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Introduction to Python

and Don'ts
Variables and dynamic typing

The Zen of Python, by Tim Peters

- Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

- Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

- Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

- Errors should never pass silently.

- Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

- There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.

- Although never is often better than *right* now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let’s do more of those!
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Introduction to Python

Variables and dynamic typing

What is Python?

Python is an easy to learn, powerful programming
language. It has efficient high-level data structures and a
simple but effective approach to object-oriented
programming. Pythons elegant syntax and dynamic
typing, together with its interpreted nature, make it an
ideal language for scripting and rapid application
development in many areas on most platforms.
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Introduction to Python
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Features (some of them)

In a few words, Python,
@ is Scripting Language
is Strongly Typed
is Dynamic
is Interpreted
is Portable
is Object Oriented
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Introduction to Python

Variables and dynamic typing

Features (some of them)

In a few words, Python,
@ is Scripting Language
is Strongly Typed
is Dynamic
is Interpreted
is Portable
is Object Oriented
has Vast Libraries (batteries included)
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Introduction to Python

Variables and dynamic typing

Features (some of them)

In a few words, Python,
@ is Scripting Language
is Strongly Typed
is Dynamic
is Interpreted
is Portable
is Object Oriented
has Vast Libraries (batteries included)

is Simple and non-obtrucive
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Introduction to Python

@ It is easy to remember

@ You can develop rapidly
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Introduction to Python

Why Python?

Dos and Don'ts
Variables and dynamic typing

@ It is easy to remember
@ You can develop rapidly

o Readable Code (whitespace is semantically important!)
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Introduction to Python

Variables and dynamic typing

@ It is easy to remember
@ You can develop rapidly
o Readable Code (whitespace is semantically important!)

@ Interface with C libraries
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@ Inventing the wheel
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@ Inventing the wheel

@ One-liners - Obfuscated coding
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Dos and Don'ts
Variables and dynamic typing

Bad Practices

@ Inventing the wheel
@ One-liners - Obfuscated coding

@ Having code on top level
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Introduction to Python

Dos and Don'ts
Variables and dynamic typing

Bad Practices

Inventing the wheel
One-liners - Obfuscated coding
Having code on top level

Huge imports
>>> from foo import *
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@ Search first code less
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Dos and Don'ts
Variables and dynamic typing

Good Practices

@ Search first code less

@ Use env to locate your interpreter
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Introduction to Python

Dos and Don'ts
Variables and dynamic typing

Good Practices

@ Search first code less
@ Use env to locate your interpreter

@ Import only what you need
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Use env to locate your interpreter
Import only what you need

Run pychecker on your code



Introduction to Python

Dos and Don'ts
Variables and dynamic typing

Good Practices

Search first code less
Use env to locate your interpreter
Import only what you need

Run pychecker on your code
if __name__ == "__main__":
main()
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Introduction to Python

Variables and dynamic typing

@ X is just a name
>>> x =1
>>> x = ’hello world’

nemo, mastergreg Python Tutorial



Introduction to Python

Variables and dynamic typing

@ X is just a name
>>> x =1
>>> x = ’hello world’

@ don't mix
>>> 2a’+1
TypeError: cannot concatenate ’str’ and ’int’ objects
>>> ’a’#3
’aaa’
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Numeric types

o int ( limitless :-D )
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Strir

Python Standard Types

Epilogue

Numeric types

@ int ( limitless :-D )
e float (53 bits precision)
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Epil

Numeric types

@ int ( limitless :-D )
e float (53 bits precision)
e complex (1+ 2j)
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Operators

e + (add)
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Operators

e + (add)
@ - (subtract)
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Arithmetic
Strings

Python Standard Types

Operators

e + (add)
@ - (subtract)
e * (multiply)
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Python Standard Types

Epilogue

Operators

e + (add)

@ - (subtract)
e * (multiply)
e / (divide)
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Python Standard Types

Operators

+ (add)

- (subtract)
* (multiply)
/ (divide)
% (modulo)

nemo, mastergreg Python Tutorial



Arithmetic
Stri

iIctures
Functions
Epilogue

Python Standard Types

Operators
o
o
o
o
o
o
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Python Standard Types

Strings

@ Strings are not lists! Strings are immutable!
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Python Standard Types

Strings

@ Strings are not lists! Strings are immutable!

@ Simple concatenation:

>>> ’Hello’ + ’World’
’HelloWorld’
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Python Standard Types

Strings

@ Strings are not lists! Strings are immutable!

@ Simple concatenation:

>>> ’Hello’ + ’World’
’HelloWorld’

@ Slicing:
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Arithmetic
Strings

Python Standard Types

Strings

@ Strings are not lists! Strings are immutable!

@ Simple concatenation:
>>> ’Hello’ + ’World’
’HelloWorld’

@ Slicing:

@ >>> ’HelloWorld’ [0]
)H7
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Arithmetic
Strings
Python Standard Types

Strings

@ Strings are not lists! Strings are immutable!

@ Simple concatenation:
>>> ’Hello’ + ’World’

’HelloWorld’
@ Slicing:
@ >>> ’HelloWorld’ [0]
)H?

@ >>> ’HelloWorld’[6:]
’orld’
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Python Standard Types

Strings

@ Strings are not lists! Strings are immutable!

@ Simple concatenation:

>>> ’Hello’ + ’World’
’HelloWorld’

@ Slicing:
@ >>> ’HelloWorld’ [0]
)H?

@ >>> ’HelloWorld’[6:]
’orld’
@ Unicode Strings:

>>> ur’Hello\u0020World !’
u’Hello World !’
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Python Standard Types

@ >>> a = [’spam’, ’eggs’, 100, 1234]
>>> a
[’spam’, ’eggs’, 100, 1234]
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Python Standard Types

@ >>> a = [’spam’, ’eggs’, 100, 1234]
>>> a
[’spam’, ’eggs’, 100, 1234]

@ Negative indices:
>>> a[-2]
100
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Python Standard Types

@ >>> a = [’spam’, ’eggs’, 100, 1234]
>>> a
[’spam’, ’eggs’, 100, 1234]

@ Negative indices:

>>> al[-2]
100

@ Concatenation:

>>> al:2] + [’bacon’, 2x%2]
[’spam’, ’eggs’, ’bacon’, 4]
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Epilogue

@ >>> a = [’spam’, ’eggs’, 100, 1234]
>>> a
[’spam’, ’eggs’, 100, 1234]

@ Negative indices:
>>> a[-2]
100
@ Concatenation:
>>> al:2] + [’bacon’, 2x%2]
[’spam’, ’eggs’, ’bacon’, 4]
@ Comprehension:

for i in a:
print i
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e Immutable (just as strings)
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Python Standard Types

e Immutable (just as strings)

@ Indexed
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Arithmetic
Strings

Data Structures
Functions

Python Standard Types

e Immutable (just as strings)
@ Indexed
@ Nested
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Python Standard Types

A set is an unordered collection with no duplicate
elements.
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Python Standard Types

A set is an unordered collection with no duplicate
elements.

@ >>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> set(basket)
set([’orange’, ’pear’, ’apple’, ’banana’])
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Python Standard Types

A set is an unordered collection with no duplicate
elements.

@ >>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> set(basket)
set([’orange’, ’pear’, ’apple’, ’banana’])

@ Operators:
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Python Standard Types

A set is an unordered collection with no duplicate
elements.

@ >>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> set(basket)
set([’orange’, ’pear’, ’apple’, ’banana’])
@ Operators:
e a- b (ina but notinb)
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Python Standard Types

A set is an unordered collection with no duplicate
elements.
@ >>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> set(basket)
set([’orange’, ’pear’, ’apple’, ’banana’])
@ Operators:

e a-b (inabutnotinb)
e a|b(inaorinb)
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Python Standard Types

A set is an unordered collection with no duplicate
elements.
@ >>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> set(basket)
set([’orange’, ’pear’, ’apple’, ’banana’])
@ Operators:

e a-b (inabutnotinb)
e a|b(inaorinb)
e a& b (inaandinb)
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Python Standard Types

A set is an unordered collection with no duplicate
elements.

@ >>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> set(basket)
set([’orange’, ’pear’, ’apple’, ’banana’])
@ Operators:
e a-b (inabutnotinb)
e a|b(inaorinb)
e a& b (inaandinb)
e a "b (in a or b but not in both)

nemo, mastergreg Python Tutorial



Data Structures
Functions
Epilog

Python Standard Types

Dictionaries

Maps of objects
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Python Standard Types

Dictionaries

Maps of objects

@ Easy to create

>>> dict([(’sape’, 4139), (’guido’, 4127), (’jack’, 4098)])
{’sape’: 4139, ’jack’: 4098, ’guido’: 4127}
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Python Standard Types

Dictionaries

Maps of objects

@ Easy to create
>>> dict([(’sape’, 4139), (’guido’, 4127), (’jack’, 4098)])
{’sape’: 4139, ’jack’: 4098, ’guido’: 4127}

@ Simple to use
>>> tel = dict([(’sape’, 4139), (’guido’, 4127), (’jack’, 4098)1)
>>> tell[’jack’]
4098
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Python Standard Types

To or not to return

@ No return value ("None’)
>>> def hi(s):
print "hello",s
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Python Standard Types

To or not to return

@ No return value ("None’)
>>> def hi(s):
print "hello",s

@ int or string?
>>> def add(a,b):
if type(a)==int:
return at+b
else:
return "not int"
>>> add(1,2)

3
>>> add(’a’,1)
’not int’
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Python Standard Types

To or not to return

@ No return value ("None’)
>>> def hi(s):
print "hello",s

@ int or string?
>>> def add(a,b):
if type(a)==int:
return at+b
else:
return "not int"
>>> add(1,2)
3
>>> add(’a’,1)
’not int’

@ lambdas
>>> add = lambda x,y : x+y
>>> add(1,2)
3

nemo, mastergreg Python Tutorial



Questions??

Ask! 1)

Python Standard Types
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Python Standard Types

Thanks

@ Thanks for watching

@ Thanks to foss-ntua for hosting
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