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ABSTRACT

The recently proposed deep clustering framework represents a sig-
nificant step towards solving the cocktail party problem. This study
proposes and compares a variety of alternative objective functions
for training deep clustering networks. In addition, whereas the orig-
inal deep clustering work relied on k-means clustering for test-time
inference, here we investigate inference methods that are matched
to the training objective. Furthermore, we explore the use of an im-
proved chimera network architecture for speech separation, which
combines deep clustering with mask-inference networks in a multi-
objective training scheme. The deep clustering loss acts as a regular-
izer while training the end-to-end mask inference network for best
separation. With further iterative phase reconstruction, our best pro-
posed method achieves a state-of-the-art 11.5 dB signal-to-distortion
ratio (SDR) result on the publicly available wsj0-2mix dataset, with
a much simpler architecture than the previous best approach.

Index Terms— deep clustering, speaker-independent multi-talker
speech separation, chimera network, cocktail party problem

1. INTRODUCTION

Recent advances have been made on the notoriously hard single-
channel speaker-independent multi-talker speech separation prob-
lem, a.k.a. the cocktail party problem, using a framework known
as deep clustering. The deep clustering framework [1, 2] projects
each time-frequency (T-F) unit to a high-dimensional embedding
such that the pairs of embeddings dominated by the same speaker
are closer to each other while those dominated by different speakers
are farther apart. This way, speaker assignment can be determined by
running a simple clustering on the embeddings at test time. The deep
clustering approach was the first to address the permutation problem,
where the correspondence between the outputs of an algorithm and
the references is an arbitrary permutation. This paper follows sim-
ilar principles but explores alternative formulations of the training
and inference objectives, both alone and in combination with other
strategies.
In [2], direct optimization of the separation performance was ex-
plored using end-to-end training through the clustering step using a
segment-level permutation-free objective function that considers all
possible permutations of the references when comparing them with
the outputs for the current speech segment (typically 400 frames).
Only the error for the best matching permutation is used in training.
A key property of this approach is that the same networks can be
used with any number of sources.
An alternative approach is to perform direct mask inference using
the permutation-free objective function with networks that directly
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estimate the labels for a fixed number of sources. Direct mask in-
ference was first used in [1] as a baseline method, using a combina-
tion of long short term memory (LSTM) recurrent neural networks
(RNNs), and a segment-level permutation-free objective, but without
showing good performance. The model in [2] is also a form of di-
rect mask inference, since it uses the segment-level permutation-free
objective instead of the deep clustering network, although the under-
lying architecture is inspired by deep clustering. The direct mask
inference approach was revisited in [3] using DNNs and frame-level
permutation-free training, along with an oracle “tracing” method to
resolve permutations between frames. In [4], the combination of
LSTMs and segment-level permutation-free training was adopted,
where it was shown to perform nearly as well as deep clustering.
The two approaches appear to be complementary, however, in the
sense that combining them into a chimera network, as in [5], can
produce better results than either on its own. In the chimera network,
the deep clustering task functions as a regularizer to guide the mask
inference to perform better separation.
Together with the strong learning power of deep neural networks, all
of these approaches have demonstrated overwhelming advantages
over previous approaches including graphical modeling approaches
[6], spectral clustering approaches [7], and CASA methods [8]
In this study, we introduce several alternative deep clustering ob-
jectives that aim to improve clustering performance. We also intro-
duce energy-dependent weighting to reduce the influence of low-
energy bins. For each objective function, an additional run-time
inference algorithm is proposed to obtain a ratio mask for separa-
tion. For mask-inference networks, we show improvements using
an L1 loss and logistic sigmoid activation in the output layer when
estimating the phase-sensitive mask [9]. We show that these im-
provements extend to the combination with deep clustering via an
improved chimera framework.

2. DEEP CLUSTERING

The key idea of deep clustering is to use a powerful neural network to
learn a high-dimensional embedding for each T-F unit such that the
embeddings belonging to the same speaker are close to each other
in the embedding space, and farther otherwise. This way, simple
clustering methods such as k-means can be performed on the learned
embeddings to perform separation at the test stage.
The network computes a unit-length embedding vector vi ∈ R1×D

corresponding to the i-th time-frequency element, which corre-
sponds to a particular pair of time-frequency indices t and f . Like-
wise, yi ∈ R1×C is a one-hot label vector indicating which source
in a mixture dominates time-frequency bin i. Vertically stacking
these, we form the embedding matrix V ∈ RTF×D , and the label
matrix Y ∈ RTF×C . The embeddings are learned in a way such
that the affinity matrix can be approximated from the embeddings
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by minimizing the following objective function:
LDC,classic(V, Y ) = ‖V V T − Y Y T‖2F

= ‖V TV ‖2F + ‖Y TY ‖2F − 2‖V TY ‖2F
=
∑
i,j

[〈vi, vj〉 − 〈yi, yj〉]2 (1)

The network architecture of deep clustering is shown in Fig. 1(a).

3. ALTERNATIVE OBJECTIVE FUNCTIONS

Graph Laplacian distance: A problem in the original deep clus-
tering formula when used to infer Y is that it contains the term
‖Y Y T‖2F =

∑
cN

2
c , where Nc =

∑
i yi,c is the number of bins

dominated by speaker c. This regularizes the solution toward clus-
ters of equal size. To avoid this, we can normalize Y Y T and V V T

so the objective is less dependent on cluster size. Consider the fol-
lowing objective, where DV = diag(V V T1) and similarly for DY:

LDC,L(V, Y ) = ‖D−
1
2

V V V TD
− 1

2
V −D−

1
2

Y Y Y TD
− 1

2
Y ‖2F

= ‖V TD−1
V V ‖2F + C − 2 ‖V TD

− 1
2

V D
− 1

2
Y Y ‖2F. (2)

If V were a partition matrix, this would be the chi-squared distance
between V and Y [7, 10]. This form also arises in spectral clustering,
where the affinity matrix is interpreted as a weighted graph. The

matrix L = I − D−
1
2

V V V TD
− 1

2
V is a normalized graph Laplacian

for the affinity matrix V V T, and its eigendecomposition optimizes
the normalized cut criterion for graph partitioning [7, 10]. LDC,L is
the difference between the graph Laplacian of V V T and that of the
ideal affinity matrix Y Y T, which may help in balancing the classes
according to the normalized cut criterion.
Stochastic normalization: Another normalization comes from
viewing the affinities as a stochastic matrix, leading to the random-
walk interpretation of spectral clustering [11]. This motivates nor-
malizing the symmetric affinity matrix to be doubly stochastic. For
an ordinary affinity matrix this would require an iterative scaling
procedure [12]; however, because the deep clustering affinity matrix
is a symmetric product, we can accomplish this in closed form by
conditioning V :

V̄ = diag(V 1)−1V, V̌ = V̄ diag(1TV̄ )−1/2, (3)

so that V̌ V̌ T is doubly stochastic [13]. With Y̌ similarly obtained
from Y , the doubly stochastic objective is:

LDC,S(V, Y ) = ‖V̌ V̌ T − Y̌ Y̌ T‖2F. (4)

Deep LDA: In [1], k-means is used to cluster the embeddings to in-
fer the class labels for each TF bin. However, the training objective
(1), as a function of the embeddings V given the reference labels Y ,
is different from the inference objective optimized by k-means, as a
function of the inferred labels Y given the embeddings V . Here we
consider modifying the training objective so that it matches that of
k-means algorithm used for inference. The k-means objective min-
imizes the within-class variance of the embeddings V as a function
of their class assignments Y . However, training the embeddings V
given reference Y under the k-means objective leads to the trivial
solution in which all embeddings are the same. Instead, we can use
the ratio of the within-class variance to the total variance,

LDC,LDA(V, Y ) =
‖V − Y (Y TY )−1Y TV ‖2F
‖V − 1(1T1)−11TV ‖2F

,

=

∑C
c=1

∑
i,yi,c=1(vi − v̄(c))2∑
i(vi − v̄)2

, (5)

where v̄ is the mean of all the embeddings and v̄(c) the mean of
the embeddings belonging to speaker c. This is the same objective
optimized by linear discriminant analysis [14], except that V is here
produced by a neural network instead of being a linear function of
the data points.
Note that when inferring Y given V , the denominator is a constant,
and we recover the k-means objective: training and inference objec-
tives are matched.
Whitened k-means: We consider an alternative to the Deep LDA
objective above, where rather than using the denominator in (5) to
avoid a trivial solution, we instead normalize V to have identity-
covariance. That is we use a whitened Ṽ = V (V TV )−1/2 in the
numerator of (5) to obtain:

LDC,W(V, Y ) = ‖V (V TV )−
1
2 − Y (Y TY )−1Y TV (V TV )−

1
2 ‖2F

= D − tr
(
(V TV )−1V TY (Y TY )−1Y TV

)
. (6)

Note that this objective function is a linear transform away from
‖V (V TV )−1V T−Y (Y TY )−1Y T‖2F, which, similarly to (2), would
be the chi-squared distance between V and Y if V were a partition.
Introducing weights: Discarding or reducing the influence of T-F
bins in silence regions is found to be very important for training deep
clustering networks. The estimated mask value for such low-energy
bins has little influence on the output, and their labelling is somewhat
arbitrary. It is thus likely counterproductive to force the network to
learn how to create embeddings for the many such bins. By filtering
them out, the network can focus on learning embeddings for the T-F
bins that actually contain some speech.
The weighting is applied via a diagonal weight matrix W =
diag(w). For the classic deep clustering loss, the weighted loss
function is formulated as:

LDC,classic,W (V, Y ) = ‖W 1/2
(
V V T − Y Y T

)
W 1/2‖2F

=
∑
i,j

wiwj [〈vi, vj〉 − 〈yi, yj〉]2. (7)

The weighting mechanism can be efficiently implemented by apply-
ing
√
w to both V and Y , and then using Eq. (1) to compute the loss.

The weights can be introduced similarly for the other cost functions.
There are multiple ways to define the weights for training. A sim-
ple option is to use binary voice activity weights WVA to filter out
the T-F bins where none of the sources are significantly active [1],
where a source is considered active in T-F bins where its magnitude
is within some threshold from its largest magnitude in the utterance:
wi = maxk

[
10 log10(|sk,i|2/maxj |sk,j |2) > β

]
, where [·] is the

Iverson bracket and |sk,i| represents the magnitude of the i-th T-F
bin of the clean source k. Another option avoids a hard threshold
hyper-parameter and uses soft weights. We use here magnitude ratio
weights WMR defined as the ratio of the mixture magnitude at T-F
bin i over the sum of the mixture magnitudes at all bins within an
utterance: wi = |xi|/

∑
j |xj |, where |x| is the magnitude of the

mixture.
Matched inference: Whereas in the above we considered training
objectives for the deep network embeddings V , we here consider in-
ference objectives for the class assignments Y . In particular, we use
the same objective for inference that was used in training in each
case. To make this possible, we relax the discrete class assignments
and use gradient descent to infer a continuous mask Ŷ given the net-
work’s embeddings V̂ : Ŷ = arg minY LDC(V̂ , Y ), for the various
training objectives. We parameterize the mask as Y = logistic(Z),
where Z are unconstrained real values, and optimize the above ob-
jective with respect to Z using a gradient descent-based algorithm
such as Adam. Note that the deep LDA training objective is de-

687



Fig. 1. (a) Deep clustering network, (b) Chimera++ network

signed to match the k-means inference objective, but we can still
perform inference of continuous class assignments, using gradient
descent instead of k-means, to further improve the result. We ini-
tialize the parameters using the binary mask obtained from k-means
clustering. More specifically, we first modify all the ones in the bi-
nary mask to 0.99 and all the zeros to 0.01, and then apply the logit
function to get the pre-activation values of Z for initialization. Note
that for inference, the parameters of the network and V̂ stay fixed,
so the optimization is efficient.

4. ARCHITECTURE IMPROVEMENTS

Improved mask-inference networks: In the original deep cluster-
ing paper [1], as a comparison with deep clustering, the authors pro-
posed to train a conventional mask-inference (MI) network using
a segment-level permutation-free objective based on the magnitude
spectrum approximation (MSA):

LMI,MSA = min
π∈P

∑
c

‖M̂c ◦ |X| − |Sπ(c)|‖2, (8)

where P is the set of permutations on {1, . . . , C}, |X| the mixture
magnitude, M̂c the c-th estimated mask, and |Sc| the magnitude of
the c-th reference source. Although this baseline performed poorly,
in a follow-up paper [2], this permutation-free objective was used
to train an MSA estimation network built upon a deep clustering
network with unfolded k-means steps, this time leading to state-
of-the-art results. In [9] the phase-sensitive spectrum approxima-
tion (PSA) was shown to outperform MSA for separating speech
from non-stationary interference. Subsequently in [4], PSA esti-
mation was combined with the segment-level permutation-free ob-
jective resulting in improved performance. It is common in PSA
to truncate the mask values to the range [0, 1], and therefore trun-
cate the phase-sensitive spectrum target to the range [0, |X|]. Using
Tba(x) = min(max(x, a), b), the truncated PSA (tPSA) objective is

LMI,tPSA,L2 = min
π∈P

∑
c

∥∥∥M̂c ◦ |X|

− T
|X|
0

(
|Sπ(c)| ◦ cos(θX − θπ(c))

) ∥∥∥2, (9)

where θX is the mixture phase and θc the phase of the c-th source.
To allow the network more flexibility, we use the logistic sigmoid
activation, whereas the softmax activation was used in [4]. We also
introduce a loss function that uses the L1 distance instead of the
squared L2 distance in Eq. (9), denoted by LMI,PSA,L1 . This is mo-
tivated by the fact that the histogram of clean STFT magnitudes in

anechoic environments is similar to a Laplacian distribution (or a
super-Gaussian distribution [15]), and so is the error term distribu-
tion, as suggested in our previous study [16]. In our experiments, we
found that using the logistic sigmoid activation in combination with
the LMI,PSA,L1 loss leads to better performance than corresponding
results in [4].
Chimera++ network: In [5], a chimera network is introduced that
combines deep clustering with MI in a multi-task learning fashion,
leveraging the regularizing property of the deep clustering loss and
the simplicity of the mask-inference network. In the original chimera
network, the mask inference branch grows out from the embedding
layer. The motivation for this is unclear as the embedding layer ex-
ists to satisfy the deep clustering objective, whereas mask inference
does not require such tight coupling with the embeddings. We pro-
pose to graft the mask inference at the BLSTM hidden layer output,
yielding a conceptually simpler and computationally faster network,
shown in Fig. 1(b). We refer to it as chimera++. The loss function
we minimize is a weighted sum of a deep clustering loss and an MI
loss:

Lchi++
α

= αLDC(V, Y ) + (1− α)LMI. (10)

At run time, we only need the MI output to make predictions.

5. EXPERIMENTAL VALIDATION

5.1. Setup

We evaluate our algorithms on the publicly-available wsj0-2mix
dataset [1], which has been used by many studies after the debut of
the deep clustering algorithm. It contains 20,000 utterances (∼30h)
in the training data and 5,000 utterances (∼10h) in the validation
data, both of which are created by randomly mixing two utterances
of two randomly-chosen speakers from the WSJ0 training data
(si tr s). Each mixture of the 3,000 utterances (∼5h) in the testing
data is generated by mixing two utterances from two randomly-
chosen speakers in the WSJ0 validation (si dt 05) and testing set
(si et 05). Note that the speakers in our validation set are also in-
cluded in the training set (of course, the utterances are different), so
we denote it as closed speaker condition (CSC), while the test set
consists of an unseen set of speakers, therefore we denote it as open
speaker condition (OSC). The SNR of each mixture is randomly
drawn between 0 dB and 10 dB. The sampling rate is 8 kHz.
Our model contains four BLSTM layers each with 600 units in each
direction. The network is trained from scratch on 400-frame seg-
ments using the Adam algorithm. 0.3 dropout is applied on the out-
put of each BLSTM layer except the last one. No curriculum learn-
ing or recurrent dropout [2, 17, 18] is incorporated in our system.
The window length is 32ms, the hop size is 8ms, and the square root
of the Hann window is used as the analysis window. 256-point DFT
is performed to extract the 129-dimensional log magnitude feature
of each frame for BLSTM training. The run-time clustering is al-
ways performed on the entire utterance. Following [2], β in WVA is
empirically set to -40. For multi-task learning, although the model
is trained using a combination of deep clustering loss and MI loss,
we only use the MI loss during validation for model selection. At
run time, we use the output from the MI branch as the masks for
separation. The α coefficient is set through cross-validation.

5.2. Iterative Phase Reconstruction

In most deep learning studies for speech separation or enhancement,
only the magnitude is enhanced, and the noisy phase is used di-
rectly for time-domain re-synthesis, largely because the phase pat-
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Table 1. SDR (dB) performance on wsj0-2mix.
Approaches Dropout CSC OSC
DC (classic, equal weights) 0.0 9.6 9.5
DC (classic, WVA) 0.0 9.8 9.7
DC (classic, WVA) 0.3 10.0 9.9
DC (classic, WMR) 0.0 10.0 10.0
DC (classic, WMR) 0.3 10.3 10.2

+run-time inference - 10.7 10.7
DC (LDA, WVA) 0.0 9.5 9.4
DC (LDA, WVA) 0.3 9.8 9.7

+ run-time inference - 10.2 10.1
DC (S, WVA) 0.3 10.1 10.0
DC (S, WMR) 0.3 10.2 10.1

+ run-time inference - 10.7 10.7
DC (L, WVA) 0.3 10.2 10.2

+ run-time inference - 10.7 10.7
DC (W, WVA) 0.3 10.3 10.3
DC (W, WMR) 0.3 10.4 10.4

+ run-time inference - 10.9 10.9
MI (softmax, tPSA, L2) 0.3 9.1 9.1
MI (softmax, tPSA, L1) 0.3 10.0 9.8
MI (sigmoid, tPSA, L1) 0.3 10.1 10.0
chimera++:

DC (W, WVA)+MI (sigmoid, tPSA, L1) 0.3 10.9 10.9
DC (W, WMR)+MI (softmax, tPSA, L1) 0.3 11.1 11.1
DC (W, WMR)+MI (sigmoid, tPSA, L1) 0.3 11.1 11.2

+ Griffin-Lim - 11.2 11.3
+ MISI - 11.4 11.5

Table 2. SDR (dB) comparison with other systems on wsj0-2mix.

Approaches CSC OSC
DC [1, 2] - 10.8
DANet-6 anchor [17, 18] - 10.4
uPIT (relu, PSA, L2) + stacking [4] 10.0 10.0
Proposed 11.4 11.5
Oracle Masks:

Magnitude Ratio Mask 12.5 12.7
Ideal Binary Mask 13.2 13.5
PSA Mask 16.2 16.4

tern is very random and therefore hard to enhance. Conventionally,
iterative methods, such as the Griffin-Lim algorithm [19], can re-
cover the clean phase to some extent starting from the noisy phase
and a good estimated magnitude by iteratively performing STFT and
iSTFT [20]. There are some previous attempts at applying Griffin-
Lim to deep-learning-based speech enhancement [21, 22, 23]. How-
ever, Griffin-Lim performs iterative reconstruction for each source
independently and fails to exploit the constraint that we here sepa-
rate multiple sources that should sum up to the mixture. We therefore
propose to jointly reconstruct the phase of all sources starting from
their estimated magnitudes and the noisy phase via the multiple input
spectrogram inversion (MISI) algorithm [24], where the sum of the
reconstructed time-domain signals after each iteration is constrained
to be equal to the mixture signal. The iteration number in MISI and
Griffin-Lim is set to five in our experiments.

5.3. Results

The SDR results of our algorithm on the wsj0-2mix dataset are re-
ported in Table 1. When using the classic deep clustering loss to-
gether with weights WVA and 0.3 feed-forward dropout, we only get
to 9.9 dB, which is 0.4 dB worse than the 10.3 dB SDR result re-
ported in [2], likely because the recurrent dropout and curriculum

learning are not included in our system. Using weights WMR for
training decreases the gap to 0.1 dB (10.2 vs. 10.3 dB), indicating the
effectiveness of the weighting mechanism in the deep clustering al-
gorithm. The LDA objective function gives an unimpressive 9.7 dB
SDR performance, possibly because it does not directly compare ev-
ery T-F pairs as the other objective functions. The best performance
among the various deep clustering objective functions is obtained by
the LDC,W objective function, with 10.4 dB. Future work should aim
to understand why LDC,W outperforms the other objectives in this
task and whether this difference holds in other cases.
Starting from the estimated binary masks, run-time inference con-
sistently improves the performance for all the objective functions,
leading to 10.9 dB when used in combination with LDC,W. This is
already 0.1 dB better than the previous state-of-the-art result [2].
We managed to reproduce the key SDR results in [4] using the MI
network. Note that in [4], even with second-stage stacking, the MI
network can only reach 10.0 dB, and 9.4 dB without stacking. In our
system, even without further stacking, we obtained a comparable
10.0 dB SDR by using the logistic sigmoid activation together with
the L1 loss for the PSA objective. Switching to the L1 loss gives
a 0.8 dB improvement by itself, from 9.0 to 9.8 dB. This justifies
the benefits of the L1 loss for the PSA objective.By replacing the
softmax activation with the logistic sigmoid activation, we observe
another 0.2 dB improvement (from 9.8 to 10.0 dB).
Combining deep clustering with MI via multi-task learning improves
the performance significantly to 11.2 dB. Note that the network is
trained starting from random initialization. In contrast, training the
same MI network alone only reaches 10.0 dB, while training the deep
clustering network alone only gets to 10.4 dB. This improvement is
likely due to the regularizing effect of the deep clustering loss. In our
experiments, using weights WMR in the deep clustering branch sig-
nificantly improves the performance from 10.9 to 11.2 dB, and using
sigmoid activation in the MI output is also better than softmax (11.2
vs. 11.1 dB). Since we only need to use the MI output at run time,
the system is also faster as it does not need to produce embeddings
and perform run-time clustering anymore.
With the mixture phase and magnitudes estimated from the MI
branch, we perform iterative phase reconstruction using MISI, push-
ing the performance further to 11.5 dB SDR, our current best result.
In constrast, using Griffin-Lim independently on each source only
reaches 11.3 dB. As the FFT algorithm is very fast even on CPU, we
think that iterative phase reconstruction is feasible in practice.
Table 2 lists the performance of competitive approaches on the same
wsj0-2mix dataset, together with the performance of various oracle
masks. The ideal binary mask is computed based on which source is
dominant at each T-F unit and the magnitude ratio mask is computed
using the magnitude of each source over the sum of all the magni-
tudes at each T-F unit. Our result is 0.7 dB better than the previous
state-of-the-art algorithm by [2].

6. CONCLUDING REMARKS

We proposed multiple alternative loss functions for training deep
clustering networks. Among them, the LDC,W loss leads to the best
performance. Run-time inference can lead to consistently better per-
formance for all deep clustering loss functions, at the price of an
increase in computational cost. Combining MI with deep clustering
in our improved chimera++ architecture significantly improves MI
performance. Finally, we show that our best architecture is able to
output magnitudes with sufficient quality for a phase reconstruction
algorithm such as MISI to further improve performance.
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