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ABSTRACT

We investigate the effectiveness of generative adversarial
networks (GANs) for speech enhancement, in the context of
improving noise robustness of automatic speech recognition
(ASR) systems. Prior work [1] demonstrates that GANs can
effectively suppress additive noise in raw waveform speech
signals, improving perceptual quality metrics; however this
technique was not justified in the context of ASR. In this
work, we conduct a detailed study to measure the effective-
ness of GANs in enhancing speech contaminated by both
additive and reverberant noise. Motivated by recent advances
in image processing [2], we propose operating GANs on log-
Mel filterbank spectra instead of waveforms, which requires
less computation and is more robust to reverberant noise.
While GAN enhancement improves the performance of a
clean-trained ASR system on noisy speech, it falls short of
the performance achieved by conventional multi-style train-
ing (MTR). By appending the GAN-enhanced features to the
noisy inputs and retraining, we achieve a 7% WER improve-
ment relative to the MTR system.

Index Terms— Speech enhancement, automatic speech
recognition, generative adversarial networks, deep learning

1. INTRODUCTION

Speech enhancement techniques aim to improve the quality
of speech by reducing noise. They are crucial components,
either explicitly [3] or implicitly [4, 5], in ASR systems for
noise robustness. Even with state-of-the-art deep learning-
based ASR models, noise reduction techniques can still be
beneficial [6]. Besides the conventional enhancement tech-
niques [3], deep neural networks have been widely adopted
to either directly reconstruct clean speech [7, 8] or estimate
masks [9, 10, 11] from the noisy signals. Different types of
networks have also been investigated in the literature for en-
hancement, such as denoising autoencoders [12], convolution
networks [13] and recurrent networks [14].

In their limited history, GANs [15] have attracted atten-
tion for their ability to synthesize convincing images when
trained on corpora of natural images. Refinements to network

∗Work performed as an intern at Google.

architecture have improved the fidelity of the synthetic im-
ages [16]. Isola et al. [2] demonstrate the effectiveness of
GANs for image “translation” tasks, mapping images in one
domain to related images in another. In spite of the success
of GANs for image synthesis, exploration on audio has been
limited. Pascual et al. [1] demonstrate promising performance
of GANs for speech enhancement in the presence of additive
noise, posing enhancement as a translation task from noisy
signals to clean ones. Their method, speech enhancement
GAN (SEGAN), yields improvements to perceptual speech
quality metrics over the noisy data and traditional enhance-
ment baselines. Their investigation seeks to improve speech
quality for telephony rather than ASR.

In this work, we study the benefit of GAN-based speech
enhancement for ASR. In order to limit the confounding fac-
tors in our study, we use an existing ASR model trained on
clean speech data to measure the effectiveness of GAN-based
enhancement. To gauge performance under more-realistic
ASR conditions, we consider reverberation in addition to ad-
ditive noise. We first train a SEGAN model to map simulated
noisy speech to the original clean speech in the time domain.
Then, we measure the performance of the ASR model on
noisy speech before and after enhancement by SEGAN. Our
experiment indicates that SEGAN does not improve ASR
performance under these noise conditions.

To address this, we refine the SEGAN method to operate
on a time-frequency representation, specifically, log-Mel fil-
terbank spectra. With this spectral feature mapping (SFM)
approach, we can pass the output of our enhancement model
directly to the ASR model (Figure 1). While deep learning
has previously been applied to SFM for ASR [17, 18, 19],
our work is the first to use GANs for this task. Michelsanti
et al. [20] employ GANs for SFM, but target speaker verifi-
cation rather than ASR. Our frequency-domain approach im-
proves ASR performance dramatically, though performance
is comparable to the same enhancement model trained with
an L1 reconstruction loss. Anecdotally speaking, the GAN-
enhanced spectra appear more realistic than the L1-enhanced
spectra when visualized (Figure 3), suggesting that ASR mod-
els may not benefit from the fine-grained details that GAN
enhancement produces.
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Fig. 1: System overview.

State-of-the-art ASR systems use MTR [21] to achieve
robustness to noise at inference time. While this strategy is
known to be effective, a resultant model may still benefit from
enhancement as a preprocessing stage. To measure this ef-
fect, we also use an existing ASR model trained with MTR
and compare its performance on noisy speech with and with-
out enhancement. We find that GAN-based enhancement de-
grades performance of this model, even with retraining. How-
ever, retraining the MTR model with both noisy and enhanced
features in its input representation improves performance.

2. GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks (GANs) are unsupervised
generative models that learn to produce realistic samples of
a given dataset from low-dimensional, random latent vec-
tors [15]. GANs consist of two models (usually neural net-
works), a generator and a discriminator. The generator G
maps latent vectors drawn from some known prior pz to sam-
ples: G : z 7→ ŷ, where z ∼ pz . The discriminator D is
tasked with determining if a given sample is real (y ∼ pdata,
a sample from the real dataset) or fake (G(z) ∼ pG, where
pG is the implicit distribution of the generator when z ∼ pz).
The two models are pitted against each other in an adversarial
framework.

Real-world datasets often contain additional information
associated with each example, e.g. the type of object depicted
in an image. Conditional GANs (cGANs) [22] use this infor-
mation x by providing it as input to the generator, typically
in a one-hot encoding: G : {x, z} 7→ ŷ. After training, we
can sample from the generator’s implicit posterior pG(ŷ | x)
by fixing x and sampling z ∼ pz . To accomplish this, G
is trained to minimize the following objective, while D is
trained to maximize it:

LcGAN (G,D) = Ex,y∼pdata
[logD(x,y)]+

Ex∼pdata,z∼pz
[log(1−D(x, G(x, z)))]. (1)

Recently, researchers have used full-resolution images as
conditioning information. Isola et al. [2] propose a cGAN ap-
proach to address image-to-image “translation” tasks, where
appropriate datasets consist of matched pairs of images (x,y)
in two different domains. Their approach, dubbed pix2pix,
uses a convolutional generator that receives as input an image
x, a latent vector z and produces G(x, z): an image of iden-
tical resolution to x. A convolutional discriminator is shown
pairs of images stacked along the channel axis and is trained
to determine if the pair is real (x,y) or fake (x, G(x, z)).

For conditional image synthesis, prior work [23] demon-
strates the effectiveness of combining the GAN objective with
an unstructured loss. Noting this, Isola et al. [2] use a hybrid
objective to optimize their generator, penalizing it for L1 re-
construction error in addition to the adversarial objective:

min
G

max
D

V (G,D) = LcGAN (G,D) + 100 · LL1(G),

where LL1(G) = Ex,y∼pdata,z∼pz
[‖y −G(x, z)‖1]. (2)

3. METHOD

We describe our approach to spectral feature mapping us-
ing GANs, beginning by outlining the related time-domain
SEGAN approach.

3.1. SEGAN

Pascual et al. [1] propose SEGAN, a technique for enhanc-
ing speech in the time domain. The SEGAN method is a
1D adaptation of the 2D pix2pix [2] approach. The fully-
convolutional generator receives second-long (16384 samples
at 16 kHz) windows of noisy speech as input and is trained to
output clean speech. During inference, the generator is used
to enhance longer segments of speech by repeated application
on one-second windows without overlap.

The generator’s encoder consists of 11 layers of stride-2
convolution with increasing depth, resulting in a feature map
at the bottle-neck of 8 timesteps with depth 1024. Here, the
authors append a latent noise vector z of the same dimension-
ality along the channel axis. The resultant 8x2048 matrix is
input to an 11-layer upsampling decoder, with skip connec-
tions from corresponding input feature maps. As a departure
from pix2pix, the authors remove batch normalization from
the generator. Furthermore, they use 1D filters of width 31
instead of 2D filters of size 4x4. They also substitute the tra-
ditional GAN loss function with the least squares GAN ob-
jective [24].

In agreement with observations from [25], we found that
the SEGAN generator learned to ignore z. We hypothesize
that latent vectors may be unnecessary given the presence of
noise in the input. We removed the latent vector from the gen-
erator altogether; the resultant deterministic model demon-
strated improved performance in our experiments.

3.2. FSEGAN

It is common practice in ASR to preprocess time-domain
speech data into time-frequency spectral representations.
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Fig. 2: Time-frequency FSEGAN enhancement strategy.
G (composition of encoder Ge and decoder Gd) maps stereo,
noisy spectra x to enhanced G(x). D receives as input either
(x,y) or (x, G(x)) and decides if the pair is real or enhanced.

Phase information of the signal is typically discarded; hence,
an enhancement model only needs to reconstruct the magni-
tude information. Because frequency-domain representations
are used in the discriminative setting, an enhancer target-
ing improved ASR may benefit from operating in this do-
main. With this motivation, we propose a frequency-domain
SEGAN (FSEGAN), which performs spectral feature map-
ping using an approach similar to pix2pix [2]. FSEGAN
ingests time-windowed spectra of noisy speech and is trained
to output clean speech spectra.

The fully-convolutional FSEGAN generator contains 7
encoder and 7 decoder layers (4x4 filters with stride 2 and
increasing depth), and features skip connections across the
bottleneck between corresponding layers. The final decoder
layer has linear activation and outputs a single channel. As
with SEGAN, we exclude both batch normalization and la-
tent codes z from our generator, resulting in a deterministic
model. The discriminator contains 4 convolutional layers
with 4x4 filters and a stride of 2. A final 1x8 layer (stride 1
with sigmoid nonlinearity) aggregates the activations from 8
frequency bands into a single decision for each of 8 timesteps.
We train FSEGAN with the objective in Equation 2. Other ar-
chitectural details are identical to pix2pix [2].1 The FSEGAN
approach is depicted in Figure 2.

4. EXPERIMENTS

4.1. Dataset

We use the Wall Street Journal (WSJ) corpus [26] as our
source of clean speech data. Specifically, we train on the
16 kHz, speaker-independent SI-284 set (81 hours, 284
speakers, 37k utterances). We perform validation on the
dev93 set and evaluate on the eval92 set.

1We modify the following open-source implementation:
https://github.com/affinelayer/pix2pix-tensorflow

We use large, stereo datasets of musical and ambient sig-
nals as our additive noise sources for MTR. This data is col-
lected from YouTube and recordings of daily life environ-
ments. During training, we use discrete mixtures ranging
from 0 dB to 30 dB SNR, averaging 11 dB. At test time, the
SNRs are slightly offset, ranging from 0.2 dB to 30.2 dB.

As a source of reverberation for MTR, we use a room sim-
ulator as described in [27]. The simulator randomizes the po-
sitions of the speech and noise sources, the position of a vir-
tual stereo microphone, the T60 of the reverberation, and the
room geometry. Through this process, our monaural speech
data becomes stereo. Room configurations for training and
testing are drawn from distinct sets; they are randomized dur-
ing training and fixed during testing.

4.2. ASR Model

We train a monaural listen, attend and spell (LAS) model [28]
on the clean WSJ training data as described in Section 4.1,
performing early stopping by the WER of the model on the
validation set. To compare the effectiveness of GAN-based
enhancement to MTR, we also train the same model using
MTR as described in Section 4.1, using only one channel of
the noisy speech. We refer to the clean-trained model as ASR-
Clean and the MTR-trained model as ASR-MTR.

To preprocess the time-domain data, we first apply the
short-time Fourier transform with a window size of 32ms and
a hop size of 10ms. We retain the magnitude spectrum of
the output and discard the phase. Then, we calculate triangu-
lar windows for a bank of 128 filters, where filter center fre-
quencies are equally spaced on the Mel scale between 125Hz
and 7500Hz. After applying this transform to the magnitude
spectrum, we take the logarithm of the output and normalize
each frequency bin to have zero mean and unit variance.

To process these features, our LAS encoder contains
two convolutional layers with filter sizes: 1) 3x5x1x32, and
2) 3x3x32x32. The activations of the second layer are passed
to a bidirectional, convolutional LSTM layer [29, 30], fol-
lowed by three bidirectional LSTM layers. The decoder
contains a unidirectional LSTM with additive attention [31]
whose outputs are fed to a softmax over characters.

4.3. GAN

For our GAN experiments, we generate multi-style, matched
pairs of noisy and clean speech in the manner described in
Section 4.1. For our FSEGAN experiments, we transform
these pairs into time-frequency spectra in a manner identical
to that of the ASR model described in Section 4.2. We frame
the pairs into 1.28 s windows with 50% overlap and train with
random minibatches of size 100. The resultant SEGAN inputs
are 20480 samples long and the FSEGAN inputs are 128x128.
In alignment with [1], we use no overlap during evaluation.
We perform early stopping based on the WER of ASR-Clean
on the enhanced validation set.
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Test Set Enhancer ASR-Clean WER ASR-MTR WER

Clean None 11.9 14.3

MTR None 72.2 20.3
SEGAN 80.7 52.8
FSEGAN 33.3 25.4

Table 1: Results of GAN enhancement experiments.

(a) Noisy speech input x (b) L1-trained output G(x)

(c) Clean speech target y (d) FSEGAN output G(x)

Fig. 3: Noisy utterance enhanced by FSEGAN.

5. RESULTS

We compute the WER of ASR-Clean and ASR-MTR on both
the clean and MTR test sets. We also compute the WER of
both models on the MTR test set enhanced by SEGAN and
FSEGAN. Results are shown in Table 1. While the WER of
ASR-Clean (11.9%) is not state-of-the-art, we focus more
on relative performance with enhancement. Our previous
work [32] has shown that LAS can approach state-of-the-art
performance when trained on larger amounts of data.

The SEGAN method degrades performance of ASR-
Clean on the MTR test set by 12% relative. To verify the
accuracy of this result, we also ran an experiment to remove
only additive noise with SEGAN: the conditions in the orig-
inal paper. Under that condition, we found that SEGAN
improved performance of ASR-Clean by 21% relative, indi-
cating that SEGAN struggles to suppress reverberation.

In contrast, our FSEGAN method improves the per-
formance of ASR-Clean by 54% relative. While this is a
dramatic improvement, it does not exceed the performance
achieved with MTR training (33% vs. 20% WER). Fur-
thermore, FSEGAN degraded performance for ASR-MTR,
consistent with observations in [33].

We show a visualization of FSEGAN enhancement in Fig-
ure 3. The procedure appears to reduce both the presence of
additive noise and reverberant smearing. Despite this, the pro-
cedure degrades performance of ASR-MTR. We hypothesize
that the enhancement process may be introducing hitherto-
unseen distortions that compromise performance.

Model WER (%)

MTR Baseline * 20.3
+ Stereo 19.0

MTR + FSEGAN Enhancer * 25.4
+ Retraining 21.0
+ Hybrid Retraining 17.6

MTR + L1-trained Enhancer * 21.4
+ Retraining 18.0
+ Hybrid Retraining 17.1

Table 2: Results of ASR-MTR retraining. Rows marked with
* are the same model under different enhancement conditions.

5.1. Retraining Experiments

Hoping to improve performance beyond that of MTR training
alone, we retrain ASR-MTR using FSEGAN-enhanced fea-
tures. To examine the effectiveness of the adversarial compo-
nent of FSEGAN, we also experiment with training the same
enhancement model using only the L1 portion of the hybrid
loss function (LL1(G) from Equation 2).

Considering that the model may benefit from knowledge
of both the enhanced and noisy features, we also train a model
to ingest these two representations stacked along the chan-
nel axis. We initialize this new hybrid model from the exist-
ing ASR-MTR checkpoint, setting the additional parameters
to zero to ensure identical performance at the start of train-
ing. To ensure that the hybrid model is not strictly benefiting
from increased parametrization, we train an LAS model from
scratch with stereo MTR input. Results for these experiments
appear in Table 2.

Retraining ASR-MTR with FSEGAN-enhanced features
improves performance by 17% relative to naively feeding
them, but still falls short of MTR training. Hybrid retraining
with both the original noisy and enhanced features improves
performance further, exceeding the performance of stereo
MTR training alone by 7% relative. Our results indicate that
training the same enhancer with the L1 objective achieves
better ASR performance than an adversarial approach, sug-
gesting limited usefulness of GANs in this context.

6. CONCLUSIONS

We have introduced FSEGAN, a GAN-based method for per-
forming speech enhancement in the frequency domain, and
demonstrated improvements in ASR performance over a prior
time-domain approach. We provide evidence that, with re-
training, FSEGAN can improve the performance of existing
MTR-trained ASR systems. Our experiments indicate that,
for ASR, simpler regression approaches may be preferable
to GAN-based enhancement. FSEGAN appears to produce
plausible spectra and may be more useful for telephonic ap-
plications if paired with an invertible feature representation.
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