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ABSTRACT

A semi-recurrent hybrid VAE-GAN model for generating se-
quential data is introduced. In order to consider the spatial
correlation of the data in each frame of the generated se-
quence, CNNs are utilized in the encoder, generator, and dis-
criminator. The subsequent frames are sampled from the la-
tent distributions obtained by encoding the previous frames.
As a result, the dependencies between the frames are main-
tained. Two testing frameworks for synthesizing a sequence
with any number of frames are also proposed. The promis-
ing experimental results on piano music generation indicates
the potential of the proposed framework in modelling other
sequential data such as video.

Index Terms— Variatoinal auto-encoder, generative ad-
versarial network, convolutional neural network, sequential
data, music generation

1. INTRODUCTION

One important problem in unsupervised learning is generating
sequential data such as music. Recurrent Neural Networks
(RNNs) and Long Short Term Memory Networks (LSTMs)
have shown considerable performance in this area. However,
they have difficulties in handling the vanishing and the ex-
ploding gradient problems [1]. In order to deal with these
issues, RNNs have been combined with the most recent deep
generative architectures such as Variational Auto-encoders
(VAEs) and Generative Adversarial Networks (GANs) [2–7],
which are typically used for learning complex structures of
data.

VAEs are generally easy to train, but the generated re-
sults have low quality due to imperfect measures such as the
squared error. On the other hand, GANs generate samples
with higher quality, but they suffer from training instability.
In order to improve the training process and the quality of the
generated samples, some researchers suggested hybrid VAE-
GAN models [8, 9].

Although most of the sequential data generation methods
are based on RNNs, some recent works have shown that Con-
volutional Neural Networks (CNNs) are also capable of gen-
erating realistic sequential data such as music [10, 11]. One
advantage of CNNs is that they are practically faster to train
and easier to parallelize than RNNs. In addition, applying

(a) Training framework. (b) Two testing frameworks.

Fig. 1: The training and testing frameworks of the proposed
semi-recurrent hybrid VAE-GAN model (E: encoder, G:
generator, and D: discriminator).

convolutions to the time dimension can result in significant
performance in some applications [12].

Considering the sequential data generation as a problem
of generating a sequence of discrete frames, two problems
need to be addressed: strong spatial correlation of the data in
each of the frames, and the dependencies between them (tem-
poral correlation). In this work, we propose a semi-recurrent
convolution-based VAE-GAN for generating a sequence of
individual frames where the above problems are efficiently
addressed. In order to maintain strong local correlation of the
data in each frame generated, we use CNN, which is a very
effective architecture for this matter. Moreover, each frame
is generated from the latent distribution of the previous frame
encoded by an encoder. As a result, the dependencies across
the frames are also kept.

Figure 1 illustrates the overall training and testing frame-
works proposed in this work. The model includes an encoder,
a generator (decoder), and a discriminator. To the best of our
knowledge, this is the first hybrid VAE-GAN framework in-
troduced for generating sequential data. The feasibility of
this model is evaluated on piano music generation, which
shows that the proposed framework is a viable way of training
networks that model music, and has potential for modelling
many other types of sequential data such as videos.
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2. PRELIMINARIES AND RELATED WORKS

In recent years, deep generative models have achieved signifi-
cant success, especially in generating natural images [13–17].
In these models, complex structures of the data can be learned
using deep architectures with multiple layers. VAEs [13, 15]
and GANs [14,16,17] are two powerful frameworks for learn-
ing deep generative models in an unsupervised manner.

2.1. Variational Auto-encoder (VAE)

A VAE consists of an encoder and a decoder [13]. The en-
coder, denoted by q(z|x), encodes a data sample x to a latent
(hidden) representation z: z ∼ q(z|x). The decoder, denoted
by p(x|z), decodes the latent representation back to the prob-
ability distribution of the data (in data space): x̂ ∼ p(x|z).

The VAE regularizes the encoder by imposing a prior over
the latent distribution p(z) where z ∼ N (0, I). The loss func-
tion of the VAE is the expected log likelihood with a regular-
izer:

LV AE = −Eq(z|x)[log p(x|z)] +KL(q(z|x)‖p(z)) (1)

where the first and second terms are the reconstruction loss
and a prior regularization term that is the Kullback-Leibler
(KL) divergence, respectively.

2.2. Generative Adversarial Network (GAN)

Another popular generative model is GAN in which two mod-
els are trained at the same time [14]. The generator model
G(z) captures the data distribution by mapping the latent z
to data space, while the discriminator model D(x) ∈ [0, 1]
estimates the probability that x is a real training sample or a
fake sample synthesized by G. These two models compete in
a two-player minimax game in which the objective function
is to find a binary classifier D that discriminates the real data
from the fake (generated) ones, and simultaneously encour-
age G to fit the true data distribution. This goal is achieved
by minimizing/maximizing the binary cross entropy:

LGAN = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]
(2)

where G tries to minimize this objective against D that tries
to maximize it.

Although GANs are powerful generative models, they
suffer from training instability and low-quality generated
samples. Different approaches have been proposed to im-
prove GANs. For example, Wasserstein GAN (WGAN) [18]
used Wasserstein distance as an objective for training GANs
to improve the stability of learning, Laplacian GAN (LAP-
GANs) [19] achieved coarse-to-fine conditional generation
through Laplacian pyramids, and Deep Convolutional GAN
(DCGAN) [16] proposed an effective and stable architecture
forD andG using deeper CNNs to achieve remarkable image
synthesis results.

2.3. Sequential Data Generation: Music Generation

Different learning-based approaches for sequential data gen-
eration, especially music, have been introduced by various
researchers. In [20], a RNN-based architecture using LSTMs
was proposed in which a piano-roll sequence of notes and
chords were generated using an iterative feed-forward strat-
egy. In [21] a Restricted Boltzmann Machine (RBM) was
utilized for modeling and generating polyphonic music by
learning a model from an audio corpus. DeepBach architec-
ture [22], which was specialized for Bach’s chorales, com-
bined two LSTMs and two feed-forward networks (forward
and backward in time networks).

VAE, as one of the effective approaches considered for
content generation, has been used by some researchers in or-
der to generate musical content. In [2], a VAE-based method
named Variational Recurrent Auto-Encoder (VRAE) was pro-
posed in which the encoder and decoder parts were LSTMs.
Variational Recurrent Autoencoder Supported by History
(VRASH) [3] used the same architecture as in VRAE, but
also used the output of the decoder back into the decoder.
In [4], the objective function used in DeepBach was reformu-
lated using VAE to have a better control on the embedding of
the data into the latent space.

Although RNNs are more commonly used to model time-
series signals, some non-RNN approaches have been intro-
duced using CNNs [10, 11, 23]. A system for generating
raw audio music waveforms named WaveNet was proposed
in [10] in which an extended CNN called dilated causal
convolution was incorporated. In this work, the authors ar-
gued that dilated convolutions allowed the receptive field
to grow longer in a much cheaper way than using LSTMs.
Another CNN-based architecture is convolutional RBM (C-
RBM) [23], which was developed for the generation of MIDI
polyphonic music. In this work, convolution was performed
in the time domain to model temporally invariant motives.

Some works have exploited GANs for generating music
[5, 11]. An example of the use of GAN is C-RNN-GAN [5]
with both G and D being LSTMs in which the goal was to
transform random noise into melodies. A bidirectional RNN
was utilized in D to take contexts from both past and future.
In [11], a convolutional GAN architecture named MidiNet
was proposed to generate pop music melodies from random
noise (in piano-roll like format). In this approach, both G and
D were composed of convolutional networks. Similar to what
a recurrent network would do in considering the history, the
information from previous musical measure was incorporated
into intermediate layers.

3. SEMI-RECURRENT CNN-BASED VAE-GAN

In this section, the semi-recurrent hybrid VAE-GAN model
proposed for generating temporal data such as music, is de-
scribed. As illustrated in Figure 1a, the model is composed of
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three units: the encoder (E), the generator/decoder (G), and
the discriminator (D). In this work, the VAE decoder and the
GAN generator are collapsed into one by letting them share
parameters and training them jointly.

The main architecture of the three networks used in this
work is CNNs. Convolutions are rarely used in modelling sig-
nals with invariance in time such as music, but they have been
very successful in the models whose data has strong spatially
local correlation such as images, which is also important for
sequential data. In this work, we consider the input time-
dependent data as a sequence of individual frames, which
have internal spatial correlation. Thus, we exploit CNNs for
separate generation of each of these frames, while keeping the
dependencies across them as follows.

For each pair of sequential frames, the previous frame is
encoded to its corresponding latent representation using E.
Next, G tries to generate (predict) the subsequent frame from
the latent distribution of the previous frame. As a result, the
history and the information from previous frames are incor-
porated for generating the next ones. The current real training
frame in each pair and the synthesized frame are then for-
warded to D as real and fake data, respectively.

3.1. Formulation and Objective

Let X = {x0, ..., xt−1, xt, ..., xn} be a sequence from the
training data with n frames, the network E maps a training
frame xt−1 (previous time frame) to the mean µ and the co-
variance ε of the latent vector:

{µ, ε} = E(xt−1) = q(z|xt−1). (3)

Then, the latent vector zt can be sampled as follows:

zt = µ+ ztp � exp(ε), (4)

where ztp ∼ N (0, I) and � is the element-wise multiplica-
tion. In order to reduce the gap between the prior p(zt) and
the encoder’s distribution q(z|xt−1) and measure how much
information is lost, KL loss is used:

Lprior = LKL =
1

2
(µTµ+ sum(exp(ε)− ε− 1)). (5)

The network G then generates two frames x̃t and x̃tp by
decoding the latent representations zt (sampled using E) and
ztp (sampled from a normal distribution) back to the data
space, respectively:

x̃t = G(zt), x̃tp = G(ztp). (6)

Element-wise reconstruction errors are generally inade-
quate for signals with invariances [8]. As a result, in order to
measure the quality of the reconstructed samples in this work,
the following pair-wise feature matching loss between the real
data xt and the synthesized data x̃t and x̃tp is utilized:

Ll =
1

2
‖Dl(x

t)−Dl(x̃
t)‖22 +

1

2
‖Dl(x

t)−Dl(x̃
t
p)‖

2

2
, (7)

where Dl denotes the features (hidden representation) of an
intermediate layer of the network D. Thus, the loss of net-
work E is calculated:

LE = Ll + Lprior. (8)

In order to distinguish the real training data xt from the
synthesized frames x̃t and x̃tp, the following objection func-
tion is minimized by D:

LD = −(logD(xt)+log(1−D(x̃t))+log(1−D(x̃tp))), (9)

while G tries to fool D by minimizing

LG = −(logD(x̃t) + logD(x̃tp)) + Ll, (10)

where Ll is the pair-wise feature matching loss (Equation 7),
which is a shared error signal between E and G.

Finally, our goal is to minimize the following hybrid loss
function: L = LE + LD + LG.

4. EXPERIMENTS: PIANO MUSIC GENERATION

We applied the proposed approach to piano music generation.
The source code and some generated samples are shared on
GitHub1. In this experiment, we used the Nottingham dataset
2 as our training data, which contains 695 pieces of folk piano
music in MIDI file format. Each MIDI file was divided into
separate bars, and a bar is represented by a real-valued 2-D
matrix x ∈ [0, 1]h×w where h and w represent the number of
MIDI notes/pitches (i.e., h = 88 in this work) and the number
of time steps (i.e., w = 16 with pitch sampling of 0.125sec),
respectively. The value of each element of the matrix is the
velocity (volume) of a note at a certain time step. The se-
quence of n bars is denoted byX = {x0, ..., xt−1, xt, ..., xn}
where xt−1 and xt are two sequential bars.

The details of the networks E, G, and D are summarized
in Table 1. The output layer of E is a fully-connected layer
with 256 hidden units where its first and second 128 units are
respectively considered as the mean µ and covariance ε used
for representing the latent zt of dimension 128 (Equations 3
and 4). The latent zt and a normal distribution ztp (of dimen-
sion 128) are projected to G to output the synthesized bars
x̃t, x̃tp ∈ [0, 1]88×16. Before the Tanh layer ofG, another con-
volution is applied to map to the number of output channels
(that is 1 in this work). An extra convolution is also applied
before the Sigmoid layer ofD to represent the output by a 1-D
feature map, which is used as Dl for calculating the pair-wise
feature matching loss (Equation 7). This network takes the 2-
D matrices xt and x̃t as inputs and predicts whether they are
real or generated MIDI bars.

All models were trained with mini-batch stochastic gradi-
ent descent (SGD) with a mini-batch size of 64. The Adam

1https://github.com/makbari7/SR-CNN-VAE-GAN
2http://www.iro.umontreal.ca/ lisa/deep/data
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Table 1: The network architecture of the encoder (E), gener-
ator (G), and discriminator (D). AF, In, and Out are respec-
tively the activation functions used after each conv/deconv
layer, the input, and the output of each network.

Layers (filters) Size AF In Out

E conv (8, 16, 32),
Fully-connected layer

5×5
stride=2 ELU xt−1 {µ, ε}

G deconv (64, 32, 16, 8),
Tanh layer

3×3
stride=1 ReLU zt, ztp x̃t, x̃t

p

D conv (8, 16, 32, 64),
Sigmoid layer

3×3
stride=1 LeakyReLU xt, x̃t 0 or 1

optimizer with momentum of 0.5 and learning rate of 0.0005
for E and G, and 0.0001 for D was used. In order to keep
the losses corresponding to E, G, and D balanced in each
iteration, we trained E and G twice and D once.

Two models illustrated in Figure 1b were proposed to se-
quentially generate music with an arbitrary number of bars.
In model 1 (top model in Figure 1b), the input to E, denoted
by x0, is a bar randomly selected from training data samples,
which is considered as the first bar of the generated music.
x0 is then mapped to the latent z1 using E. G synthesizes
the next bar x̃1 by decoding z1 back to the data space. By
feeding the generated bar x̃1 to E, this process is repeatedly
performed to generate a sequence of bars. In model 2 (bottom
model in Figure 1b), the same recurrent process is applied, but
the first bar is also a bar synthesized using G from a random
noise zp. Two 5-bar sample music generated using model 1
(top model in Figure 1b) are illustrated in Figure 2.

Fig. 2: Two 5-bar sample music generated using the proposed
testing model 1 (top model in Figure 1b).

4.1. Results

In order to evaluate the music samples generated using our ap-
proach, the following measurements were taken into account
[5]: scale consistency (the percentage for the best matching
musical scale that a sample is part of), uniqueness (the per-
centage of unique tones used in a sample), velocity span (the
velocity range in which the tones are played), recurrence
(repetitions of short subsequences of length 2 in a sample),
tone span (the number of half-tone steps between the lowest
and the highest tones in a sample), and diversity (the average
pairwise Levenshtein edit distance [24] of the generated data
). Figure 3 shows the results of evaluating≈ 2, 500 generated
pieces of music of length 10 seconds (i.e., 5 two-second bars).

As seen in Figure 3, the scale consistency (with an aver-
age of ≈ 87%) shows that the generated music significantly
follows the standard scales in all samples, which outperforms
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Fig. 3: Measurements used for evaluating ≈ 2, 500 music
samples generated at 300 epochs: scale consistency, intensity
span, uniqueness, tone span, and recurrence.

C-RNN-GAN [5] with an average of ≈ 75%. A variety of
velocities exist in the music generated, which is illustrated by
the oscillating velocity span. The average percentage of the
unique tones used in the generated piece is ≈ 37%. Com-
pared to the velocity span, less variability is seen in the tone
span (with minimum and maximum of 10 and 21) of the gen-
erated music due to the low tone span in the training samples
(the majority of the music in the dataset is played in 1 or 2
octaves). The number of 2-tone repetitions is ≈ 7 in average.
Diversity is another metric we took into account to evaluate
how realistic the generated music sounds. Compared to OR-
GAN [6] with an average of 0.551, a higher diversity with an
average of ≈ 0.59 was achieved in this work.

5. CONCLUSION

A semi-recurrent VAE-GAN model for generating sequen-
tial data was presented in this work. The model consisted
of three networks (encoder, generator, and discriminator) in
which convolutions were utilized to spatially learn the local
correlation of the data in individual frames. Each frame was
sampled from a latent distribution obtained by mapping the
previous frame using the encoder. As a consequence, the con-
sistencies between the frames in a generated sequence was
also preserved. Our experiments on piano music generation
presented promising results, which were comparable to the
state-of-the-art. One potential direction of this work is to use
this framework for modelling and generating other types of
sequential data such as video.
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[24] A. Habrard, J. M. Iñesta, D. Rizo, and M. Sebban,
“Melody recognition with learned edit distances,” in
SSPR/SPR, 2008, pp. 86–96.

2325


