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ABSTRACT

In this study, we propose a deep neural network for recon-
structing intelligible speech from silent lip movement videos.
We use auditory spectrogram as spectral representation of
speech and its corresponding sound generation method re-
sulting in a more natural sounding reconstructed speech. Our
proposed network consists of an autoencoder to extract bot-
tleneck features from the auditory spectrogram which is then
used as target to our main lip reading network comprising of
CNN, LSTM and fully connected layers. Our experiments
show that the autoencoder is able to reconstruct the origi-
nal auditory spectrogram with a 98% correlation and also
improves the quality of reconstructed speech from the main
lip reading network. Our model, trained jointly on different
speakers is able to extract individual speaker characteris-
tics and gives promising results of reconstructing intelligible
speech with superior word recognition accuracy.

Index Terms— Lip Reading, Speech Synthesis, Speech
Compression, Neural Networks

1. INTRODUCTION

A phoneme is the smallest detectable unit of a (spoken) lan-
guage and is produced by a combination of movements of the
lips, teeth and tongue of the speaker. However, some of these
phonemes are produced from within the mouth and throat and
thus, cannot be detected by just looking at a speaker’s lips. It
is for this reason that the number of visually distinctive units
or visemes is much smaller than the number of phoneme mak-
ing lip reading an inherently difficult task.

Lip reading has traditionally been posed as a classification
task where words or short phrases from a limited dictionary
are classified based on features extracted from lip movements.
Some of the early works [1, 2, 3] used a combination of deep
learning and hand-crafted features in the first stage followed
by a classifier. More recently there has been a surge in end-to-
end deep learning approaches for lip reading which focussed
on either word level or sentence-level prediction using a com-
bination of convolutional and recurrent networks [4, 5, 6].

Our proposed network also follows a similar structure in
the sense that it consists of convolutional layers to extract fea-

The authors would like to thank Xiaodong Cui for his constructive feed-
back and discussions.

tures from the video followed by an LSTM to encode tempo-
ral dependencies. However, we model our output as a gener-
ative task over the audio frequency space to directly produce
the corresponding speech signal at every time step allowing
us to recover not just the information but also the style of ar-
ticulation. This opens an entirely new world of applications in
the audio-visual domain - improving audio in existing videos
in the sequences where someone is talking such as blogging
videos or news anchoring videos, enabling video-chatting in
silent areas like libraries or in noisy environments. We de-
scribe below two works that are most closest to ours.

Milner et al. [7] reconstructed audio from video by es-
timating the spectral envelope using a neural network com-
posed solely of fully connected layers and trained on hand-
engineered visual features obtained from mouth region. This
approach had the limitation of missing certain speech compo-
nents such as fundamental frequency and aperiodicity which
was then determined artificially thereby compromising qual-
ity in order to maximize intelligibility. Ephrat et al. [8] mod-
ified this technique by using an end-to-end CNN to extract
visual features from the entire face while applying a similar
approach for modeling audio features using 8th order Linear
Predictive Coding (LPC) analysis followed by Line Spectrum
Pairs (LSP) decomposition. However, it also suffered from
the same missing excitation parameters resulting in an unnat-
ural sounding voice.

Our sound generation model differs from these as we use
the spectrogram model proposed by Chi et. al [9]. Inspired
by the sound processing system in human brain, it uses bio-
inspired filter-banks and non-linear compressions to calcu-
late spectrogram and gives a higher quality of re-synthesis
to speech than traditional spectrograms. However, the spec-
trograms in itself are highly correlated and usually difficult
for the networks to learn accurately. To bypass this issue,
we designed a deep autoencoder to extract compressed fea-
tures of the spectrogram that form the target for our main
lip reading network. We show through extensive evaluations
that this spectrogram based combination of autoencoder and
lip-reading network allows us to generate an acoustic signal
that is much more natural sounding than the previous ap-
proaches. At the same time, it does not compromise on in-
telligibility and gives a superior word recognition accuracy in
human based evaluations.
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Fig. 1. The overall structure for the proposed network. The network gets a video sequence, captures spatiotemporal features
and generates coded features of the audio for that video. These features are then decoded using the pre-trained autoencoder.

2. METHOD

2.1. Data Preparation

Each video frame was converted to grayscale and normal-
ized and the face region was extracted and resized to have
dimensions WxH. The videos were then divided into K non-
overlapping slices each of length Lv. First and second order
temporal derivatives at each frame were stacked along the first
dimension to form a 4D tensor of shape (3, H, W, Lv). The
target spectrogram was also divided into K slices with length
La and no overlap.

2.2. Network I: Autoencoder

In order to compress the auditory features, we designed a deep
autoencoder described in Table 1. Both input and output of
this network is the 128 frequency bin auditory spectrogram
[9] with a bottleneck of size 32 (which was found to be the
optimal as shown in the experiments). In addition to this, the
output of the activation of the bottleneck is contaminated with
Gaussian noise during training to improve robustness of the
decoder network.

2.3. Network II: Lip Reading Network

The lip reading network extracts spatiotemporal features from
the input video sequence using a 7-layer 3D convolutional
network described in Table 1. The output of the CNN block
is reshaped to a tensor of shape (Lv, Nst) where Nst repre-
sents the spatio-temporal features extracted by the CNN. This
reshaped tensor is fed into a single-layer LSTM network with
512 units to capture the temporal pattern which is followed by
a fully connected layer and then finally the output layer. The
output layer has 32×La units to give the 32-bin×La-length
bottleneck features. At inference, this is connected to the de-
coder part of the pre-trained autoencoder to reconstruct the
auditory spectrogram. The overall structure of the proposed
network can be seen in Figure 1. The audio waveform can
then be reconstructed from the output spectrogram using [9].

Table 1. Structure of the proposed networks
Autoencoder Convolutional network block

Layers Size Layers Size

Input layer (None, 128) Input layer (None, 3, 128, 128, 5)

Dense (512) Conv3D (32)
LeakyReLU (None, 512) LeakyReLU

MaxPool (2,2,1) (None, 32, 64, 64, 5)

Dense (128) Conv3D (32)
LeakyReLU (None, 128) LeakyReLU

MaxPool (2,2,1) (None, 32, 32 32, 5)

Dense (64) Conv3D (32)
LeakyReLU (None, 64) LeakyReLU

MaxPool (2,2,1) (None, 32, 16 16, 5)

Dense (32) Conv3D (64)
Sigmoid (None, 32) LeakyReLU (None, 64, 16, 16, 5)

Gaussian Conv3D (64)
Noise LeakyReLU

(σ=0.05) (None, 32) MaxPool (2,2,1) (None, 64, 8, 8, 5)

Dense (64) Conv3D (128)
LeakyReLU (None, 64) LeakyReLU (None, 128, 8, 8, 5)

Dense (128) Conv3D (128)
LeakyReLU (None, 128) ELU (alpha=1.0)

MaxPool (2,2,1) (None, 128, 4, 4, 5)

3. EXPERIMENTS

3.1. Dataset

The dataset used for training the network was the GRID
audio-visual corpus [10] which consists of audio and video
recordings of 34 different speakers (male and female). For
each speaker, there are 1000 utterances and each utterance
is a combination of six words from a 51-word vocabulary
(shown in Table 2). Videos and audios are both 3 seconds
long and sampled at 25 fps and 44 kHz, respectively.

They were pre-processed as described in section 2.1 with
Lv = 5, La = 20, K = 15, W = 128, H = 128. In
addition, the original audio waveform was downsampled to
8kHz. We conducted our training and evaluation on videos
from two male speakers (S1, S2) and two female speakers
(S4, S29) using 80%-10%-10% train-validation-test split.
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Table 2. GRID vocabulary
Command Color Preposition Letter Digit Adverb

bin blue at A-Z 0-9 again
lay green by minus W now

place red in please
set white with soon

3.2. Implementation

We used Keras [11] with Tensorflow backend [12] for imple-
menting the network. Initialization of the network weights
was done using [13]. We used batch normalization [14] for
all layers, dropout [15] of p=0.25 every two layers in convo-
lutional block and L2 penalty multiplier=0.0005 for all convo-
lutional layers. For LSTM and MLPs, we only used dropout
of p=0.3. We first trained autoencoder on the 128 frequency
bin auditory spectrogram of the training audio samples with
a mini-batch size of 128. After training, we extracted the 32-
bin bottleneck features which we then provided as target fea-
tures for the main network. The main lip reading network was
trained using a batch size of 32 and data augmentation was
performed on the fly by either flipping images horizontally
or adding small Gaussian noise. Optimization was performed
using Adam [16] with an initial learning rate of 0.0001. The
loss function we used for all our networks was a combina-
tion of mean squared error (MSE) and correlation. This loss
function (that we call it CorrMSE ) is given by:

λ
1

n

∑
i

(yi − ŷi)
2−(1−λ)

∑
i (yi − ȳ)(ŷi − ¯̂y)√

(
∑

i (yi − ȳ)2)(
∑

i (ŷi − ¯̂y)2)

(1)
in which, λ, which we set as 0.5, is the hyper-parameter for
controlling balance between the two loss functions. For the
auditory spectrogram generation and audio waveform recon-
struction, we used NSRtools [9] with frame length=10, time
constant=10, nonlinear factor=-2 and shift=-1.
Code and demo available online:
https://github.com/hassanhub/LipReading.

3.3. Network evaluation

For evaluating the networks, we measure accuracy in the
frequency domain using 2D correlation between the recon-
structed (Ŷ) and the actual auditory spectrogram (Y). To
assess the quality of the reconstructed audio, we use the stan-
dard Perceptual Evaluation of Speech Quality (PESQ) [17].
We also measure intelligibility of the final reconstructions
using Spectro Temporal Modulation Index (STMI) [18].

For a baseline comparison, we used the publicly available
code of Vid2Speech [8]. We followed their suggestion and
trained (and tested) their model individually for each speaker
which resulted in 4 different models. Whereas, our autoen-
coder and lip-reading network was trained jointly on all 4

speakers resulting in a single model. Results for the two
methods can be found in Table 3. As can be seen from the
table, the reconstructed speech using our proposed method
have both higher quality and intelligibility compared to the
baseline (paired t-test, p < 0.001). Our method also gives
a higher correlation which indicates a higher accuracy of re-
construction in the frequency space.

Table 3. Quantitative evaluation of our method compared to
Vid2Speech

Measure Method S1 S2 S4 S29 Average

PESQ Ours 2.07 2.01 1.61 1.84 1.88±0.35
Vid2Speech 1.90 1.74 1.79 1.62 1.76±0.24

Corr2D Ours 0.89 0.88 0.88 0.87 0.88±0.03
Vid2Speech 0.62 0.52 0.64 0.65 0.61±0.06

STMI Ours 0.82 0.84 0.84 0.82 0.80±0.04
Vid2Speech 0.58 0.59 0.46 0.48 0.52±0.08

To shed light on that, we generated spectrograms for a
random sample from the test set and compared both recon-
structions with the original, which can be seen in Figure 2.
It is clear that although both methods fail in retrieving high
frequency information which is partly due to the nature of the
task, our method is able to recover the original spectrogram
including the pitch information to a higher degree of accuracy
which is lacking in Vid2Speech. In addition, the model can
successfully handle connections between windows and learns
the time pattern for continuing a phoneme from one window
sample to another.

3.4. Human evaluations

We conducted a survey on Amazon Mechanical Turk to eval-
uate the intelligibility and quality of reconstructed speech by
our method as well as Vid2Speech. The task was to transcribe
each audio sample (selected randomly from the test set) and
answer questions on its quality. These questions asked work-
ers to rate how natural each sample sounded on a scale of 1-5
(1:unnatural, 5:very natural) and to guess the gender of the
speaker from 3 choices (male, female, hard to say). Each au-
dio sample was evaluated by 20 workers who were provided
with the GRID vocabulary and allowed to replay the audio
unlimited times. Table 4 shows the result of this evaluation.

Our model achieves a higher word recognition accuracy
for 3 out of 4 speakers thereby improving upon the baseline by
average 5% and leading us to conclude that the reconstructed
speech by our method is more intelligible. The accuracy for
random guessing is 19% here. The fact that accuracy for S4
is more for Vid2Speech and the emphasis on this speaker in
the main paper rises this question that their model might be
fine-tuned on this specific speaker. We also observed that the
accuracy for the baseline is not as high as reported in the main
paper (audio-only accuracy) which might be because of dif-
ferences in human evaluation implementation (biased tasks or
subjects). In terms of quality of speech, our method consis-
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Fig. 2. Reconstructed audio spectrograms

Table 4. Speaker-wise assessment from Human evaluations
Measure Method S1 S2 S4 S29 Avg

Accuracy
(%)

Vid2Speech 35.2 51.2 57.7 59.6 50.9
Ours 49.3 56.1 54.9 63.7 55.8

Natural
sound (1-5)

Vid2Speech 1.13 1.45 1.44 1.37 1.35
Ours 1.69 1.48 1.67 1.67 1.63

Correct
Gender (%)

Vid2Speech 58.0 77.0 21.0 17.0 43.2
Ours 85.83 79.2 83.3 92.0 85.1

Hard to say
(%)

Vid2Speech 36.0 16.0 42.0 32.0 31.5
Ours 9.16 12.5 10.0 2.0 8.4

tently outperforms the baseline. Not only is our reconstructed
speech more natural, it also retains speaker dependent char-
acteristics such as gender which is due to correct pitch infor-
mation retrieval that is missing in Vid2Speech.

3.5. Ablation study

We conducted ablation experiments to examine:
1. The effect of the number of the bottleneck nodes
2. The effect of dropout and additive noise to bottleneck
3. The necessity of autoencoder and CorrMSE loss function.

For 1 and 2, we varied the number of bottleneck nodes and
trained the autoencoder both with and without dropout and
additive noise to bottleneck. We then conducted evaluations
both for the autoencoder output and the lip-reading network
reconstruction, the results of which are presented in Table 5.

Table 5. Quantitative evaluation of autoencoder architectures
Measure 16 nodes 32 nodes 64 nodes No noise Dropout

(w/ noise) (w/ noise) (w/ noise) (32 nodes) (32 nodes)

Autoencoder output

PESQ 2.76 2.81 2.92 2.88 2.33
Corr2D 0.98 0.98 0.99 0.97 0.95

Lip-reading network reconstruction

PESQ 1.19 1.76 1.26 1.09 1.29
Corr2D 0.89 0.89 0.87 0.46 0.88

As expected, on increasing the number of nodes both cor-
relation and quality at the autoencoder output improve but
it becomes harder for the lip-reading network to reconstruct
these large features. Using 32 nodes achieves a balance be-
tween this trade-off, still resulting in a 98% correlation. Also,

it can be seen that using dropout makes the results worse, and
by using noise although the accuracy of reconstruction at the
autoencoder output drops slightly, however it significantly im-
proves overall performance of the lip-reading structure. We
believe this is because training with Gaussian noise allows
autoencoder to handle variations in the input videos to the
lip-reading network and the resulting variations in the output.
Based on these findings, we used 32 nodes bottleneck with
additive noise for all our evaluations.

In order to understand the role of autoencoder (task 3), we
trained two variants of the main network - using bottleneck
features as target (Bott.) versus directly feeding the spec-
trogram to the output layer of the main lip-reading network
(Spec.). In addition to this, we varied λ to correspond to the
loss functions: MSE (λ = 1), Corr2 (λ = 0) and CorrMSE
(λ = 0.5). For these experiments, we only trained and eval-
uated our model on speaker S29. We found experimentally
that using CorrMSE as loss function with bottleneck features
as target results in the best performance among all the condi-
tions. Table 6 summarizes these findings.

Table 6. Quantitative measures for ablation study
Measure MSE Corr CorrMSE MSE Corr CorrMSE

(Bott.) (Bott.) (Bott.) (Spec.) (Spec.) (Spec.)

PESQ 1.54 1.73 1.76 1.29 1.69 1.58
Corr2D 0.84 0.88 0.89 0.87 0.89 0.88

4. CONCLUSION

In this paper, we proposed a structure consisting of a deep
autoencoder for coding speech and a deep lip-reading net-
work for extracting speech-related features from the face. We
showed that such a combination improves both quality and ac-
curacy of the reconstructed audio. We also conducted differ-
ent tests for comparing our network with a strong baseline and
showed that the proposed structure outperforms the baseline
in speech reconstruction. Future work is to collect more train
data, include emotions in reconstructed speech, and to pro-
pose an end-to-end structure to directly estimate raw wave-
form from facial speech-related features.
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