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ABSTRACT

Separating two sources from an audio mixture is an im-
portant task with many applications. It is a challenging prob-
lem since only one signal channel is available for analysis. In
this paper, we propose a novel framework for singing voice
separation using the generative adversarial network (GAN)
with a time-frequency masking function. The mixture spec-
tra is considered to be a distribution and is mapped to the
clean spectra which is also considered a distribution. The
approximation of distributions between mixture spectra and
clean spectra is performed during the adversarial training pro-
cess. In contrast with current deep learning approaches for
source separation, the parameters of the proposed framework
are first initialized in a supervised setting and then optimized
by the training procedure of GAN in an unsupervised setting.
Experimental results on three datasets (MIR-1K, iKala and
DSD100) show that performance can be improved by the pro-
posed framework consisting of conventional networks.

Index Terms— Singing voice separation, music source
separation, deep learning, generative adversarial network

1. INTRODUCTION

Monaural source separation is important to various music ap-
plications and is sometimes used as a pre-processing step of
music signal analysis. For instance, leading instrument detec-
tion [1, 2] separates a leading instrument from its accompa-
niments. Singing pitch estimation [3–5] can be improved by
first separating vocals from background music. Cover song
identification [6] is also based on leading instrument or vocal
pitch features, estimated using a separated singing voice.

Several approaches have been proposed for singing voice
separation. Rafii and Pardo proposed the REPET system [7]
to separate voice and music by extracting the repeating musi-
cal structure. Assumption of low rank and sparsity of music
has been used for matrix decompostition [8–11]. The widely
used non-negative matrix factorization (NMF) is applied by
learning the non-negative reconstruction bases and weights
for singing voice separation [12]. Moreover, a complex NMF
model [13] has been proposed for jointly estimating the spec-
trogram and the source phase.

With the development of deep learning, Mass et al. [14]
used recurrent neural networks (RNN) to create a clean voice.
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Fig. 1: Block diagram of the proposed framework.

Huang et al. [15] then proposed deep RNN with discrimi-
native training to reconstruct vocals from background music.
Training multi-context networks [16,17] with different inputs
combined at layer level was proposed to improve audio sep-
aration performance. Deep clustering [18] is also used for
music separation. Post-processing with a Wiener filter at the
output of neural networks and data augmentation [19] have
been proposed to separate vocals and instruments. All of
these deep learning techniques use multiple non-linear lay-
ers to learn the optimal hidden representations from data in a
supervised setting.

Generative adversarial networks (GAN) are a new gener-
ative model of deep learning [20], which has been success-
fully used in the field of computer vision to generate realistic
images. In the field of source separation, Pascual et al. [21]
proposed the use of GAN on speech enhancement, which op-
erates in the waveform domain and aims to generate clean
vocal waveforms. This paper proposes a novel framework for
singing voice separation via GAN (SVSGAN) which oper-
ates in the frequency domain and uses a conditional version
of GAN. To our knowledge, this is the first proposed frame-
work to use adversarial learning to perform singing voice sep-
aration. We regard each spectrum as a sample vector coming
from the distribution of spectra. Non-linear mapping of dis-
tributions between the mixture spectra and the clean spectra is
performed during the adversarial training process. Before ad-
versarial training, the generator parameters are first initialized
with joint optimization in a supervised setting and then opti-
mized by the SVSGAN training process in an unsupervised
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Fig. 2: The proposed SVSGAN framework which consists of two conventional DNNs: generator G and discriminator D. Each
spectrum is considered to be a sample vector coming from a distribution of spectra.

setting. Finally the time-frequency masking function consists
of the generator outputs. The block diagram of the proposed
framework is shown in Fig. 1.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an overview of GAN. Section 3 presents the de-
tails of proposed model including parameter initialization and
the adversarial training process. Section 4 presents the ex-
perimental settings and results using the MIR-1K, iKala and
DSD100 datasets. We conclude the paper in Section 5.

2. GENERATIVE ADVERSARIAL NETWORKS

Ian et al. [20] proposed adversarial learning models that learn
to map samples z from one distribution to samples x from
another distribution. GAN consists of generative model G and
discriminative model D, which compete in a two-player min-
max game. G aims to imitate the real data distribution while
D is a binary classifier which tries to accurately distinguish
real data from those generated. Within this min-max game,
the generator and the discriminator can be trained jointly by
optimizing the following objective function:

min
G

max
D

V (G,D) = Ex∼Pdata(x)
[logD(x)]+

Ez∼PG(z)
[log(1−D(G(z)))],

(1)

where x is real data sampled from distribution Pdata and G(z)
stands for artificial data sampled from distribution PG. It is
shown in [20] that sufficient training data and epochs allows
the distribution PG to coverage to the distribution Pdata.

To get more mapping information, we use a conditional
extension of GAN (CGAN) [22] which is augmented with
some side information. Suppose there is a context vector y
as side information, the generator G(z, y) tries to synthesize
realistic data under the control of y. Similarly, the CGAN
model allows the output of the discriminative model D(x, y)

to be controlled by the context vector y. The objective func-
tion becomes the following:

min
G

max
D

VCGAN (G,D) = Ex,y∼Pdata(x,y)
[logD(x, y)]+

Ez∼PG(z),y∼Pdata(y)[log(1−D(G(z, y), y))].

(2)

In this work, we adjust the input of CGAN, which is discussed
in Section 3.

3. PROPOSED WORK

3.1. Model of Singing Voice Separation GAN (SVSGAN)

The SVSGAN architecture consists of two conventional deep
neural networks (DNNs): generator G and discriminator D,
as shown in Fig. 2. We use magnitude spectra as features and
take each spectrum as a sample vector from the spectra distri-
bution. Non-linear mapping is performed between the input
mixture spectrum and output clean spectrum, which consists
of the vocal part and background music part. Generator G in-
puts a mixture spectra and generates realistic vocal and back-
ground music spectra while discriminator D distinguishes the
clean spectra from those generated spectra.

Given that magnitude spectra are transformed from the
time domain audio signals using short time Fourier transform
(STFT), the output targets y1 and y2 of the network are the
magnitude spectra of different sources. After training, the net-
work’s output predictions, which are also magnitude spectra,
are ỹ1 and ỹ2. The time-frequency masking function, called
a soft time-frequency mask, can smooth the source separa-
tion results and is used here. The time-frequency mask can be
defined as:

m(f) =
|ỹ1(f)|

|ỹ1(f)|+ |ỹ2(f)|
, (3)

727



where f = 1, 2, ...,F, stands for different frequencies. After a
time-frequency mask is calculated, it is applied to the spectra
z of the mixture signals to estimate the predicted separation
spectra s̃1 and s̃2, corresponding to source 1 and source 2,
defined as:

s̃1(f) = m(f)z(f),

s̃2(f) = (1−m(f))z(f),
(4)

where f = 1, 2, ...,F, stands for different frequencies. How-
ever, based on [15], the joint optimization is proposed to
achieve better results. Similarly, instead of training the net-
work for the time-frequency mask, we train it with the time-
frequency masking function. As shown in the left part of
Fig.2, the time-frequency masking function is regarded as an
additional layer at the network output, defined as:

ŷ1 =
|ỹ1|

|ỹ1|+ |ỹ2|
⊗ z,

ŷ2 =
|ỹ2|

|ỹ1|+ |ỹ2|
⊗ z,

(5)

where⊗ stands for element-wise operation. ŷ1 and ŷ2 are es-
timated spectra, which can be transformed into time-domain
signals using the inverse short time Fourier transform (ISTFT)
with phase information. In this way, the network and time-
frequency masking function are jointly optimized. In our pro-
posed framework, the final output separated spectra is based
on Eq. 5.

3.2. Training Objective Functions

Before adversarial training, the parameters of the generator G
are initialized by performing Eq. 5 in a supervised setting.
The training objective J is the mean squared error (MSE)
function, which is defined as follows:

J = ‖ŷ1 − y1‖2 + ‖ŷ2 − y2‖2. (6)

After parameter initialization, the generator G provides ba-
sic performance for singing voice separation to serve as the
baseline for our experiments.

To fit the input of generator G, the training objective func-
tion of SVSGAN by adjusting Eq. 2 is defined as follows:

min
G

max
D

VSV SGAN (G,D) =

Ez,sc∼Pdata(z,sc)
[logD(sc, z)]+

Ez∼PG(z)
[log(1−D(G(z), z)],

(7)

where sc is the concatenation of y1 and y2, and the output
of G(z) is the predicted spectra consisting of the concate-
nation of ŷ1 and ŷ2, which is generated from input spectra
z. The output of discriminator D is controlled by the aug-
mented input spectra z. By this step, the SVSGAN not only
approximates the distribution between input spectra and out-
put spectra but also learns the general structure of the spectra.
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Fig. 3: SVSGAN training process, where “B.g.m.” stands
for background music. The parameters of generator G are
first initialized. Discriminator D returns “fake” when the in-
put contains predicted spectra and returns “real” when input
contains clean spectra.

In addition, we use log D trick [20] as the objective function
for generator G.

Note that better separation results may be obtained using
complicated training objective functions and more powerful
neural networks, such as RNN or CNN. However, we use a
basic neural network architecture and the MSE as the training
objective to investigate the degree of performance improve-
ment provided by GAN.

4. EXPERIMENTS

4.1. Dataset & Settings

The proposed framework is evaluated using the MIR-1K
dataset [23], iKala dataset [11] and Demixing Secret Database
(DSD100) [24]. The MIR-1K dataset consists of 1,000 song
clips lasting 4 to 13 seconds with a sample rate of 16,000 Hz.
These clips are recorded from 110 Chinese popular karaoke
songs performed by both male and female amateurs. The
iKala dataset consists of 352 30-second song clips with a
sample rate of 44,100 Hz. These clips are recorded from Chi-
nese popular songs performed by professional singers. Only
252 song clips are released as a public subset for evaluation.
Each song clip in these two datasets is a stereo recording,
with one channel for the singing voice and the other for back-
ground music. Manual annotations of the pitch contours are
provided. In experimental settings, we randomly select one-
fourth of the song clips for training data and the remaining
song clips are used for testing.

The DSD100 dataset is taken from a subtask called MUS
from the Signal Separation Evaluation Campaign (SiSEC). It
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MIR-1K Dataset
Model SDR SAR SIR
DNN (baseline) 6.57 10.14 9.84
SVSGAN (V+B) 6.69 10.32 9.86
SVSGAN (V+M) 6.73 10.28 9.96
SVSGAN (V+B+M) 6.78 10.29 10.07
IBM (upper bound) 13.92 14.80 21.96

iKala Dataset
Model SDR SAR SIR
DNN (baseline) 9.74 11.72 14.99
SVSGAN (V+B) 10.15 12.48 14.72
SVSGAN (V+M) 10.22 12.78 14.41
SVSGAN (V+B+M) 10.32 12.87 14.54
IBM (upper bound) 12.30 14.10 23.70

Table 1: Vocal results (in dB) of conventional DNN and
SVSGANs on the MIR-1K and iKala datasets. “IBM” rep-
resents ideal binary mask. Some examples of singing voice
separation are provided at http://mirlab.org/demo/
svsgan.

consists of Dev and Test parts each with 50 songs with a sam-
ple rate of 44,100 Hz. Each song provides four sources:
bass, drums, other and vocals and the mixture is semi-
professionally engineered. The average duration of these
songs is 4 minutes and 10 seconds and the dataset includes a
wide variety of music genres.

To reduce computational cost, all song clips from the
iKala and DSD100 datasets are downsampled to 22,050 Hz.
We used STFT to yield magnitude spectra with a 1024-point
window size and a 256-point hop size. Performance is mea-
sured in terms of source to distortion ratio (SDR), source to
interference ratio (SIR), and source to artifact ratio (SAR),
calculated by the Blind Source Separation (BSS) Eval tool-
box v3.0 [25]. For the iKala and MIR-1K datasets, overall
performance is reported on weighted means of the SDR, SAR
and SIR. For the DSD100 dataset, overall performance is
reported on median values of SDR based Test part.

4.2. Experimental Results

To compare the performance between the conventional DNN
and SVSGANs, we construct a conventional DNN, which
consists of 3 hidden layers, each with 1024 neurons, denoted
as DNN (baseline). The architecture of generator G in the
SVSGANs is identical to the baseline and is combined with
discriminator D consisting of 3 hidden layers, each with 512
neurons. The difference between the SVSGANs is the input
spectra of discriminator D, as shown in Table 1, where “V”
stands for the vocal spectra, “B” is the background music
spectra, and “M” is the mixture spectra. Comparing DNN
(baseline) to SVSGANs, the results on iKala and MIR-1K
datasets show that SVSGANs enhance performance in terms
of SDR and SAR. Comparing different SVSGAN architec-
tures, SVSGAN (V+B) represents the results of the original

Fig. 4: Vocal results on the Test part of the DSD100 dataset,
sorted by median values of each submission.

GAN architecture while SVSGAN (V+M) and SVSGAN
(V+B+M) represent the results of the conditional GAN. SVS-
GAN (V+M) is found to provide better results, indicating
that when the input of discriminator D contains the mix-
ture spectra, SVSGAN (V+M) not only learns the mapping
from the distribution of mixture spectra to the distribution
of clean spectra but also learns a general structure from the
mixture spectra at the same time. Comparing SVSGAN
(V+M) to SVSGAN (V+B+M), which has more inputs for
discriminator, suggests that increasing the number of inputs
to discriminator D improves performance.

Fig. 4 compares the Test part of the DSD100 dataset. The
DNN (baseline) and SVSGAN (V+B+M) are the same as
those evaluated on the iKala and MIR-1K datasets. Since we
only trained the model with the Dev part of dataset without
additional augmented datasets, such as MedleyDB [26], SVS-
GAN (V+B+M) does not outperform all other submissions.
However, the result still shows that singing voice separation
can be improved by adversarial learning on this dataset fea-
turing a wide variety of music genres.

5. CONCLUSIONS & FUTURE WORK

This paper proposes a singing voice separation model with
time-frequency masking function for monaural recordings us-
ing a generative adversarial framework. The framework con-
sists of two conventional neural networks with conditional
GAN, and is shown to potentially enhance source separation
performance. Possible future work involves three directions.
First, we will incorporate additional augmented data in our
adversarial training process to achieve better performance.
Next, we will seek to improve generator G and discrimina-
tor D using more powerful neural networks, such as CNN,
RNN and other complicated architectures. Finally, we will
explore the use of Wasserstein GAN [27] to achieve better
performance. Future work will also include further compar-
isons between SVSGANs and other competitive approaches.
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