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ABSTRACT

Deep learning-based single-channel source separation algorithms are
currently being actively investigated. Among them, Deep Clustering
(DC) and Deep Attractor Networks (DANs) have made it possible to
separate an arbitrary number of speakers. In particular, they cleverly
combine a neural network and a K-means clustering algorithm to
obtain source separation masks with the assumption that the correct
number of speakers at the test time is known in advance. Unlike DC
and DAN, Permutation Invariant Training (PIT) was proposed as a
purely neural network-based mask estimator. Essentially, however,
PIT can deal with only a fixed number of speakers, given the strong
relationship between the dimensions of the output nodes and the as-
sumed number of sources. Considering these limitations and merits
of such conventional methods, this paper proposes a purely neural-
network based mask estimator that can handle an arbitrary number
of sources, and simultaneously estimate the number of sources in
the test signal. To accomplish this, while the conventional methods
deal with the source separation problem as a one-pass problem, we
cast the problem as a recursive multi-pass source extraction prob-
lem based on a recurrent neural network (RNN) that can learn and
determine how many computational steps/iterations have to be per-
formed depending on the input signals. In this paper, we describe
our proposed method in detail, and experimentally show its efficacy
in terms of source separation and source counting performance.

Index Terms— Blind source separation, neural network, arbi-
trary number of sources, attention, source counting.

1. INTRODUCTION

Recently, ASR technologies have progressed greatly [1, 2] and are
being used increasingly in our daily lives, and so it is becoming more
and more important to handle realistic tasks such as meeting recog-
nition with distant microphones. In such tasks, target speech signals
recorded with distant microphones are often covered by noise and
speech signals concurrently spoken by other speakers. To overcome
this problem, much research has been undertaken on blind source
separation (BSS) algorithms.

In general, there are two different ways of addressing the BSS
problem, i.e. multichannel methods [3–5] leveraging spatial charac-
teristics, and single channel methods exploiting spectral characteris-
tics [6–10]. This paper focuses on the latter.

Recent single-channel source separation research has tended to
utilize deep neural networks (NNs) because of its higher perfor-
mance compared to conventional approaches based on e.g. non-
negative matrix factorization [6]. For example, Deep Clustering [7]
(DC) and the Deep Attractor Network (DAN) [8] are recently pro-
posed effective single-channel BSS algorithms. They can be seen as
two-stage algorithms. These algorithms first encode an input spec-

trogram into an embedding space based on a pretrained NN, and
output embedding vectors for each time-frequency (T-F) bin. Then,
to obtain source separation masks, these embedding vectors are clus-
tered by means of e.g. K-means clustering or a mixture model, given
the correct number of clusters equal to the true number of speakers.
These approaches are able to generalize to unseen speakers, and im-
portantly do not explicitly assume a fixed number of speakers in the
encoding stage. However, there are still some unresolved issues re-
lated to these methods, such as (a) how to estimate the correct num-
ber of speakers/clusters at the clustering stage [11], and (b) how to
select an appropriate clustering algorithm that can model the distri-
bution of the embedding vectors in an optimal sense.

Permutation Invariant Training (PIT) was proposed in [10] as
an alternative to DC and DAN for solving the single-channel BSS
problem. Unlike DC and DAN, PIT is designed to directly output
source separation masks without an explicit clustering step. On the
assumption that the number of sources to be separated during a test
is known in advance when training NNs, the PIT network has output
nodes corresponding to the dimension of the separation mask times
the number of sources to be separated. In other words, the current
PIT framework is not capable of dealing with an arbitrary number of
sources, unlike DC and DAN.

Considering these limitations and merits of the conventional
methods [7–10], this paper proposes an NN-based mask estima-
tor that can handle an arbitrary number of speakers and adaptively
change the number of output masks depending on the input signal.
The proposed network is predicated on a recurrent neural network
(RNN), which can learn and determine how many computational
steps/iterations have to be performed [12]. By the nature of such
networks, at the first iteration, the proposed method can output
a mask for a certain speaker/source in the observed spectrogram.
Then, in the next iteration it automatically attends to the remaining
part of the observed signal and outputs another mask for a differ-
ent speaker/source. This process is repeated until all sources in
the observed mixture have been extracted. In this paper, we call
this network a recurrent selective hearing network. While the con-
ventional methods [7–10] tend to deal with the BSS problem as a
one-pass separation problem, we cast it as a recursive multi-pass
source extraction problem. In the remainder of this paper, we first
formulate our proposed method, and then evaluate its performance
in comparison with a variant of PIT [9].

2. PROPOSED METHOD

This section provides a detailed explanation of our proposed method.
We start Section 2.1 by explaining how the proposed method esti-
mates the source separation masks of an arbitrary number of sources.
Then, in Section 2.2, we describe the network training procedures.
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Fig. 1. Overview of the proposed framework. The residual mask calculation block subtracts the estimated mask from the previous residual
mask. Naturally, the system simply attends to the remaining portion of the input spectrogram.

2.1. Test (decoding) step of proposed method

Figure 1 summarizes the overall structure, inputs and outputs of the
proposed method namely, the recurrent selective hearing network.
It runs multiple mask estimation steps iteratively, while judging at
each iteration whether or not it should proceed to the next iteration
by monitoring statistics provided in the mask estimation process.

At the first iteration, the network receives two inputs, namely
the amplitude spectrogram of the observed signal Y and a residual
mask filled with ones (R1=1). This residual mask can be seen as an
attention map since it controls where to attend. Initially, the network
pays attention to all the regions of the input spectrogram. However,
as iterations proceed, it focuses more on particular regions of the in-
put spectrogram. Given the input signals, the network decides on its
own which source to extract, and estimates a source separation mask
M̂1 for that source. Fig. 1 shows a situation where Src1 is extracted
at the first iteration. At the same time, the network can optionally
output a stop flag ẑ1 indicating whether the iteration process should
stop (ẑ1=1) or not (ẑ1=0). Then, finally, the first iteration ends
with the generation of another residual mask for the next iteration
by subtracting the estimated mask from the input residual mask as
R2=R1 − M̂1. The residual mask is used to steer the attention of
the NN to the remaining part of the input spectrogram to extract the
other sources that were not extracted by the previous iterations.

At the second iteration, the network employs the residual mask
R2 and an input spectrogram Y as its input to estimate a mask for
another source. Then, it follows exactly the same procedure as the
first iteration. Note that we use the same network for all iterations.

At the third iteration where the network is assumed to stop its it-
eration, the network decides to output the stop flag of one and calcu-
lates the final residual mask. During the test, judgement concerning
whether it should stop further iterations can be made by (a) thresh-
old processing on statistics (e.g. mean or median) of the residual
mask R3+1, or (b) threshold processing on the stop flag ẑ3. As a
result, if the network functions as expected as in Fig. 1, the number
of performed iterations corresponds to the number of sources. Note
that, by counting background noise as one of the target sources to be
extracted, the proposed network can naturally handle both 0 speaker
scenarios and 1 or more speaker scenarios.

2.2. Training step of proposed method
This subsection explains the training procedure for the proposed net-
work. We first introduce an overall cost function, and then describe
its elements.

2.2.1. Overall cost function for network training
To train the network through back-propagation, we can use the fol-
lowing multi-task cost function:

J = J(mse) + αJ(flag) + βJ(res-mask), (1)

where J(mse) is the main cost function of the proposed network,
which controls the mask estimation accuracy. J(flag) is a cost func-
tion related to the stop flag. J(res-mask) is a cost function for the net-
work to ensure that all the T-F bins are covered by the estimated
masks, and all the sources in the input spectrogram are extracted.

2.2.2. Definition of J(mse)

Although the network is required to output a mask for a certain
source in the input spectrogram at each iteration, we are not able to
know in advance in which order the network will extract the sources.
Since this label permutation problem is essentially similar to that ad-
dressed by PIT, we will adopt the same or a similar training proce-
dure to that of PIT.

We here assume that the network processes the input utterance
with a Bidirectional Long-Short Term Memory (BLSTM) RNN.
Therefore, the following utterance-level mean square error (MSE)
criterion proposed in [9] is a natural choice.

J(mse) =
1

B

S∑
i=1

∥M̂i ◦Y −Aϕ∗∥2F , (2)

where M̂i is a mask estimated at the i-th iteration, and Aϕ∗ is the
amplitude spectrum of an appropriate target source. ∥ · ∥F is the
Frobenius norm. B = T × N × S is the total number of T-F bins
over all target sources. T , N and S correspond to the number of
time frames, the number of frequency bins and the total number of
target sources, respectively. ϕ∗ is the permutation that minimizes the
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Algorithm 1: An algorithm for calculating J(mse)

Define a set S = {1, 2, . . . , S}, which stores a set of source
indices, and ϕ∗ = [ ].
for i = 1 : S do

1. Calculate M̂i with NN based on Y and Ri.
2. Obtain an index of a source in S, s∗i , which produces

the minimum MSE with the estimated mask, i.e.
s∗i = argminsi∈S ∥M̂i ◦Y −Asi∥2F

3. Remove s∗i from the set S and form a new set S with
the remaining indices.

4. ϕ∗[i]← s∗i .
5. Calculate the residual mask for the next iteration as

(a) Ri+1= max(Ri −Ms∗i
, 0) (w/ oracle mask), or

(b) Ri+1= max(Ri − M̂i, 0) (w/ estimated mask).
end

following utterance-level separation error:

ϕ∗ = argmin
ϕ∈P

S∑
i=1

∥M̂i ◦Y −Aϕ∥2F . (3)

Here, P is the set of all permutations. It should be noted that in our
case eq. (3) can be evaluated only after performing all the iterations,
which may not be convenient as we will show below.

Alternatively, we can determine the permutation ϕ∗ at each iter-
ation recursively as in Alg. 1, by taking the recurrent structure of the
proposed method into account. In Alg. 1, Ms∗i

is an ideal mask that
is estimated at the i-th iteration. The advantage of this way of calcu-
lating permutation is that, if we use 5-(a) of Alg. 1, it is guaranteed
that the mask estimation process is always performed based on an
ideal input signal, i.e. an ideal residual mask at each iteration, and
hence the gradient we obtain eventually becomes more reliable. By
having such ideal input signals, the training converges very quickly
to a better local minimum. Moreover, by switching the residual mask
calculation from 5-(a) to 5-(b) (where we use an estimated mask to
calculate a residual mask) after a certain epoch, we can make the
network robust to errors in masks estimated in preceding iterations.
In our experiments, we will use the procedure summarized in Alg. 1.

2.2.3. Definition of J(flag)

J(flag) is the cost regarding the stop flag, which can tell us whether or
not the iteration should be stopped. Let z be a vector of the stop flags
formed of S−1 zeros followed by one, i.e. z=(z1, z2, . . . , zS−1, zS)

=(0, 0, . . . , 0, 1). Then, J(flag) can be formulated as a cross-entropy
loss as follows:

J(flag) = −
S∑

i=1

zilnẑi, (4)

where zi and ẑi, respectively, correspond to the true and estimated
stop flags at the i-th iteration.

2.2.4. Definition of J(res-mask)

Finally let us define J(res-mask), which encourages the network to
cover all the T-F bins of the input spectrogram. To impose such a
constraint, we propose that J(res-mask) be:

J(res-mask) = max

(
1−

S∑
i=1

M̂i, 0

)
. (5)

In our implementation, we empirically applied the max function as
above to handle negative values in the residual mask.

3. EXPERIMENTS
We carried out two experiments to investigate the effectiveness and
characteristics of the proposed method.

In the first experiment, based on a standard source separation
task, we evaluated the source separation performance of the pro-
posed method compared with that of a conventional PIT with an
utterance-level cost function, i.e. uPIT [9]. As an evaluation met-
ric, we used the signal-to-distortion ratio (SDR) of BSSeval [13].
Hereafter, this first experiment will be referred to as clean matched
condition.

We used the second experiment mainly to evaluate the source
counting accuracy. Since the test data generated for this experiment
comprises 0 speaker, 1 speaker and 2 simultaneous speaker scenar-
ios, the network is required to change the number of iterations/masks
adaptively while performing the source separation. Since we added
a moderate level of noise to the training and test data, we refer to this
experiment as the noisy mixed condition.

3.1. Experiment 1: clean matched condition
3.1.1. Experimental conditions
We evaluate the proposed method in comparison with an uPIT model
[9] on the WSJ0-2mix dataset. The WSJ0-2mix dataset was intro-
duced in [7] and was derived from the WSJ0 corpus [14]. The 30h
training set and the 10h validation set contain two-speaker mixtures
generated by randomly selecting speakers and utterances from the
WSJ0 training set si tr s, and mixing them at various signal-to-noise
ratios (SNRs) uniformly chosen between 0 dB and 5 dB. The 5h
open-speaker test set was similarly generated using utterances from
16 speakers from the WSJ0 validation set si dt 05 and evaluation set
si et 05. The sampling frequency was 8 kHz.

3.1.2. Network details
One of the inputs to the proposed models Y is a spectrogram con-
sisting of the 257-dimensional short-time Fourier transform (STFT)
spectral magnitude of the speech mixture. The size and shift of the
STFT were 512 and 128, respectively. The other input is a residual
mask Ri with the same dimension as Y. These two inputs are first
concatenated and fed to the network. Then, based on the input, the
network outputs an amplitude mask estimated with the sigmoid ac-
tivation function [9, 15], assuming that the amplitude mask falls in
the [0,1] range. We employed a 2-layer BLSTM network with 600
LSTM units (i.e., 600 cells each for backward and forward RNNs)
at each layer, followed by 1 fully connected layer. To control the
training process, we used an Adam optimizer with an initial learning
rate of 0.001. The maximum epoch was set at 200. With preliminary
experiments, we confirmed that the performance can be improved
by using e.g. larger models and more epochs, but we opted for this
configuration to speed up the experiments.

Two types of models were trained, which differ as regards the
cost function. One model, which we refer to as “Res-mask-model”,
uses J = J(mse) + βJ(res-mask), while the other model, which we
refer to as “Stop-flag-model”, employed J = J(mse) + αJ(flag),
which is the subset of eq. (1). We used an α value of 0.05 and a
β value of 1e−5. We prepared three different training recipes for
each model. The first recipe (train1) corresponds to the recipe 5-
(b) (i.e. the estimated mask for the calculation of residual mask) of
Alg. 1 all through the training process. The second (train2) uses a
recipe corresponding to 5-(a) (i.e. oracle mask for the calculation of
a residual mask) of Alg. 1. The third recipe (train2’) carries out the
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Table 1. SDR improvement (in dB) for different separation methods
in clean matched condition

uPIT [9] Res-mask-model Stop-flag-model
train1 train2 train2’ train1 train2 train2’

7.2 7.8 7.9 8.6 7.3 8.8 8.1

first 40 epochs with 5-(a), and then switches to 5-(b) for the remain-
ing epochs.

3.1.3. Results
As in table 1, while uPIT achieves an SDR improvement of 7.2 dB
1, our models with a similar configuration, namely the Res-mask-
model and Stop-flag-model achieved higher SDR improvements of
8.6 dB and 8.8 dB, respectively. We expect to realize further gains
by improving the configuration (i.e. type of masks, activation func-
tions) as in [9], which will be a part of our future work. In this
experiment, since the NNs were trained only on 2 speaker mixtures,
the Stop-flag-model always output the stop flag of 1 at the second
iteration (and 0 at the first iteration), and the Res-mask-model out-
put a very empty residual mask R3. Therefore, the decision to stop
the iteration could be made with 100 % accuracy by using simple
threshold processing.

3.2. Experiment 2: noisy mixed condition

3.2.1. Experimental conditions

In this experiment, we mainly evaluated the source counting per-
formance of the proposed methods. The evaluation was based on a
database comprising 3 noisy conditions, namely a 2 speaker mixture
in noisy conditions, 1 speaker in noisy conditions and 0 speakers in
noisy conditions. We chose this setting, because, for example, AMI
meeting recordings rarely contain 3 simultaneous speaker regions
(only 0.3 % of an entire meeting) and are dominated by 0, 1 and
2 speaker regions. As in the previous experiment, all speech data
used to generate training, validation and test data were taken from
the WSJ0 database. Background noise data were taken from the
CHiME real noise dataset, and added to the mixture with an SNR of
20 dB relative to the first speaker in the mixture. We generated a 30h
training set, which covered the above 3 noisy conditions equally. In
other words, the training data for a 2 speaker mixture in this experi-
ment were only about 1/3 of those used in the previous experiment,
which implies inferior separation performance in the 2 speaker mix-
ture condition. However, we employed this database to speed up our
experiments. As in the previous experiment, we generated a 10h val-
idation set containing the same 3 types of noisy conditions, and a 5h
test set for each of the noisy conditions.

3.2.2. Network details
We used the same network configuration, except that this time we
forced the network to always output a mask for noise at the first iter-
ation. In this experiment, we used the Res-mask-model with train2’,
and the Stop-flag-model with train2’. For the source counting, i.e.
to stop the iteration during the test, we used a threshold of 0.9 for
the stop flag of the Stop-flag-model, and 0.1 for the median of the
residual mask for the Res-mask-model.

1The value corresponds to the result of [9] in Table II, which was obtained
with a similar configuration to ours. It is a result obtained with a model
having 3 BLSTM layers each with 896 units and by estimating amplitude
masks using a sigmoid activation function.

Table 2. Source counting accuracy (in %) of each model in mixed
noisy conditions

Exp. condition 0 speaker 1 speaker 2 speaker
Res-mask-model 100.0 100.0 99.9
Stop-flag-model 100.0 99.9 96.5

3.2.3. Results
Table 2 shows the accuracy of source counting under each condition
with each model. The Res-mask-model worked particularly well,
achieving an accuracy exceeding 99% for all tested conditions. It
should be noted that the values of the stop flag and the mean and
median values of the residual mask were fortunately quite discrimi-
native, and thus threshold adjustment was an easy task. Concerning
the source separation accuracy, the SDR improvement we obtained
e.g. for a noisy 2 mixture case, was not as good as in the previ-
ous experiment, i.e. it was about 6.6 dB. This is mainly because the
training data for each condition amount to about 1/3 of the data used
in the previous experiment. According to our preliminary investi-
gation, we are sure that this performance can be greatly improved
simply by increasing the number of training data, which is also a
part of our future work.

4. RELATION TO PRIOR WORKS
Recently, PIT was extended to handle an unknown number of
sources [16], in which the maximum number of sources to be ex-
tracted during the test is assumed to be known in advance. When the
network is trained with fewer sources, they interestingly assume the
existence of silent speaker(s), and output a mask for them. It was
found that, by training PIT in this way, we can efficiently handle
2- and 3-speaker scenarios with the same network having a fixed
output node dimension for 3 speakers. A major difference lies in
the structure of the network; while their network has to fix the max-
imum number of speakers, our model can theoretically handle an
arbitrary number of speakers. In this paper, we compared our source
separation performance with theirs in Section 3.2. Furthermore, we
showed the efficacy of our model in 0-, 1- and 2-speaker scenarios,
which we believe to be very important in real meeting scenarios.

Another related study [17] originates in the image processing
field, where the authors use a similar network to iteratively identify
an object in an image. Interestingly their network was trained in an
unsupervised manner and was shown to generalize well for unseen
conditions. The difference lies in the fact that, in our case, (a) the
network is trained in a strongly supervised manner, (b) the network
structure was appropriately modified to handle sequence data like
speech, and (c) the target objects to be extracted are not continuous
like an image object, but discrete, meaning that speech is an inter-
mittent object.

5. CONCLUSIONS
In this paper, we proposed a neural network-based mask estima-
tor that can handle an arbitrary number of speakers and adaptively
change the number of output masks depending on the input sig-
nal. Thanks to the nature of the employed recurrent neural networks
(RNN) that can learn how many computational steps/iterations to
perform, the proposed method attends to one speaker at a time, and
estimates a mask for each speaker individually at each iteration until
all the sources of interest are extracted from the input spectrogram.
We presented the training procedure of this network and confirmed
experimentally that it showed promising performance.
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