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ABSTRACT

Robust speech processing in multi-talker environments requires
effective speech separation. Recent deep learning systems have
made significant progress toward solving this problem, yet it re-
mains challenging particularly in real-time, short latency applica-
tions. Most methods attempt to construct a mask for each source
in time-frequency representation of the mixture signal which is not
necessarily an optimal representation for speech separation. In ad-
dition, time-frequency decomposition results in inherent problems
such as phase/magnitude decoupling and long time window which
is required to achieve sufficient frequency resolution. We propose
Time-domain Audio Separation Network (TasNet) to overcome
these limitations. We directly model the signal in the time-domain
using an encoder-decoder framework and perform the source sep-
aration on nonnegative encoder outputs. This method removes the
frequency decomposition step and reduces the separation problem
to estimation of source masks on encoder outputs which is then
synthesized by the decoder. Our system outperforms the current
state-of-the-art causal and noncausal speech separation algorithms,
reduces the computational cost of speech separation, and signifi-
cantly reduces the minimum required latency of the output. This
makes TasNet suitable for applications where low-power, real-time
implementation is desirable such as in hearable and telecommunica-
tion devices.

Index Terms— Source separation, single channel, raw wave-
form, deep learning

1. INTRODUCTION

Real-world speech communication often takes place in crowded,
multi-talker environments. A speech processing system that is de-
signed to operate in such conditions needs the ability to separate
speech of different talkers. This task which is effortless for humans
has proven very difficult to model in machines. In recent years, deep
learning approaches have significantly advanced the state of this
problem compared to traditional methods [1, 2, 3, 4, 5, 6].

A typical neural network speech separation algorithm starts with
calculating the short-time Fourier transform (STFT) to create a time-
frequency (T-F) representation of the mixture sound. The T-F bins
that correspond to each source are then separated, and are used to
synthesize the source waveforms using inverse STFT. Several issues
arise in this framework. First, it is unclear whether Fourier decom-
position is the optimal transformation of the signal for speech sepa-
ration. Second, because STFT transforms the signal into a complex
domain, the separation algorithm needs to deal with both magni-
tude and the phase of the signal. Because of the difficulty in mod-
ifying the phase, the majority of proposed methods only modify
the magnitude of the STFT by calculating a time-frequency mask

for each source, and synthesize using the masked magnitude spec-
trogram with the original phase of the mixture. This imposes an
upper bound on separation performance. Even though several sys-
tems have been proposed to use the phase information to design the
masks, such as the phase-sensitive mask [7] and complex ratio mask
[8], the upper bound still exists since the reconstruction is not ex-
act. Moreover, effective speech separation in STFT domain requires
high frequency resolution which results in relatively large time win-
dow length, which is typically more than 32 ms for speech [3, 4, 5]
and more than 90 ms for music separation [9]. Because the mini-
mum latency of the system is bounded by the length of the STFT
time window, this limits the use of such systems when very short la-
tency is required, such as in telecommunication systems or hearable
devices.

A natural way to overcome these obstacles is to directly model
the signal in the time-domain. In recent years, this approach has been
successfully applied in tasks such as speech recognition, speech syn-
thesis and speech enhancement [10, 11, 12, 13, 14], but waveform-
level speech separation with deep learning has not been investigated
yet. In this paper, we propose Time-domain Audio Separation Net-
work (TasNet), a neural network that directly models the mixture
waveform using an encoder-decoder framework, and performs the
separation on the output of the encoder. In this framework, the mix-
ture waveform is represented by a nonnegative weighted sum of N
basis signals, where the weights are the outputs of the encoder, and
the basis signals are the filters of the decoder. The separation is done
by estimating the weights that correspond to each source from the
mixture weight. Because the weights are nonnegative, the estima-
tion of source weights can be formulated as finding the masks which
indicate the contribution of each source to the mixture weight, sim-
ilar to the T-F masks that are used in STFT systems. The source
waveforms are then reconstructed using the learned decoder.

This signal factorization technique shares the motivation behind
independent component analysis (ICA) with nonnegative mixing
matrix [15] and semi-nonnegative matrix factorization (semi-NMF)
[16]. However unlike ICA or semi-NMF, the weights and the ba-
sis signals are learned in a nonnegative autoencoder framework
[17, 18, 19, 20], where the encoder is a 1-D convolutional layer and
the decoder is a 1-D deconvolutional layer (also known as trans-
posed convolutional). In this scenario, the mixture weights replace
the commonly used STFT representations.

Since TasNet operates on waveform segments that can be as
small as 5 ms, the system can be implemented in real-time with
very low latency. In addition to having lower latency, TasNet out-
performs the state-of-art STFT-based system. In applications that do
not require real-time processing, a noncausal separation module can
also be used to further improve the performance by using informa-
tion from the entire signal.

696978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



2. MODEL DESCRIPTION

2.1. Problem formulation

The problem of single-channel speech separation is formulated as
estimating C sources s1(t), . . . , sc(t), given the discrete waveform
of the mixture x(t)

x(t) =

C∑
i=1

si(t) (1)

We first segment the mixture and clean sources into K non-
overlapping vectors of length L samples, xk ∈ R1×L (note that
K varies from utterance to utterance){

xk = x(t)

si,k = si(t)
t ∈ [kL, (k + 1)L), k = 1, 2, . . . ,K (2)

For simplicity, we drop the notation k where there is no ambi-
guity. Each segment of mixture and clean signals can be repre-
sented by a nonnegative weighted sum of N basis signals B =
[b1,b2, . . . ,bN ] ∈ RN×L

x = wB

si = diB

(3)

where w ∈ R1×N is the mixture weight vector, and di ∈ R1×N

is the weight vector for the source i. Separating the sources in this
representation is then reformulated as estimating the weight matrix
of each source di ∈ R1×N given the mixture weight w, subject to:

w =

C∑
i=1

di (4)

Because all weights (w,di) are nonnegative, estimating the
weight of each source can be thought of as finding its corresponding
mask-like vector, mi, which is applied to the mixture weight, w, to
recover Di:

w =
C∑

i=1

w � (di �w) := w �
C∑

i=1

mi (5)

di = mi �w (6)

where mi ∈ R1×N represents the relative contribution source i to
the mixture weight matrix, and � and � denotes element-wise mul-
tiplication and division.

In comparison to other matrix factorization algorithms such as
ICA where the basis signals are required to have distinct statisti-
cal properties or explicit frequency band preferences, no such con-
straints are imposed here. Instead, the basis signals are jointly op-
timized with the other parameters of the separation network dur-
ing training. Moreover, the synthesis of the source signal from the
weights and basis signals is done directly in the time-domain, unlike
the inverse STFT step which is needed in T-F based solutions.

2.2. Network design

Figure 1 shows the structure of the network. It contains three parts:
an encoder for estimating the mixture weight, a separation module,
and a decoder for source waveform reconstruction. The combination

of the encoder and the decoder modules construct a nonnegative au-
toencoder for the waveform of the mixture, where the nonnegative
weights are calculated by the encoder and the basis signals are the
1-D filters in the decoder. The separation is performed on the mix-
ture weight matrix using a subnetwork that estimates a mask for each
source.

2.2.1. Encoder for mixture weight calculation

The estimation of the nonnegative mixture weight wk for segment k
is done by a 1-D gated convolutional layer

wk = ReLU(xk ~U)� σ(xk ~V), k = 1, 2, . . . ,K (7)

where U ∈ RN×L and V ∈ RN×L are N vectors with length
L, and wk ∈ R1×N is the mixture weight vector. σ denotes the
Sigmoid activation function and ~ denotes convolution operator.
xk ∈ R1×L is the k-th segment of the entire mixture signal x(t)
with length L, and is normalized to have unit L2 norm to reduce the
variability. The convolution is applied on the rows (time dimension).

This step is motivated by the gated CNN approach that is used
in language modeling [21], and empirically it performs significantly
better than using only ReLU or Sigmoid in our system.

2.2.2. Separation network

The estimation of the source masks is done with a deep LSTM net-
work to model the time dependencies across the K segments, fol-
lowed by a fully-connected layer with Softmax activation function
for mask generation. The input to the LSTM network is the sequence
of K mixture weight vectors w1, . . .wK ∈ R1×N , and the output
of the network for source i is K mask vectors mi,1, . . . ,mi,K ∈
R1×N . The procedure for estimation of the masks is the same as
the T-F mask estimation in [4], where a set of masks are generated
by several LSTM layers followed by a fully-connected layer with
Softmax function as activation.

To speed up and stabilize the training process, we normalize the
mixture weight vector wk in a way similar to layer normalization
[22]

ŵk =
g

σ
⊗ (wk − µ) + b, k = 1, 2, . . . ,K (8)

µ =
1

N

N∑
j=1

wk,j σ =

√√√√ 1

N

N∑
j=1

(wk,j − µ)2 (9)

where parameters g ∈ R1×N and b ∈ R1×N are gain and bias
vectors that are jointly optimized with the network. This normaliza-
tion step results in scale invariant mixture weight vectors and also
enables more efficient training of the LSTM layers.

Starting from the second LSTM layer, an identity skip connec-
tion [23] is added between every two LSTM layers to enhance the
gradient flow and accelerate the training process.

2.2.3. Decoder for waveform reconstruction

The separation network produces a mask matrix for each source i
Mi = [mi,1, . . . ,mi,K ] ∈ RK×N from the mixture weight Ŵ =
[ŵ1, . . . , ŵK ] ∈ RK×N across all the K segments. The source
weight matrices can then be calculated by

Di = W �Mi (10)
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Fig. 1. Time-domain Audio Separation Network (TasNet) models the signal in the time-domain using encoder-decoder framework, and
perform the source separation on nonnegative encoder outputs. Separation is achieved by estimating source masks that are applied to mixture
weights to reconstruct the sources. The source weights are then synthesized by the decoder.

where Di = [di,1, . . . ,di,K ] ∈ RK×N is the weight matrix for
source i. Note that Mi is applied to the original mixture weight
W = [w1, . . . ,wK ] instead of normalized weight Ŵ. The time-
domain synthesis of the sources is done by matrix multiplication be-
tween Di and the basis signals B ∈ RN×L

Si = DiB (11)

For each segment, this operation can also be formulated as a
linear deconvolutional operation (also known as transposed convo-
lution) [24], where each row in B corresponds to a 1-D filter which
is jointly learned together with the other parts of the network. This
is the inverse operation of the convolutional layer in Section 2.2.1.

Finally we scale the recovered signals to reverse the effect of L2

normalization of xk discussed in Section 2.2.1. Concatenating the
recoveries across all segments reconstruct the entire signal for each
source.

si(t) = [Si,k], k = 1, 2, . . . ,K (12)

2.2.4. Training objective

Since the output of the network are the waveforms of the estimated
clean signals, we can directly use source-to-distortion ratio (SDR)
as our training target. Here we use scale-invariant source-to-noise
ratio (SI-SNR), which is used as the evaluation metric in place of the
standard SDR in [3, 5], as the training target. The SI-SNR is defined
as:

starget =
〈ŝ, s〉s
‖s‖2

(13)

enoise = ŝ− starget (14)

SI-SNR := 10 log10
‖starget‖2

‖enoise‖2
(15)

where ŝ ∈ R1×t and s ∈ R1×t are the estimated and target clean
sources respectively, t denotes the length of the signals, and ŝ and

s are both normalized to have zero-mean to ensure scale-invariance.
Permutation invariant training (PIT) [4] is applied during training to
remedy the source permutation problem [3, 4, 5].

3. EXPERIMENTS

3.1. Dataset

We evaluated our system on two-speaker speech separation problem
using WSJ0-2mix dataset [3, 4, 5], which contains 30 hours of train-
ing and 10 hours of validation data. The mixtures are generated
by randomly selecting utterances from different speakers in Wall
Street Journal (WSJ0) training set si tr s, and mixing them at random
signal-to-noise ratios (SNR) between 0 dB and 5 dB. Five hours of
evaluation set is generated in the same way, using utterances from 16
unseen speakers from si dt 05 and si et 05 in the WSJ0 dataset. To
reduce the computational cost, the waveforms were down-sampled
to 8 kHz.

3.2. Network configuration

The parameters of the system include the segment lengthL, the num-
ber of basis signals N , and the configuration of the deep LSTM sep-
aration network. Using a grid search, we found optimal L to be 40
samples (5 ms at 8 kHz) and N to be 500. We designed a 4 layer
deep uni-directional LSTM network with 1000 hidden units in each
layer, followed by a fully-connected layer with 1000 hidden units
that generates two 500-dimensional mask vectors. For the noncausal
configuration with bi-directional LSTM layers, the number of hid-
den units in each layer is set to 500 for each direction. An identical
skip connection is added between the output of the second and last
LSTM layers.

During training, the batch size is set to 128, and the initial learn-
ing rate is set to 3e−4 for the causal system (LSTM) and 1e−3 for
the noncausal system (BLSTM). We halve the learning rate if the
accuracy on validation set is not improved in 3 consecutive epochs.
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Table 1. SI-SNR (dB) and SDR (dB) for different methods on
WSJ0-2mix dataset.

Method Causal SI-SNRi SDRi
uPIT-LSTM [4] X – 7.0
TasNet-LSTM X 7.7 8.0
DPCL++ [3] × 10.8 –
DANet [5] × 10.5 –

uPIT-BLSTM-ST [4] × – 10.0
TasNet-BLSTM × 10.8 11.1

The criteria for early stopping is no decrease in the cost function on
the validation set for 10 epochs. Adam [25] is used as the optimiza-
tion algorithm. No further regularization or training procedures were
used.

We apply curriculum training strategy [26] in a similar fashion
with [3, 5]. We start the training the network on 0.5 second long
utterances, and continue training on 4 second long utterances after-
ward.

3.3. Evaluation metrics

For comparison with previous studies, we evaluated our system
with both SI-SNR improvement (SI-SNRi) and SDR improvement
(SDRi) metrics used in [3, 4, 5], where the SI-SNR is defined in
Section 2.2.4, and the standard SDR is proposed in [27].

3.4. Results and analysis

Table 1 shows the performance of our system as well as three state-
of-art deep speech separation systems, Deep Clustering (DPCL++,
[3]), Permutation Invariant Training (PIT, [4]), and Deep Attractor
Network (DANet, [5]). Here TasNet-LSTM represents the causal
configuration with uni-directional LSTM layers. TasNet-BLSTM
corresponds to the system with bi-directional LSTM layers which
is noncausal and cannot be implemented in real-time. For the other
systems, we show the best performance reported on this dataset.

We see that with causal configuration, the proposed TasNet sys-
tem significantly outperforms the state-of-art causal system which
uses a T-F representation as input. Under the noncausal configu-
ration, our system outperforms all the previous systems, including
the two-stage systems DPCL++ and uPIT-BLSTM-ST which have
a second-stage enhancement network. Note that our system does
not contain any regularizers such as recurrent dropout (DPCL++) or
post-clustering steps for mask estimation (DANet).

Table 2 compares the latency of different causal systems. The la-
tency of a system Ttot is expressed in two parts: Ti is the initial delay
of the system that is required in order to receive enough samples to
produce the first output. Tp is the processing time for a segment, es-
timated as the average per-segment processing time across the entire
test set. The model was pre-loaded on a Titan X Pascal GPU before
the separation of the first segment started. The average processing
speed per segment in our system is less than 0.23 ms, resulting in
a total system latency of 5.23 ms. In comparison, a STFT-based
system requires at least 32 ms time interval to start the processing,
in addition to the processing time required for calculation of STFT,
separation, and inverse STFT. This enables our system to preform in
situation that can tolerate only short latency, such as hearing devices
and telecommunication applications.

To investigate the properties of the basis signals B, we visu-
alized the magnitude of their Fourier transform in both causal and

Table 2. Minimum latency (ms) of causal methods.

Method Ti Tp Ttot

uPIT-LSTM [4] 32 – >32
TasNet-LSTM 5 0.23 5.23

noncausal networks. Figure 2 shows the frequency response of the
basis signals sorted by their center frequencies (i.e. the bin index
corresponding to the the peak magnitude). We observe a continuous
transition from low to high frequency, showing that the system has
learned to perform a spectral decomposition of the waveform, simi-
lar to the finding in [10]. We also observe that the frequency band-
width increases with center frequency similar to mel-filterbanks. In
contrast, the basis signals in TasNet have a higher resolution in lower
frequencies compared to Mel and STFT. In fact, 60% of the basis sig-
nals have center frequencies below 1 kHz (Fig. 2), which may indi-
cate the importance of low-frequency resolution for accurate speech
separation. Further analysis of the network representation and trans-
formation may lead to better understanding of how the network sep-
arates competing speakers [28].

(a)

(b)

Fig. 2. Frequency response of basis signals in (a) causal and (b)
noncausal networks.

4. CONCLUSION

In this paper, we proposed a deep learning speech separation sys-
tem that directly operates on the sound waveforms. Using an au-
toencoder framework, we represent the waveform as nonnegative
weighted sum of a set of learned basis signals. The time-domain
separation problem then is solved by estimating the source masks
that are applied to the mixture weights. Experiments showed that
our system was 6 times faster compared to the state-of-art STFT-
based systems, and achieved significantly better speech separation
performance. Audio samples are available at [29].

5. ACKNOWLEDGEMENT

This work was funded by a grant from National Institute of Health,
NIDCD, DC014279, National Science Foundation CAREER Award,
and the Pew Charitable Trusts.

699



6. REFERENCES

[1] Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson, and
Paris Smaragdis, “Joint optimization of masks and deep
recurrent neural networks for monaural source separation,”
IEEE/ACM Transactions on Audio, Speech and Language Pro-
cessing (TASLP), vol. 23, no. 12, pp. 2136–2147, 2015.

[2] Xiao-Lei Zhang and DeLiang Wang, “A deep ensemble learn-
ing method for monaural speech separation,” IEEE/ACM
Transactions on Audio, Speech and Language Processing
(TASLP), vol. 24, no. 5, pp. 967–977, 2016.

[3] Yusuf Isik, Jonathan Le Roux, Zhuo Chen, Shinji Watanabe,
and John R Hershey, “Single-channel multi-speaker separation
using deep clustering,” Interspeech 2016, pp. 545–549, 2016.

[4] Morten Kolbæk, Dong Yu, Zheng-Hua Tan, and Jesper Jensen,
“Multitalker speech separation with utterance-level permuta-
tion invariant training of deep recurrent neural networks,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, no. 10, pp. 1901–1913, 2017.

[5] Zhuo Chen, Yi Luo, and Nima Mesgarani, “Deep attractor net-
work for single-microphone speaker separation,” in Acoustics,
Speech and Signal Processing (ICASSP), 2017 IEEE Interna-
tional Conference on. IEEE, 2017, pp. 246–250.

[6] Yi Luo, Zhuo Chen, and Nima Mesgarani, “Speaker-
independent speech separation with deep attractor network,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 26, no. 4, pp. 787–796, 2018.

[7] Hakan Erdogan, John R Hershey, Shinji Watanabe, and
Jonathan Le Roux, “Phase-sensitive and recognition-boosted
speech separation using deep recurrent neural networks,” in
Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on. IEEE, 2015, pp. 708–712.

[8] Donald S Williamson, Yuxuan Wang, and DeLiang Wang,
“Complex ratio masking for monaural speech separation,”
IEEE/ACM transactions on audio, speech, and language pro-
cessing, vol. 24, no. 3, pp. 483–492, 2016.

[9] Yi Luo, Zhuo Chen, John R Hershey, Jonathan Le Roux, and
Nima Mesgarani, “Deep clustering and conventional networks
for music separation: Stronger together,” in Acoustics, Speech
and Signal Processing (ICASSP), 2017 IEEE International
Conference on. IEEE, 2017, pp. 61–65.

[10] Tara N Sainath, Ron J Weiss, Andrew Senior, Kevin W Wil-
son, and Oriol Vinyals, “Learning the speech front-end with
raw waveform cldnns,” in Sixteenth Annual Conference of the
International Speech Communication Association, 2015.

[11] Pegah Ghahremani, Vimal Manohar, Daniel Povey, and San-
jeev Khudanpur, “Acoustic modelling from the signal domain
using cnns.,” in INTERSPEECH, 2016, pp. 3434–3438.

[12] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Si-
monyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, An-
drew Senior, and Koray Kavukcuoglu, “Wavenet: A generative
model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[13] Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Ku-
mar, Shubham Jain, Jose Sotelo, Aaron Courville, and Yoshua
Bengio, “Samplernn: An unconditional end-to-end neural
audio generation model,” arXiv preprint arXiv:1612.07837,
2016.

[14] Santiago Pascual, Antonio Bonafonte, and Joan Serrà, “Segan:
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