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ABSTRACT

Building speech recognizers in multiple languages typically in-
volves replicating a monolingual training recipe for each language,
or utilizing a multi-task learning approach where models for differ-
ent languages have separate output labels but share some internal
parameters. In this work, we exploit recent progress in end-to-end
speech recognition to create a single multilingual speech recognition
system capable of recognizing any of the languages seen in train-
ing. To do so, we propose the use of a universal character set that is
shared among all languages. We also create a language-specific gat-
ing mechanism within the network that can modulate the network’s
internal representations in a language-specific way. We evaluate our
proposed approach on the Microsoft Cortana task across three lan-
guages and show that our system outperforms both the individual
monolingual systems and systems built with a multi-task learning
approach. We also show that this model can be used to initialize a
monolingual speech recognizer, and can be used to create a bilingual
model for use in code-switching scenarios.

Index Terms— multilingual, language-universal

1. INTRODUCTION

As voice-driven interfaces to devices and information become main-
stream, increasing the global reach of speech recognition systems
becomes increasingly important. There are two primary challenges
that arise in expanding the language coverage of a speech applica-
tion. First, since conventional speech recognition systems require
each model to be trained independently, as the number of supported
languages grows, the effort required to train, deploy, and maintain
so many models in a production environment will increase dramati-
cally. In addition, for second- and third-tier languages with fewer re-
sources available, issues with data scarcity arise. For each language,
building a speech recognition system requires a large collection of
transcribed speech recordings from many speakers to train an acous-
tic model, linguistic expertise to create a pronunciation dictionary,
and vast amounts of text data to train a language model.

Over the years, prior work has attempted to address the issues
faced by low-resource language via a transfer learning approach [1–
8]. In these approaches, language-specific deep networks are trained
in which the the parameters in the lower layers of the network are
shared across languages. This approach can also be interpreted as
an instance of multi-task learning, where information across tasks,
i.e. languages, is shared to create a more informative internal rep-
resentation, less prone to over-fitting. Another common approach
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for creating models in low resource languages is to adapt a neural
acoustic model that has been well trained on a high-resource lan-
guage. This is typically done by replacing output layer of the well-
trained model and re-training the model to predict the targets of low-
resource languages [2–5,9,10]. All of these models have been based
on the conventional acoustic modeling strategy based on senones,
and therefore still require a pronunciation lexicon to map words to
phonemes and then senones.

Recently, new approaches to speech recognition that work in a
so-called end-to-end manner have been proposed. In these systems,
a neural network is trained to convert a sequence of acoustic feature
vectors into a sequence of graphemes rather than senones. Unlike
sequences of senone predictions, which need to be decoded using
a pronunciation lexicon and a language model, the grapheme se-
quences can be directly converted to word sequences without any
additional models or machinery. The end-to-end models proposed
in the literature operate using a Connectionist Temporal Classifica-
tion framework [11–15], an attention-based encoder-decoder frame-
work [16–19], or both [20]. Thus far, the research in end-to-end
systems has focused on monolingual scenarios and there have been
few recent studies of grapheme-based models capable of recognizing
multiple languages. One recent study proposed multilingual models
that can jointly identify language [21], while another showed how a
low-resource graphemic system can be initialized with a well-trained
high-resource model, as was done for the senone-based models de-
scribed previously [22].

In this paper, we make significant progress towards a language-
universal speech recognizer by creating a single end-to-end system
capable of recognizing any language it has been trained on. Our
model exploits the recent progress in end-to-end approaches to out-
put character sequences directly, without requiring pronunciation
lexicons. As in other multilingual systems, we apply a transfer learn-
ing approach to share model parameters among multiple languages.
The novel aspects of our proposed model are twofold. First, we use
a single universal character set that can be shared among all lan-
guages rather than separate language-specific output layers. Second,
we propose a language-specific gating mechanism in the network
that can increase the network’s modeling power by using multiplica-
tive interactions to modulate the network’s internal representations
in a language-specific way. We evaluate our proposed model on the
Microsoft Cortana personal assistant task and show that our system
outperforms separate language-specific models as well as the con-
ventional multi-task learning approach.

The remainder of this paper is organized as follows. In Section
2, we briefly review the end-to-end speech recognition paradigm. In
Section 3, we describe approaches to multilingual CTC including
multi-task learning and our proposed model that features end-to-end
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(a) Separate labels via Multi-task
Learning

(b) Universal label set with mask-
ing

Fig. 1: The two different architectures of language-universal end-to-
end speech recognition models (a), (b) and our proposed language-
specific gating (c).

learning with a universal character set and language-dependent gat-
ing units. In Section 4, we evaluate our proposed model through
a series of experiments on the Microsoft Cortana task across three
languages. Finally, we summarize our findings and discuss future
avenues of research in Section 5.

2. END-TO-END MODELING USING CTC

In this work, we perform end-to-end speech recognition using a
CTC-based approach with graphemes (characters) as the output
symbols. With CTC, the neural network is trained according to a
maximum-likelihood training criterion computed over all possible
segmentations of the utterance’s sequence of feature vectors to its
sequence of labels [11]. Core to CTC training is the presence of the
blank symbol which can be interpreted as a “don’t care” symbol in
the output label sequence. In CTC, the label sequences can contain
blanks and repeated characters without penalty.

Given a sequence of acoustic feature vectors, x and the cor-
responding graphemic label sequence, y, CTC trains the model to
maximize the likelihood over all possible label sequences Φ.

P (y|x) =
∑

π∈Φ(y)

P (π|x) ≈
∑

π∈Φ(y)

T∏
t=1

P (πt|x). (1)

Likelihoods are computed using the well-known forward-backward
algorithm and the gradient of the likelihood is used to update the
network parameters using back propagation. After model training,
decoding is performed in a greedy manner, where the most likely
symbol at each time frame is hypothesized. The final sequence is
obtained via a post-processing step where any character repetitions
and blank symbols are removed from the output. Further improve-
ments can be obtained by incorporating an external language model,
at the character or word level [12–15].

In this work, we consider two neural architectures for a language-
universal end-to-end model that both use the CTC objective function.

3. MULTILINGUAL END-TO-END MODELS

3.1. Multi-task CTC with language-specific character sets

Multi-task learning (MTL) has been proposed as a means for im-
proving generalization performance in low-data scenarios. Train-
ing a model on multiple related tasks simultaneously serves as an

inductive bias to improve the model’s performance. Many prior
approaches to training acoustic models for low resource languages
have used MTL as a means of sharing some of the acoustic model
parameters across languages, e.g. all the parameters up to the final
output layer [1, 5, 6, 23]. This forces the model to learn common-
alities across languages which provides effective regularization and
prevents over-fitting. Our MTL architecture is similar to previous
senone-based models, where the lower layers are shared among the
different languages while the output layer or layers are trained to be
language specific. This architecture is shown in Figure 1a. Note that
while the figure shows a language-specific output layer and final hid-
den layer, the choice of where to branch the model is a design choice
that should be determined by experimentation.

Multi-task learning for CTC can be realized as a combination of
the individual single-task objective functions. We define l to be an
index over the different languages in the training data, xl as a se-
quence of input feature vectors, and yl the corresponding grapheme
sequence. We can then define the CTC objective function for the lth
language as

Fl(θs, θl) , − lnP (yl|xl, θs, θl) (2)

where θl are the language-specific model parameters, and θs are the
model parameters shared across languages. The multi-task objective
function over all languages can then be defined as the summation of
the individual negative log likelihoods of all L languages,

F ,
L∑

l=1

Fl(θs, θl) (3)

3.2. Multilingual CTC with a universal character set

In many instances, present-day languages evolved from a com-
mon ancestry. It is therefore natural that they share some common
graphemes and phonemes. For example, the English character set
is a subset of the Spanish character set and knowing one language
helps to speak and write the other. With this as motivation, we pro-
pose a multilingual architecture that uses a “universal” output label
set consisting of the union of all characters from the multiple lan-
guages, as illustrated in Figure 1b. Unlike the MTL approach, this
is a single model with a universal character set that is trained on all
multilingual data. Characters that are common across multiple lan-
guages are trained based on all relevant data while language-specific
characters are only trained with data from that language.

Let Yu be the universal label set. Given the training data
from L multiple languages, including the acoustic input features
xu = {x1, . . . ,xL} and the corresponding graphemic label se-
quence yu = {y1, . . . ,yL}, where each label y(t)

1 ∈ Yu, the CTC
loss for the models to be minimized is defined as,

FU (θ) , − lnP (yu|xu, θ) (4)

In this model, we assume a priori that we know the language
identity of the utterances in both training and decoding. We use
this information to restrict the predictions to only those characters
present in the corresponding language and mask the activations from
the other irrelevant characters. Let the universal label set Yu have K
distinct labels. The label set for any particular language Yl is a subset
of Yu (Yl ⊆ Yu). Given a language indicator, l, we can mask out the
activations from unwanted characters using a K-dimensional binary
mask defined as

M [l, k] =

{
0, if k 6∈ Yl

1, if k ∈ Yl

(5)
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This mask is then applied to the network outputs to compute the log-
likelihoods for the CTC objective function. Note that this masking
operation is applied in both training and decoding.

3.3. Language-specific gating units

One possible drawback to the proposed universal character approach
is that the same grapheme may have different underlying phonetic re-
alizations in different languages. For example, the letter i in English
typically corresponds to the sound /ih/ in English, but /iy/ in Italian.
Thus, the model needs to adequately capture language-specific in-
formation in order to properly account for such differences. Adding
a language identification feature as an auxiliary input to the model
is the simplest way to do so. However, we found empirically that
this only provides minimal improvement. Instead, we propose to
use the language identity to modulate the network’s internal multi-
lingual representations in a language-specific manner. To do so, the
outputs of each hidden layer are processed by a series of language-
dependent gates before being passed to the next layer in the model.
Specifically, we first create a one-hot language indicator vector dl
for each language l. Then, we compute the gate value based on the
language indicator vector dl and the current output values of hi, the
ith hidden layer, as

g(hi, dl) = σ(Uhi + V dl + b) (6)

where U, V , and b are trainable parameters. The language-gated hid-
den activations are then calculated as

ĥi = g(hi, dl)� hi (7)

Finally, ĥi and dl are concatenated and input to the next layer.

h̃i = [ĥi : dl] (8)

If the dimensions of hi and dl are n and m, respectively, each
language-specific gating layer requires(n + m) x n additional pa-
rameters.

4. EXPERIMENTS

4.1. Experimental corpora

We investigated the performance of the proposed language-universal
model on English (EN), German (DE), and Spanish (ES) data from
Cortana, Microsoft’s personal assistant. For each language, we used
150 hours of training data, 10 hours of validation data, and 10 hours
of test data. We used 80-dimensional log-mel filterbank coefficients
as acoustic features, derived from 25 ms frames with a 10 ms frame
shift. We concatenate three consecutive feature vectors to input to
the network and employ frame-skipping [24] which decimates the
original frame rate by a factor of three. Thus, each feature vector
is presented to the network exactly once. Following [15], we used
a label symbol inventory consisting of the individual characters and
their double-letter units. An initial capitalized letter rather than a
space symbol was used to indicate word boundaries. This resulted in
81 distinct labels for English, 93 labels for German, and 97 labels for
Spanish. Our universal label set for these three languages had 108
distinct labels and 81 overlapping labels. No pronunciation lexicon
or language model was used in any of the experiments.

Table 1: Initial CER results for conventional single-task (stl), multi-
task (mtl), and universal character set (univ) networks using mono-
lingual and multilingual training data.

Training Total Model Test CER % Rel.
Languages Hrs Arch Lang % Impr.
DE 150 stl

DE

23.3 -
DE + EN 300 mtl 22.3 4.0
DE + EN 300 univ 22.5 3.2
DE + EN + ES 450 univ 22.8 2.1
DE 300 stl 15.8 32.2
ES 150 st

ES

13.7 -
ES + EN 300 mtl 13.1 4.4
ES + EN 300 univ 12.9 5.8
ES + EN + DE 450 univ 13.1 3.9
ES 300 stl 11.7 14.4

4.2. Training and decoding

Our language-universal encoder was a 4-layer Bidirectional Long
Short-Term Memory (BLSTM) network [25, 26] with 320 cells in
each layer and direction. A 320-dimensional linear projection layer
followed each BLSTM layer. All the weights in the models were
initialized with a uniform distribution in the range of [-0.05, 0.05],
and were trained using stochastic gradient descent with momentum.
We used a learning rate of 0.0004 and gradient-clipping threshold per
sample of 0.0003. Early stopping on the validation set was used to
select the best model. For the decoding, the most likely sequence of
characters was generated by the model in a greedy manner. The final
output sequence was then obtained by removing any blank symbols
or repetitions of characters from the output and replacing any capital
letter with a space and its lowercase counterpart.

4.3. Gated language-universal end-to-end models

We first evaluated both multi-task and language-universal architec-
tures on German and Spanish data, along with conventional mono-
lingual training. As seen in Table 1, we obtained a small perfor-
mance gain over the monolingual model by using multilingual train-
ing data. In addition, we observed that models trained with multi-
task learning with language-specific output labels and models trained
with a universal label set performed comparably, demonstrating the
potential of a universal label set. However, with a conventional
BLSTM topology, the benefit gained from the multilingual data was
far less than simply doubling the amount of training data from the
target language to 300 hours. More concerning, the performance ac-
tually degraded when we increased the multilingual data from two
to three language. We also extensively evaluated various configura-
tions for multi-task learning, where all or only some of the layers
were shared, and found no significant improvements over the results
reported in Table 1. These initial results indicate that simply train-
ing conventional models with multilingual data is not very helpful.
However, we note that these results may differ in extremely low re-
source scenarios where the data available per language could be an
order of magnitude smaller.

We next evaluated the proposed language-universal model with
language-specific gating. The results in Table 2 show that the pro-
posed gated model significantly outperforms the monolingual model
as well as the conventional multilingual models. Our model showed
10.7%, 11.4%, and 14.1% relative improvement in CER compared
to a monolingual for EN, DE, and ES respectively. The relative im-
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Table 2: Performance of the language-universal modeling approach
with and without the language-specific gating. Baseline monolingual
performance is also shown. Each language has 150 h of training data.

Training Lang % CER % WER
Data Gate EN DE ES EN DE ES

monolingual – 20.3 23.3 13.7 45.0 57.3 39.9

EN + DE – 19.7 22.5 – 45.1 56.3 –
3 18.4 21.0 – 42.2 53.4 –

EN + ES – 19.9 – 12.9 45.5 – 38.7
3 18.4 – 12.1 42.2 – 35.9

EN + DE + ES – 19.9 22.8 13.1 46.3 57.6 40.5
3 18.1 20.6 11.7 41.9 52.4 35.5

provements in WER, which was calculated without using any lan-
guage model, were 7.0%, 8.6%, and 11.1%, for EN, DE, and ES
respectively. Furthermore, when language-specific gating is used,
additional improvement is obtained when the number of training lan-
guages increased from two to three.

Figure 2 shows the relative improvement over the baseline WER
obtained by adding language information to the model in various
ways. The leftmost bar shows the result of simply augmenting the
input to each layer with the one-hot language vector dl. The next
three bars show the performance of different gating functions driven
by the current hidden state, the language identity, or both, respec-
tively. Finally, the rightmost bar shows the approach shown in Equa-
tions 7-8. As the figure indicates, all approaches provide gains over
the baseline model, but the proposed approach results in the largest
improvement. We also investigated the effect of the gating mecha-
nism on different layers and observed that the best performance was
obtained when gating is applied to every layer (not shown). Note
that we used 7.3M parameters for our proposed model and 6.8M pa-
rameters for the baseline.

Fig. 2: The relative improvement in WER obtained by using lan-
guage identification information as an auxiliary input and/or a gating
mechanism.

4.4. Initial model for subsequent language-specific models

While the primary goal of this work was to create a language-
universal model, we found that this model is also a good initial
model for creating a language-specific monolingual model when the
training data is limited. Table 3 shows the CER on the DE test set
obtained from different pre-training strategies used to initialize the
model prior to fine-tuning on the DE training data. Notably, initial-
izing with the gated language-universal model outperformed all of
the other approaches, including bootstrapping from an EN model
trained with significantly more data. The second best performance
was obtained by the gated language-universal model directly, even
without further fine-tuning on the DE training data.

Table 3: CER obtained for a monolingual model with different pre-
training strategies. The model was then fine-tuned on 150 hours of
the target language (DE), except * where no fine-tuning was per-
formed.

Pre-training % CER
Training Data Hours DE

– – 23.3
EN 150 24.3
EN 1000 21.4

EN + DE 300 21.1
EN + ES + DE + gate 450 19.4 / 20.6*

4.5. Bilingual end-to-end models

One promising aspect of a universal output character set is the poten-
tial to create end-to-end systems that can dynamically code-switch
between languages. This can be done by training a model on bilin-
gual training data with the union of the output symbols of the two
languages while omitting the language-specific aspects of the model.
Following this approach, we created a bilingual model from 150
hours of English (EN) and 150 hours of Spanish (ES) using the union
of the character sets from the two languages.

Because a test set of bilingual mixed-code speech was not avail-
able, we evaluated this model on the EN and ES test sets separately.
Table 4 shows that bilingual models perform as well as the mono-
lingual models even if no language identification information is pro-
vided to the network. Thus, this approach is very promising as a
method for creating end-to-end systems capable of code-switching
during decoding.

Table 4: WER on ES and EN test sets obtained from monolingual
and bilingual end-to-end systems.

Training Data Hours % WER
ES EN

monolingual EN or ES 150 39.9 45.0
bilingual EN + ES w/o Gate 300 38.8 45.1

5. CONCLUSION

We proposed a language-universal end-to-end speech recognition
system capable of recognizing speech from any language seen in
training. Key aspects of this model include the use of a univer-
sal character set and language-specific gating units. Because this
model can support multiple languages, it has the potential to sim-
plify model deployment in production environments. In addition,
no pronunciation lexicon is required, which is beneficial for second-
and third-tier languages, where such resources may be unavailable
or limited. Our model was shown to outperform models trained on
monolingual training data, as well as with the multi-task learning
approach employed in previous work. Moreover, we found that our
language-universal speech recognizer is a strong initial model for
subsequent monolingual training, and demonstrated the potential of
this system for decoding speech in the presence of code-switching.
Moving forward, we plan to explore how to add a new language to
an already-trained multilingual system and evaluate the performance
improvements that can be obtained by using an external language
model.

4917



6. REFERENCES

[1] Hui Lin, Li Deng, Dong Yu, Yi-fan Gong, Alex Acero, and
Chin-Hui Lee, “A study on multilingual acoustic modeling for
large vocabulary asr,” in Acoustics, Speech and Signal Pro-
cessing, 2009. ICASSP 2009. IEEE International Conference
on. IEEE, 2009, pp. 4333–4336.
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