss for classification and the `2-distance
loss for regression, work for general settings, it is arguable that the
loss functions should be tailored for a particular task at hand.

In this work, we propose two such tailored loss functions,
namely weighted loss and multi-task loss to tackle the well-known
issues of rare audio event detection (RAED). The weighted loss
can be used to explicitly weight penalties for two types of errors
(i.e. false negative and false positive errors) in a binary classi-
fication problem. This loss is, therefore, useful for imbalanced
background/foreground classification in RAED in which the fore-
ground samples are more valuable than the numerous background
samples and should be penalized stronger if misclassified. The
multi-task loss is proposed to suit the classification of target events.
As audio events possess inherent temporal structures, modelling
them has been shown important for recognition [7, 8, 9] and detec-
tion [10, 11]. The multi-task loss is designed to allow a network
to model both event class distribution (as a classification task) and
event temporal structures (as a regression task for event onset and
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offset estimation) at the same time. By doing this, the network is
forced to cope with a more complex problem rather than the simple
classification one. As a result, the network is implicitly regularized,
leading to improvements of its generalization capability.

In this work, we study the coupling of the proposed loss func-
tions with both DNNs and CNNs for rare audio event detection. Ex-
perimental results conducted on the development and evaluation data
of the DCASE 2017 challenge show that the proposed system signif-
icantly outperforms the challenge’s baseline system. Furthermore,
compared to our baseline, which is similar to the proposed system
except for the loss function, significant improvements can also be
seen.

2. THE PROPOSED DETECTION SYSTEM

The overall pipeline of the proposed detection system is illustrated
in Fig. 1. The audio signals are firstly preprocessed for signal en-
hancement (cf. Section 2.1). The preprocessed signals are then
decomposed into small frames and frame-wise feature extraction is
performed. The proposed systems accomplish the detection goal in
two steps: background rejection and event classification. The for-
mer uses a binary classifier to filter out background frames and lets
only foreground frames go through. Subsequently, the latter employs
a multi-class classifier to distinguish the frames identified as fore-
ground into three target categories. We investigate both DNNs and
CNNs for classification. The networks for background/foreground
and event classification have similar body architecture while their
output layers and loss functions are task-dependant as illustrated in
Fig. 2.

2.1. Phase-aware signal enhancement
For all three categories, baby cry, glass break, and gun shot, short-
time discrete Fourier transform (STFT) domain signal enhancement
was employed to reduce acoustic noise in the recordings. The STFT
segments had a length of 32 ms with consecutive segments over-
lapping by 50 %. For analysis and synthesis, a square-root Hann
window was used. The STFT magnitudes of the clean signals were
estimated from the noisy signals according to [12], with its param-
eters set to µ[12] = β[12] = 0.5, and combined with the noisy
phase for the reconstruction of the enhanced time domain signal.
The magnitude estimation in [12] relies on the power spectral den-
sities (PSDs) of noise and speech as well as estimates of the clean
STFT phase. The speech PSD was estimated via [13] and the noise
PSD via temporal cepstrum smoothing [14, 15]. Estimates of the
clean STFT phase were obtained according to [16], which in turn re-
lies on estimates of the fundamental frequency of the desired sound.
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Fig. 1. The overall pipeline of the proposed audio event detection system.
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Fig. 2. The abstract network architecture.

Accordingly, [16] provides estimates of the clean phase only for
sounds for which a fundamental frequency is defined, i.e. harmonic
sounds such as baby cries. Harmonic sounds and their fundamental
frequency were found using the noise robust fundamental frequency
estimator PEFAC [17]. To focus on baby cries, we limited the search
range of PEFAC to frequencies between 300 Hz and 750 Hz, which
covers the relatively high fundamental frequency of most baby cries
while excluding lower frequencies that are found in adult speech. As
proposed in [12], for all non-voiced sounds we employed the phase-
blind spectral magnitude estimator [18], which does not need any
clean phase estimate.

Finally, to avoid undesired distortions of the desired signal, we
limited the maximum attenuation that can be applied to each STFT
time-frequency point to 12 dB.

2.2. DNNs
As previously mentioned, the DNNs for background/foreground and
event classification share a similar body architecture, which is de-
scribed in Table 1. The only difference is the dropout probability
which was set to 0.5 for the former and 0.2 for the latter.

Regarding the network input, an audio signal was decomposed
into frames of length 100 ms with a hop size of 20 ms. 64 log Gam-
matone spectral coefficients [19] in the frequency range of 50 Hz
to 22050 Hz were then extracted for each frame. In addition, we
considered a context of five frames for classification purpose. The
feature vector for a context window was formed by simply concate-
nating feature vectors of its five constituent frames.

2.3. CNNs
The network body architecture of the CNNs are elaborated in Table
2. For background/foreground classification, the number of feature
maps of each convolutional layer was set to 64 and the dropout prob-
ability was set to 0.5. Those for event classification were 128 and
0.2, respectively.

The CNNs receive a log Gammatone spectral image as input.
An audio signal was decomposed into frames of length 40 ms with
a hop size of 20 ms. A feature set of 64 log Gammatone spectral
coefficients was then calculated for each frame as in the DNN case.
In addition, delta and acceleration coefficients were also calculated
using a window length of nine frames. Eventually, 64 consecutive
frames were combined into a 64× 64× 3 image which was used as
input for the CNNs.

2.4. Weighted loss for foreground/background classification
In general, for audio event detection in continuous streams, the num-
ber of background frames is significantly larger than for foreground
ones. This leads to a skewed classification problem with a domi-
nance of the background samples. The skewness is even more severe

Table 1. The parameters of the DNN architecture. A dropout prob-
ability of 0.5 and 0.2 is used for background rejection and event
classification, respectively.

Layer Size Activation Dropout

fc1 512 ReLU 0.5/0.2
fc2 256 ReLU 0.5/0.2
fc3 512 ReLU 0.5/0.2

in case of the RAED task. To remedy this skewness issue, in combi-
nation with data resampling, we propose a weighted loss function to
train the networks.

Firstly, the background samples were downsampled by a factor
of 5. Furthermore, the set of foreground samples was upsampled by
an integer factor to make its size approximately equal to the back-
ground set. Let us denote a training set of N training examples as
{(x1,y1) , . . . , (xN ,yN )} where x denotes a one-dimensional fea-
ture vector (in case of DNN) or a three-dimensional image (in case
of CNN). y ∈ {0, 1}C denotes a binary one-hot encoding vector
with C = 2 in this case.

Typically, for a classification task, a network will be trained to
minimize the cross-entropy loss

E(θ) = − 1

N

N∑
n=1

yn log
(
ŷn(xn ,θ)

)
+
λ

2
‖θ‖22 , (1)

where θ denotes the network’s trainable parameters and the hyper-
parameter λ is used to trade-off the error term and the `2-norm reg-
ularization term. The predicted posterior probability ŷ(x ,θ) is ob-
tained by applying the softmax function on the network output layer.
However, this loss penalizes different classification errors equally.
In contrast, our proposed weighted loss, described below, enables us
to penalize individual classification errors differently. The weighted
loss reads

Ew(θ) = − 1

N

(
λfg

N∑
n=1

Ifg(xn)yn log
(
ŷn(xn ,θ)

)
+ λbg

N∑
n=1

Ibg(xn)yn log
(
ŷn(xn ,θ)

))
+
λ

2
‖θ‖22 , (2)

where Ifg(x) and Ibg(x) are indicator functions which specify
whether the sample x is foreground or background, respectively.
λfg and λbg are penalization weights for false negative errors (i.e. a
foreground sample is misclassified as background) and false posi-
tive errors (i.e. a background sample is misclassified as foreground),
respectively. Since foreground samples are more valuable than
background ones in the skewed classification problem at hand, we
penalize false negative errors more than false positive ones (cf.
Section 3.2).

2.5. Multi-task loss for event classification

Beyond a simple event classification, we enforce the networks to
jointly model the class distribution for event classification and the
event temporal structures for onset and offset distance estimation
similar to [20]. The proposed multi-task loss is specialized for this
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Table 2. The parameters of the CNN architecture. The number of
feature maps and the dropout probability are set to 64 and 0.5, re-
spectively, for background rejection while they are set to 128 and
0.2, respectively, for event classification.

Layer Size #Fmap Activation Dropout

conv1 3 × 3 64/128 ReLU -
conv2 3 × 3 64/128 ReLU -
maxpool2 2 × 1 - - 0.5/0.2
conv3 3 × 3 64/128 ReLU -
conv4 3 × 3 64/128 ReLU -
maxpool4 2 × 2 - - 0.5/0.2
fc1 1024 - ReLU 0.5/0.2
fc2 1024 - ReLU 0.5/0.2
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Fig. 3. The output layer and the prediction of a multi-task network
(i.e. a DNN or a CNN).

purpose. Multi-task modeling can be interpreted as implicit regu-
larization which is expected to improve generalization of a network
[21, 22].

In addition to the one-hot encoding vector y ∈ {0, 1}C (C is
the number of target event categories in this case), we associated a
sample x with a distance vector d = (don, doff) ∈ R2. don and doff
denote the distances from the center frame of x to the corresponding
event onset and offset [10, 23]. The onset and offset distances were
normalized to [0, 1] by dividing by their maximum values.

The output layer of a multi-task network (i.e. a DNN or a CNN)
consists of two variables: ȳ = (ȳ1, ȳ2, . . . , ȳC) and d̄ = (d̄on, d̄off)
as illustrated in Fig. 3. The network predictions for class pos-
terior probability ŷ = (ŷ1, ŷ2, . . . , ŷC) and distance vector d̂ =

(d̂on, d̂off) are then obtained by:

ŷ = softmax(ȳ), (3)

d̂ = sigmoid(d̄). (4)

Given a training set {(x1,y1,d1) , . . . , (xN ,yN ,dN )} of N sam-
ples, the network is trained to minimize the following multi-task loss
function:

Emt(θ) = λclassEclass(θ) + λdistEdist(θ)

+ λconfEconf(θ) +
λ

2
‖θ‖22 , (5)

where

Eclass(θ) = − 1

N

N∑
n=1

yn log
(
ŷn(xn ,θ)

)
, (6)

Edist(θ) = − 1

N

N∑
n=1

∥∥∥d− d̂n (xn,θ)
∥∥∥2
2
, (7)

Econf(θ) = − 1

N

N∑
n=1

∥∥∥∥∥∥yn − ŷn

I
(
dn, d̂n (xn,θ)

)
U
(
dn, d̂n (xn,θ)

)
∥∥∥∥∥∥
2

2

. (8)

Eclass(θ), Eclass(θ), and Econf(θ) in above equations are so-called
class loss, distance loss, and confidence loss, respectively. The terms
λclass, λdist, and λconf represent the weighting coefficients for three
corresponding loss types. The class loss complies with the com-
mon cross-entropy loss to penalize classification errors whereas the
distance loss penalizes event onset and offset distance estimation
errors. Furthermore, the confidence loss penalizes both classifica-
tion errors and distance estimation errors. The functions I

(
d, d̂

)
and U

(
d, d̂

)
in (8) calculate the intersection and the union of the

ground-truth event boundary and the predicted one, given by:

I
(
d, d̂

)
= min

(
don, d̂on

)
+ min

(
doff, d̂off

)
, (9)

U
(
d, d̂

)
= max

(
don, d̂on

)
+ max

(
doff, d̂off

)
. (10)

While the network may favor to optimize the class loss or the
distance loss to reduce the total loss Emt(θ), the confidence loss en-
courages it to optimize both losses at the same time. This is expected
to accelerate and facilitate the learning process.

2.6. Inference
We opted for a simple inference scheme here for target event seg-
mentation. Firstly, we performed thresholding on the posterior prob-
ability output by the background-rejection classifier. A sample clas-
sified with a foreground posterior probability above a thresholdαprob
will be subsequently forwarded to the event classifier to determine
the event class label. Afterwards, an output label sequence was then
smoothed by a median filter with a window length wsm.

Note that we did not use the estimates for event onset and offset
distances provided by the event classification network. This can be
further explored in future work as in [10, 23].

3. EXPERIMENTS

3.1. DCASE 2017 data
We conducted experiments on the data of “Detection of rare events”
task of the DCASE 2017 challenge [24]. This data includes two
sets: development and evaluation data. For the former, isolated
events of three target categories (i.e. baby cry, glass break, and gun-
shot) downloaded from freesound.org were mixed with background
recordings from TUT Acoustic Scenes 2016 development dataset
[25] with an event presence rate of 0.5 to create 500 mixtures for
each category in both training and testing subsets. The mixing event-
to-background ratios (EBR) were -6, 0 and 6 dB. The development
data was published during the challenge. The evaluation data was
created in a similar manner with 500 mixtures for each category and
was kept private during the challenge.

3.2. Parameters
For the weighted loss in (2), we set λfg = 10 and λbg = 1. That
is, false negatives were penalized ten times more than false posi-
tives. The associated weights of the multi-task loss in (5) were set
to λclass = 1, λdist = 10, and λconf = 1. We set λdist larger than
λclass and λconf to encourage the networks to focus more on model-
ing event temporal structures. In addition, we set the regularization
parameter λ = 10−3 for both losses. The networks were trained
using the Adam optimizer [26] with a learning rate of 10−4. The
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Table 3. Event-based performance the development data.
DCASE
baseline

Our baseline Proposed system

DNN CNN Best
combination

DNN CNN Best
combination

ER F1 ER F1 ER F1 ER F1 ER F1 ER F1 ER F1
Baby cry 0.67 72.0 0.38 80.3 0.11 94.7 0.11 94.7 0.36 80.5 0.09 95.3 0.09 95.3
Glass break 0.22 88.5 0.08 96.2 0.15 92.5 0.08 96.2 0.10 95.3 0.20 89.5 0.10 95.3
Gun shot 0.69 57.4 0.32 82.1 0.35 80.6 0.32 82.1 0.36 79.5 0.38 79.1 0.36 79.5
Average 0.53 72.7 0.26 86.2 0.20 89.3 0.17 91.0 0.27 85.1 0.22 88.0 0.18 90.0

Table 4. Event-based performance the evaluation data.
DCASE
baseline

Our
baseline

Proposed
system

ER F1 ER F1 ER F1
Baby cry 0.80 66.8 0.28 85.6 0.23 88.4
Glass break 0.38 79.1 0.16 91.6 0.11 94.3
Gun shot 0.73 46.5 0.33 80.7 0.32 82.1
Average 0.64 64.1 0.26 86.1 0.22 88.2

DNNs were trained for 200 epochs with a batch size of 256 whereas
the CNNs were trained for 5 epochs with a batch size of 128.

Note that although Task 2 of the challenge is set up to evaluate
detection of target event categories separately, our proposed system
is multi-class, aiming at detecting all the three target categories at
once. By doing this, we avoid optimizing different systems for indi-
vidual categories.

3.3. Evaluation metrics and baseline systems
We used two event-based metrics for evaluation: detection error
(ER) and F-score [27] as used for the challenge. We compared the
detection performances obtained by our proposed system to that of
the DCASE 2017 baseline [24]. This baseline uses log mel-band
energies as features and consists of class-specific 2-layer DNNs fol-
lowed by median filtering for post-processing. In addition to the
DCASE baseline, to investigate effects of the proposed loss func-
tions, we also developed our baseline which is similar to the pro-
posed system except that the standard cross-entropy loss was used.

3.4. Experimental results on the development data
In the inference step of the experiment on the development data,
the probability threshold αprob was searched in the range of [0, 1]
with a step size of 0.05. In addition, we performed grid search for
the smoothing window length wsm for each category in the range of
[3, 147] with a step size of 6. The values of αprob and wsm yielding
the best F-score were retained.

The detection performances on the development data are shown
in Table 3. As can be seen from our proposed as well as our baseline
systems, the performances of the proposed DNN and CNN detec-
tors vary significantly for different event categories. While the for-
mer is more efficient in detecting glass break and gun shot events,
the latter performs better on human-generated baby cry events. It
seems that invariant features learned by a CNN, which are capable of
handling the well-known vocal-tract length variation between speak-
ers in speech recognition [28, 29, 30], are helpful for baby cry. In
contrast, convolution does not help but worsens the detection per-
formance of the non-human events (i.e. glass break and gun shot).
Probably, these events do not possess the characteristics as human-
generated events, and information in neighboring frequency bands
should not be pooled. As a result, the DNN detector works better for
these events than the CNN one, at least in our setup.

Both our proposed and baseline systems, either individual DNN
or CNN detectors or their best combination, outperform the DCASE
baseline over all categories with a large margin. In addition, our
proposed and baseline perform comparably. However, their results
on the development data are subject to overfitting and should not be
used for justification since the inference parameters (i.e. the proba-
bility threshold and the smoothing window) were searched to maxi-
mize the performance on the known test set of the development data.

3.5. Experimental results on the evaluation data
The settings of our proposed and baseline systems on the private-
held evaluation data are based on the best combination found in the
experiment with the development data. That is, the CNN is in charge
of detecting baby cry events while the DNN is responsible for detect-
ing glass break and gun shot events. In combination with state-of-
the-art phase-aware signal enhancement, the parameters that led to
the best performance on the development data were retained, except
for the smoothing window sizewsm. We experimentally saw a strong
influence of this parameter on the detection performance of the de-
velopment data. Therefore, we chose the one that produced an event
presence rate nearest to 0.5 which is the value used for generating
the data [24]. The whole development data was used for training in
this experiment.

The results on the evaluation data are shown in Table 4. The
proposed system with the tailored loss achieves an F-score of 88.2%
and an ER of 0.22 which are significantly better than those obtained
by the DCASE basline. Moreover, the tailored-loss system also out-
performs our baseline based on the standard cross-entropy loss, im-
proving 2.1% absolute on F-score and reducing 0.04 absolute on ER.
Improvements on individual categories can also be seen.

Participating in the DCASE 2017 challenge, our team is ranked
3rd out of 13 participating teams [31]. Note that the results of the
proposed system in Table 4 were obtained after correcting a minor
mistake in our submission system [32]. Therefore, they are slightly
different from those in the official DCASE webpage [31], thanks to
the organization team for their support in unofficial evaluation. Last
but not least, although we have only studied with common DNN and
CNN architectures, the proposed loss functions can be used for other
network architectures in replacement of the standard loss function.

4. CONCLUSIONS

We proposed two tailored loss functions to couple with DNNs and
CNNs to address the common issues of rare audio event detection
problem. The weighted loss is designed to tackle the data skewness
issue in background/foreground classification and the multi-task loss
enables the networks to jointly model event class distribution and
event temporal structures for event classification. In combination
with state-of-the-art phase-aware signal enhancement, we reported
significant improvements in detection performance on the DCASE
2017 challenge data obtained by our proposed system over the chal-
lenge’s baseline as well as our own baseline.
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