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ABSTRACT

We introduce FFTNet, a deep learning approach synthesizing
audio waveforms. Our approach builds on the recent WaveNet
project, which showed that it was possible to synthesize a natural
sounding audio waveform directly from a deep convolutional neural
network. FFTNet offers two improvements over WaveNet. First
it is substantially faster, allowing for real-time synthesis of audio
waveforms. Second, when used as a vocoder, the resulting speech
sounds more natural, as measured via a “mean opinion score” test.

Index Terms— FFTNet, WaveNet, neural networks, vocoder

1. INTRODUCTION

The WaveNet project introduced a deep learning architecture ca-
pable of synthesizing realistic sounding human speech based on
linguistic features and F0 pitch [1]. Though it was surprising to
many researchers that a plausible waveform could be synthesized
directly as the output of a convolutional neural network, it has
subsequently been confirmed by many follow-on projects. The ap-
proach has many applications, including the classical text-to-speech
(TTS) problem [2]. While WaveNet and others initially addressed
TTS starting from linguistic features, ensuing work showed that
speech could be synthesized directly from input text [3, 4]. The
approach has also been adapted to other problems, including voice
conversion [5, 6], speech enhancement [7], and musical instrument
synthesis [1, 8].

Despite the impressive quality of the synthesized waveform, the
WaveNet approach still suffers from several drawbacks: it requires
substantial training corpus (roughly 30 hours), the synthesis process
is slow (40 minutes to produce a second of audio), and the result
contains audible noise. Recent work by Tamamori et al. [9] showed
that WaveNet could also be used as a vocoder [10], which generates
a waveform from acoustic features. Working from acoustic features,
the training process is effective with a substantially smaller corpus
(roughly one hour) [11] while still producing higher quality speech
than baseline vocoders like MLSA [12]. Several research efforts
have addressed the problem of computational cost. Paine et al. [13]
introduce an algorithmic improvement for the same architecture
called Fast WaveNet, which can synthesize a second of audio in a
roughly a minute. The Deep Voice approach of Arik et al. [14] is
able to achieve real-time synthesis by reducing the WaveNet model
size significantly, but at the expense of noticeably reduced voice
quality. Concurrent with our work, the WaveNet team also achieved
huge performance gains by introducing a new deep learning network
architecture that leverages parallelism on a GPU cluster [15].

This paper introduces FFTNet, an alternative deep learning ar-
chitecture, coupled with several improved techniques for training
and synthesis. WaveNet downsamples audio via dilated convolu-
tion in a process that resembles wavelet analysis. In contrast the

FFTNet architecture resembles the classical Fast Fourier Transform
(FFT) [16], and uses substantially fewer parameters than the analo-
gous WaveNet model. FFTNet models produce audio more quickly
(> 70× faster) than the Fast WaveNet formulation [13], thereby en-
abling real-time synthesis on a single CPU. Moreover, we show that
when used as a vocoder, FFTNet produces higher quality synthetic
voices, as measured by a “mean opinion score” test [17]. We also
show that the FFTNet training and synthesis techniques can improve
the original WaveNet approach such that the quality of the synthe-
sized voice is on par with that of the FFTNet architecture (albeit
much slower to synthesize). Finally, we note that the FFTNet archi-
tecture could also be leveraged in a variety of other deep learning
problems such as classification tasks and autoencoders.

2. METHOD

Similar to WaveNet, our method generates waveforms one sample
at a time based on previously generated samples and an auxiliary
condition, but has a simpler architecture. In this section, we first
briefly introduce WaveNet, then the proposed architecture called
FFTNet, and finally a set of training and synthesis techniques
essential in building a high quality FFTNet vocoder.

2.1. WaveNet vocoder

WaveNet [1] is a neural network architecture that has been used
in audio synthesis to predict one audio sample at a time based
on previously generated samples and auxiliary conditions, such
as a sequence of phonemes and fundamental frequencies (F0).
The prediction is based on the posterior distribution of sample
values quantized using µ-law. When the auxiliary conditions are
acoustic features, such as Mel Cepstral Coefficients (MCC) and
pitch, WaveNet can be used as a Vocoder, which generates a
waveform from these features. It makes no assumption on how
speech is generated and has been shown to generate significantly
more natural and clear speech than conventional vocoders.

The basic building block of WaveNet is dilated causal convo-
lution [18]: given signal f , dilation d and kernel k, dilated convo-
lution at time step t is defined as (k ∗d f)t =

∑
i kift−di. If we

replace the multiplication between ki and ft−di with 1 × 1 convo-
lution (conv1x1), we get a layer of 1-D dilated convolutional neural
network, or DCNN. WaveNet is constructed by stacking a series of
DCNN layers with exponentially increasing dilation factors for each
subsequent layer: 20, 21, 22, ...2n. At each layer, a gated activation
structure is used:

z = tanh(Wf ∗d x+ Vf ∗d h)� σ(Wg ∗d x+ Vg ∗d h)

where x is the output from the previous layer and serves as the input
for the current layer; Wf and Wg are convolution kernels for the
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Fig. 1. Dilated convolution in WaveNet

filters and the gates; Vf and Vg represent conv1x1 on the auxiliary
conditions h (F0 and MCC); and� is element-wise dot product. The
final output of a layer is obtained by another conv1x1 on z. The
original WaveNet proposed to use skip connections – an additional
conv1x1 is applied to z to obtain a new output s; then s of all layers
are summed together to become a skip output. To further increase
nonlinearity, more conv1x1 and ReLU layers are applied on top of
the skip output and finally a softmax layer is used to produce the
posterior distribution of quantized sample values.

With dilated convolution, a n-layer network has a receptive field
of 2n meaning as many as 2n previous samples can influence the
synthesis of the current sample, which leads to superior synthesis
quality. However, since WaveNet synthesizes one sample at a time,
to generate one second of audio sampled at 16kHz, the causal dilated
network needs to be applied 16,000 times. Faster methods have been
proposed [13], which can produce 200 samples per second, but the
performance is still far from real-time on personal computers. We
aim to design a vocoder with a simpler (thus faster) yet equally
powerful architecture.

2.2. FFTNet architecture

Highlighting the nodes that influence the prediction of the new
sample, we see a reversed binary tree structure as shown in Figure 1.
This dilated convolution structure resembles wavelet analysis - in
each step filtering is followed by down-sampling. This observation
inspired us to explore an alternative structure to wavelet based on
the Cooley-Tukey Fast Fourier Transform (FFT) [16]. Given an
input sequence x1, x2, ..., xn, FFT computes the k-th frequency
component fk from time-domain series x0, ..., xN−1 by

fk =

N−1∑
n=0

xne
−2πink/N =

N/2−1∑
n=0

x2ne
−2πi(2n)k/N

+

N/2−1∑
n=0

x2n+1e
−2πi(2n+1)k/N

Denote
∑N−1
n=0 xne

−2πink/N as f(n,N) and the above equation
can be simplified as

f(n,N) = f(2n,N/2) + f(2n+ 1, N/2)

= f(4n,N/4) + f(4n+ 1, N/4)

+ f(4n+ 2, N/4) + f(4n+ 4, N/4) = ...

One can think of xn as a node with K channels (e.g. 256 quan-
tization channels) and the term e−2πi(2n)k/N as a transformation
function, then each term f(n,N) = f(2n,N/2)+ f(2n+1, N/2)
is analogous to applying a transformation to previous nodes x2n and
x2n+1 and summing up their results. If we use conv1x1 as the

Fig. 2. FFTNet architecture: given size-8 inputs, they are first
divided into two halves; each passed through a different 1×1
convolution layer and then summed together. The summed size-4
output will pass through ReLU and then another 1×1 convolution
and ReLU before repeating the the same operation.

transformation, we can create a network that resembles the FFT as
shown in Figure 2. In other words, given input x0:N defined as a
1D series (x0, x1, ..., xN−1), each FFTNet layer clips the input into
two halves (xL = x0:N/2 and xR = xN/2:N ), performs separate
conv1x1 transformation to each half and then sums up the results:

z =WL ∗ xL +WR ∗ xR (1)

where WL and WR are conv1x1 weights for xL and xR. Instead
of using a gated activation structure, FFTNet uses a simple ReLU
followed by a conv1x1 to produce inputs for the next layer, namely
x = ReLU(conv1x1(ReLU(z))), which reduces computation cost.
Stacking n layers will give an input size of 2n. The auxiliary
conditions are transformed by conv1x1 and then added to z. i.e.,

z = (WL ∗ xL +WR ∗ xR) + (VL ∗ hL + VR ∗ hR) (2)

where hL and hR are the two halves of the condition vector h and VL
and VR are conv1x1 weights. Note that if the condition information
is stationary along the time axis, one may use V ∗ hN instead of
(VL ∗ hL + VR ∗ hR).

To use FFTNet as a vocoder, we define ht as F0 and MCC
features at time t. To generate the current sample xt, we use
the previously generated samples xt−N :t and auxiliary condition
ht−N+1:t+1 (shifted forward by 1) as the network input. In our
experiments, the auxiliary condition is obtained as follows: first we
take an analysis window of size 400 every 160 samples. Then we
extract the MCC and F0 features for each overlapping window. For
the ht corresponding to the window centers, we assign the computed
MCC and F0 values (26 dimensions in total). For the ht that are not
located at the window centers, we linearly interpolate their values
based on the assigned ht in the last step.

Finally, FFTNet uses a fully connected layer followed by a
softmax layer (size 1 with K = 256 channels) as the last two layers
to produce the posterior distribution of the new sample’s quantized
values. To determine the final value of the current sample, one
can use argmax or perform random sampling from the posterior
distribution, but we propose an alternative strategy in Section 2.3.2.

2.3. Training Techniques

In this section, we introduce a set of techniques that are essential for
training an FFTNet to produce results of similar quality to WaveNet.
Our experiments indicate that these techniques can also improve
WaveNet synthesis quality.
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2.3.1. Zero padding

WaveNet uses zero-padding during dilated convolution. The same
idea can be applied to FFTNet. Given a sequence of length M , the
input x1:M (M > N ) is shifted to the right by N samples with
zero padding. The N padded zeros are denoted as x−N :0 where
∀j < 0, xj = 0. Equation 1 becomes

z0:M =WL ∗ x−N :M−N +WR ∗ x0:M

Our experiments show that without zero padding, the network tends
to produces noise or gets stuck (outputting zeros) when the inputs
are nearly silent. Zero-padding during training allows the network to
generalize to partial input. We recommend using training sequences
of length between 2N and 3N so that a significant number (33%
- 50%) of training samples are partial sequences. In this work, we
apply zero-padding to both WaveNet and FFTNet in our experiment.

2.3.2. Conditional sampling

Both WaveNet and FFTNet are classification networks - the last
softmax layer produces a posterior distribution over 256 categories.
Like every classifier, the prediction error comes from two sources:
training error and true error. True error mainly corresponds to noise,
and resides in the unvoiced parts of the signal. To synthesize noise,
we rely on the network to learn the noise’s distribution by the output
posterior distribution on which we use random sampling to obtain
the sample’s value. Training error comes from the model itself;
and the prediction strategy that gives the minimal training error is
argmax. However, argmax is not suitable for simulating signals
that contain true noise, since it always chooses the center of a noise
distribution leading to zero noise in the synthesis output. Instead of
using argmax universally, we propose to use different prediction
strategies for unvoiced and voiced sounds (Figure 3). For unvoiced
sounds, we randomly sample from the posterior distribution; and
for voiced sounds, we take the normalized logits (the input values
before softmax), multiply it by a constant c > 1 and pass it through
the softmax layer to obtain a posterior distribution where random
sampling is performed. In this way, the posterior distribution will
look steeper while the original noise distribution is preserved. In
this work, we use c = 2.

2.3.3. Injected noise

Due to the training error, the synthesized samples always contain
some amount of noise; during synthesis, the network will generate
samples that get noisier over time. They serve as network input to
generate the next sample, adding more and more randomness to the
network. When the noise builds up, the output sample might drift
leading to clicking artifacts. To avoid such drift, the network needs
to be robust to noisy input samples. We achieve this by injecting
random noise to the input x0:M during training. We determine the
amount of noise to inject into the input based on the amount of noise
the network is likely to produce. In this work, we observe that the
prediction is often one category (out of 256) higher or lower than the
ground-truth category and thus, we inject Gaussian noise centered at
0 with a standard deviation of 1/256 (based on 8 bit quantization).

2.3.4. Post-synthesis denoising

Our experiments show that the injected noise eliminates the clicking
artifact almost perfectly for FFTNet but introduces a small amount
of random noise to voiced samples. Therefore, we apply a spectral
subtraction noise reduction [19] to reduce the injected noise for the

Fig. 3. Conditional sampling: WaveNet and FFTNet model noise
by matching the posterior distribution to the noise’s distribution
(b). Therefore to generate noise (a), we randomly sample from the
posterior distribution (b). For periodic signals (d), we double the log
of the posterior distribution (e), to obtain a cleaner distribution (f);
for aperiodic signals, the posterior distribution remains the same (c).

voiced samples. The reduction is proportional to the amount of noise
injected during training. It is possible to apply noise reduction to the
unvoiced samples as well, but it may result in artifacts. Therefore,
we reduce the amount of noise reduction applied to the unvoiced
samples by half.

3. EVALUATION

To evaluate our algorithm, we conduct both a subjective listening
test using mean-opinion score (MOS) to measure synthesis quality,
and an objective test to measure spectral and cepstral distortion.

3.1. Experimental setup

Four voices, two male (BDL,RMS) and two female (SLT,CLB), from
the CMU Arctic dataset [20] are used in our experiments. The
first 1032 utterances (out of 1132) are used for training and the
remaining are used for evaluation. The waveforms are quantized to
256 categorical values based on µ-law. 25-coefficient Mel Cepstral
Coefficients (with energy) and F0 are extracted from the original
samples. We build 4 networks for each voice, 2 WaveNets and 2
FFTNets. For each type of network, we used two training strategies:
Strategy one is with zero padding but without using the other
techniques in Section 2.3; Strategy two applies all techniques in
Section 2.3. The WaveNet we implemented contains two stacks of
10-layer dilated convolution (d = 20, 21, ..., 29) with 256 dilation
and 128 skip channels. The total receptive field is 2048 samples.
We experimented with different numbers of channels and found
the current configuration the best for the vocoder. The FFTNet
implementation contains 11 FFT-layers with 256 channels, which
also has a receptive field of 2048. Note that this FFTNet has less
than 1M parameters and with proper caching [13], the computation
cost for generating one second of audio (16kHz) is only around
16GFLOPs; it means a modern CPU can generate audio samples
in real-time. In each training step, a minibatch of 5× 5000-
sample sequences are fed to the network, optimized by the Adam
algorithm [21] with a training rate 0.001. We set the variance of
injected noise to be 1/256. In each minibatch, all sequences come
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Fig. 4. Mean opinion score (MOS) test results show that the
proposed method FFT+ improves synthesis quality over the original
WaveNet WN, and that our training/synthesis techniques (+) improve
both original WaveNet and naive FFTNet (FFT). The bottom table
shows the average MOS across four voices.

from different utterances; we trained WaveNet by 200,000 steps and
FFTNet by 100,000 steps to ensure convergence.

In our implementations, synthesis using FFTNet is more than
70 times faster than Fast WaveNet [13], requiring only 0.81 second
to generate one second of audio on a laptop CPU (2.5 GHz Intel
Core i7). The audio clips and results of the experiments described in
this section may be found at our project web page.1

3.2. Subjective evaluation

We conducted a Mean Opinion Score (MOS) test [17] that asks
subjects to rate the quality of the synthetic utterances. Our subjects
were recruited via Amazon Mechanical Turk (AMT), a micro-task
platform popular for crowdsourcing experiments [22]. We recruited
participants from the United States who have an approval rate over
90% to ensure the reliability of the study results. We also designed
a validation test to ensure that subjects are paying attention and
rejected those who fail on those tests. AMT has been used for
conducting MOS tests in various domains [23, 24, 25]. It has been
shown to be effective for various kinds of listening tests [26, 27] and
can provide a large number of diverse participants in a short amount
of time. We evaluated six conditions for each utterance:

MLSA MLSA filter
WN WaveNet with only zero-padding

FFTN FFTNet with only zero-padding
WN+ WaveNet with techniques in Section 2.3

FFTN+ FFTNet with techniques in Section 2.3
Real the actual recording

In each task (called a HIT), a subject is presented with 32
different sentences in which 24 of them are made of 4 instances from
each of the above 6 conditions. From a held-out set of sentences,
we add 4 more instances of the “Real” condition and 4 more cases
of badly edited “Fake” (3 bit A-law encoded) condition to validate

1http://gfx.cs.princeton.edu/pubs/Jin 2018 FAR

that the subject is paying attention and not guessing randomly. For
the data to be retained, the subject may make at most one mistake
on these validation tests, by either rating < 3 on “Real” examples
or > 3 on “Fake” examples. We launched 480 HITs (120 per voice)
and retained 446 after validation.

Figure 4 shows a bar chart for the MOS test with the error
bars indicating standard deviation across utterances. The proposed
training technique improves both WaveNet and FFTNet significantly
with an ANOVA test p-value less than 10−9 for both networks. The
proposed network FFT+ also improves on WN with a p-value of
< 10−20. Both WN+ and FFT+ have significant overlap with the real
examples in MOS scores. The proposed method FFT+ has a slightly
lower MOS than WaveNet WN+ (with an insignificant p-value); but
it is significantly faster, as noted above. It is also worth noting that
FFT has similar quality to the baseline method MLSA (insignificant
p-value) due to noisy artifacts; this implies the training and synthesis
techniques are essential to make FFTNet work well.

3.3. Objective evaluation

We evaluated the distortion between the original and the synthesized
speech using RMSE and MCD [9]. RMSE measures frequency do-
main difference between two signals; and MCD measures the differ-
ence in the cepstral domain, which reflects whether the synthesized
speech can capture the characteristics of the original speech. Both
measurements are in dB. The result is shown in Table 1.

MCD (dB) RMSE (dB)
voice slt clb rms bdl slt clb rms bdl
mlsa 2.76 3.03 3.62 3.28 8.05 9.14 8.80 8.25
WN 4.47 4.04 4.60 3.05 9.71 9.65 9.38 8.29

WN+ 4.57 4.13 4.41 3.28 9.80 8.95 9.74 8.67
FFT 5.24 5.07 4.82 4.23 10.39 9.77 10.33 10.13

FFT+ 4.73 4.69 4.41 3.82 9.88 9.58 9.89 9.64

Table 1. Comparison of distortion between natural speech and
synthetic speech based on Average MCD and RMS

The result shows that MLSA tends to preserve most of the cep-
stral and spectral structure while the MOS test puts it in a signif-
icantly lower tier as it generates audible over-smoothing artifacts.
The techniques introduced in Section 2.3 do not reduce distortion
in WaveNet but they significantly improve FFTNet in both metrics.
Also, note that the WaveNet with the proposed techniques performs
significantly better in subjective evaluation than the one without.
This result also contradicts MCD and RMSE.

4. CONCLUSION

We introduce FFTNet, a neural network that generates waveforms
one sample at a time based on previously generated samples and
axillary conditions. Unlike WaveNet, FFTNet uses a simple archi-
tecture mimicking the Fast Fourier Transform (FFT) that makes it
possible to generate audio samples in real-time. We also propose
a set of training and synthesis techniques that improve the synthesis
quality of both FFTNet and WaveNet. Experiments demonstrate that
when used as a vocoder, FFTNet generates higher-quality speech
than the original WaveNet, and on par with WaveNet as improved
by our training and synthesis techniques. Due to its relatively small
number of parameters, FFTNet is not currently suited for speaker-
independent vocoding. Future work will consider application of this
architecture to other problems such as phoneme classification and
acoustic modeling.
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