Python Tutorial
Part |

Greg (mastergreg) Liras, John (nemo) Giannelos

foss.ntua

April 7, 2012

nemo, mastergreg Python Tutorial

Zen
What is P
Introduction to Python

Variables and dynamic typing

Outline

@ Introduction to Python

nemo, mastergreg Python Tutorial

Introduction to Python

and Don'ts
Variables and dynamic typing

The Zen of Python, by Tim Peters

- Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

- Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

- Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

- Errors should never pass silently.

- Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

- There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.

- Although never is often better than *right* now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let’s do more of those!

nemo, mastergreg Py Tutorial

Introduction to Python

Variables and dynamic typing

What is Python?

Python is an easy to learn, powerful programming
language. It has efficient high-level data structures and a
simple but effective approach to object-oriented
programming. Pythons elegant syntax and dynamic
typing, together with its interpreted nature, make it an
ideal language for scripting and rapid application
development in many areas on most platforms.

nemo, mastergreg Python Tutorial

V/ is Pyth
Introduction to Python Freatures of
Why Python?
D nd D s
Variables and dynamic typing

Features (some of them)

In a few words, Python,

@ is Scripting Language

nemo, mastergreg Python Tutorial

Zen
What is Python?
Introduction to Python Freatures of Python
W ython?
nd ts
Variables and dynamic typing

Features (some of them)

In a few words, Python,
@ is Scripting Language
@ is Strongly Typed

nemo, mastergreg Python Tutorial

Zen
What is Python?
Introduction to Python Freatures of Python
/ ython?
nd ts
Variables and dynamic typing

Features (some of them)

In a few words, Python,
@ is Scripting Language
@ is Strongly Typed

@ is Dynamic

nemo, mastergreg Python Tutorial

Zen
What is Python?
Introduction to Python Freatures of Python
/ ython?
nd ts
Variables and dynamic typing

Features (some of them)

In a few words, Python,
@ is Scripting Language
@ is Strongly Typed
@ is Dynamic
°

is Interpreted

nemo, mastergreg Python Tutorial

Zen
What is Python?
Introduction to Python Freatures of Python
/ ython?
nd ts
Variables and dynamic typing

Features (some of them)

In a few words, Python,
@ is Scripting Language
is Strongly Typed
is Dynamic
is Interpreted
is Portable

nemo, mastergreg Python Tutorial

Introduction to Python

/ariables and dynamic typing

Features (some of them)

In a few words, Python,
@ is Scripting Language
is Strongly Typed
is Dynamic
is Interpreted
is Portable
is Object Oriented

nemo, mastergreg Python Tutorial

Introduction to Python

Variables and dynamic typing

Features (some of them)

In a few words, Python,
@ is Scripting Language
is Strongly Typed
is Dynamic
is Interpreted
is Portable
is Object Oriented
has Vast Libraries (batteries included)

nemo, mastergreg Python Tutorial

Introduction to Python

Variables and dynamic typing

Features (some of them)

In a few words, Python,
@ is Scripting Language
is Strongly Typed
is Dynamic
is Interpreted
is Portable
is Object Oriented
has Vast Libraries (batteries included)

is Simple and non-obtrucive

nemo, mastergreg Python Tutorial

Zen

What is Python?
Introduction to Python Freatures of Python

Why Python?

D

and Don
Variables and dynamic typing

@ It is easy to remember

nemo, mastergreg Python Tutorial

Introduction to Python

@ It is easy to remember

@ You can develop rapidly

nemo, master;

Introduction to Python

Why Python?

Dos and Don'ts
Variables and dynamic typing

@ It is easy to remember
@ You can develop rapidly

o Readable Code (whitespace is semantically important!)

nemo, mastergreg Python Tutorial

Introduction to Python

Variables and dynamic typing

@ It is easy to remember
@ You can develop rapidly
o Readable Code (whitespace is semantically important!)

@ Interface with C libraries

nemo, mastergreg Python Tutorial

Introduction to Python 0
/ Python?

Dos and Don'ts

Variables and dynamic typing

Bad Practices

@ Inventing the wheel

nemo,mastergreg

Introduction to Python
V Python?
Dos and Don'ts
Variables and dynamic typing

Bad Practices

@ Inventing the wheel

@ One-liners - Obfuscated coding

nemo, mastergreg Python Tutorial

Introduction to Python

Dos and Don'ts
Variables and dynamic typing

Bad Practices

@ Inventing the wheel
@ One-liners - Obfuscated coding

@ Having code on top level

nemo, mastergreg Python Tutorial

Introduction to Python

Dos and Don'ts
Variables and dynamic typing

Bad Practices

Inventing the wheel
One-liners - Obfuscated coding
Having code on top level

Huge imports
>>> from foo import *

nemo, mastergreg Python Tutorial

Introduction to Python 0
/ Python?

Dos and Don'ts

Variables and dynamic typing

Good Practices

@ Search first code less

nemo,mastergreg

Introduction to Python

Dos and Don'ts
Variables and dynamic typing

Good Practices

@ Search first code less

@ Use env to locate your interpreter

nemo, mastergreg Python Tutorial

Introduction to Python

Dos and Don'ts
Variables and dynamic typing

Good Practices

@ Search first code less
@ Use env to locate your interpreter

@ Import only what you need

nemo, mastergreg Python Tutorial

Introduction to Python

Dos and Don'ts
Variables and dynamic typing

Good Practices

nemo, mastergreg Python Tutorial

Search first code less
Use env to locate your interpreter
Import only what you need

Run pychecker on your code

Introduction to Python

Dos and Don'ts
Variables and dynamic typing

Good Practices

Search first code less
Use env to locate your interpreter
Import only what you need

Run pychecker on your code
if __name__ == "__main__":
main()

nemo, mastergreg Python Tutorial

Introduction to Python

Variables and dynamic typing

@ X is just a name
>>> x =1
>>> x = ’hello world’

nemo, mastergreg Python Tutorial

Introduction to Python

Variables and dynamic typing

@ X is just a name
>>> x =1
>>> x = ’hello world’

@ don't mix
>>> 2a’+1
TypeError: cannot concatenate ’str’ and ’int’ objects
>>> ’a’#3
’aaa’

nemo, master;

Python Standard Types

Outline

© Python Standard Types

nemo,mastergreg

Arithmetic

Stri

Data Structures
Python Standard Types D) SHUEHATE

Numeric types

o int (limitless :-D)

nemo,mastergreg

Arithmetic
Strir

Python Standard Types

Epilogue

Numeric types

@ int (limitless :-D)
e float (53 bits precision)

nemo, mastergreg Python Tutorial

Arithmetic
Strir
Python Standard T D tructures
ython Standar ypes e
Epil

Numeric types

@ int (limitless :-D)
e float (53 bits precision)
e complex (1+ 2j)

nemo, mastergreg Python Tutorial

Arithmetic
Strir

Yata Structures
Python Standard Types D) SHUEHATE

Operators

e + (add)

nemo, master;

Arithmetic

Stri

T S —
Python Standard Types Data Structures

Operators

e + (add)
@ - (subtract)

nemo,mastergreg

Arithmetic
Strings

Python Standard Types

Operators

e + (add)
@ - (subtract)
e * (multiply)

nemo, mastergreg Python Tutorial

Arithmetic
Strir

Python Standard Types

Epilogue

Operators

e + (add)

@ - (subtract)
e * (multiply)
e / (divide)

nemo, mastergreg Python Tutorial

Python Standard Types

Operators

+ (add)

- (subtract)
* (multiply)
/ (divide)
% (modulo)

nemo, mastergreg Python Tutorial

Arithmetic
Stri

iIctures
Functions
Epilogue

Python Standard Types

Operators
o
o
o
o
o
o

nemo, mastergreg Python Tutorial

+ (add)

- (subtract)
* (multiply)
/ (divide)
% (modulo)
= (assign)

Arithmetic
Strings

Data Structures
Functions
Epilogue

Python Standard Types

Strings

@ Strings are not lists! Strings are immutable!

nemo, mastergreg Python Tutorial

Arithmetic
Strings

Python Standard Types

Strings

@ Strings are not lists! Strings are immutable!

@ Simple concatenation:

>>> ’Hello’ + ’World’
’HelloWorld’

nemo, mastergreg Python Tutorial

Arithmetic
Strings

Python Standard Types

Strings

@ Strings are not lists! Strings are immutable!

@ Simple concatenation:

>>> ’Hello’ + ’World’
’HelloWorld’

@ Slicing:

nemo, mastergreg Python Tutorial

Arithmetic
Strings

Python Standard Types

Strings

@ Strings are not lists! Strings are immutable!

@ Simple concatenation:
>>> ’Hello’ + ’World’
’HelloWorld’

@ Slicing:

@ >>> ’HelloWorld’ [0]
)H7

nemo, mastergreg Python Tutorial

Arithmetic
Strings
Python Standard Types

Strings

@ Strings are not lists! Strings are immutable!

@ Simple concatenation:
>>> ’Hello’ + ’World’

’HelloWorld’
@ Slicing:
@ >>> ’HelloWorld’ [0]
)H?

@ >>> ’HelloWorld’[6:]
’orld’

nemo, mastergreg Python Tutorial

Arithmetic
Strings

Data Structures
Functions
Epilogue

Python Standard Types

Strings

@ Strings are not lists! Strings are immutable!

@ Simple concatenation:

>>> ’Hello’ + ’World’
’HelloWorld’

@ Slicing:
@ >>> ’HelloWorld’ [0]
)H?

@ >>> ’HelloWorld’[6:]
’orld’
@ Unicode Strings:

>>> ur’Hello\u0020World !’
u’Hello World !’

nemo, mastergreg Python Tutorial

Python Standard Types

@ >>> a = [’spam’, ’eggs’, 100, 1234]
>>> a
[’spam’, ’eggs’, 100, 1234]

nemo, master;

Arithmetic

Str

Data Structures
Functions
Epilogue

Python Standard Types

@ >>> a = [’spam’, ’eggs’, 100, 1234]
>>> a
[’spam’, ’eggs’, 100, 1234]

@ Negative indices:
>>> a[-2]
100

nemo, mastergreg Python Tutorial

Arithmetic
Strings

Data Structures
Functions
Epilogue

Python Standard Types

@ >>> a = [’spam’, ’eggs’, 100, 1234]
>>> a
[’spam’, ’eggs’, 100, 1234]

@ Negative indices:

>>> al[-2]
100

@ Concatenation:

>>> al:2] + [’bacon’, 2x%2]
[’spam’, ’eggs’, ’bacon’, 4]

nemo, mastergreg Python Tutorial

Arithmetic
Strings

Data Structures
Functions

Python Standard Types

Epilogue

@ >>> a = [’spam’, ’eggs’, 100, 1234]
>>> a
[’spam’, ’eggs’, 100, 1234]

@ Negative indices:
>>> a[-2]
100
@ Concatenation:
>>> al:2] + [’bacon’, 2x%2]
[’spam’, ’eggs’, ’bacon’, 4]
@ Comprehension:

for i in a:
print i

nemo, mastergreg Python Tutorial

Arithmetic

Strings

Data Structures
NS

Python Standard Types

e Immutable (just as strings)

nemo,mastergreg

Arithmetic

Stri

Data Structures
Funct

Epilogue

Python Standard Types

e Immutable (just as strings)

@ Indexed

nemo, mastergreg Python Tutorial

Arithmetic
Strings

Data Structures
Functions

Python Standard Types

e Immutable (just as strings)
@ Indexed
@ Nested

nemo, mastergreg Python Tutorial

Arithmetic
Strings

Data Structures
Functions
Epilogue

Python Standard Types

A set is an unordered collection with no duplicate
elements.

nemo, mastergreg Python Tutorial

Arithmetic
Strings

Data Structures
Functions
Epilogue

Python Standard Types

A set is an unordered collection with no duplicate
elements.

@ >>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> set(basket)
set([’orange’, ’pear’, ’apple’, ’banana’])

nemo, mastergreg Python Tutorial

Arithmetic
Strings

Data Structures
Functions
Epilogue

Python Standard Types

A set is an unordered collection with no duplicate
elements.

@ >>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> set(basket)
set([’orange’, ’pear’, ’apple’, ’banana’])

@ Operators:

nemo, mastergreg Python Tutorial

Arithmetic
Strings

Data Structures
Functions
Epilogue

Python Standard Types

A set is an unordered collection with no duplicate
elements.

@ >>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> set(basket)
set([’orange’, ’pear’, ’apple’, ’banana’])
@ Operators:
e a- b (ina but notinb)

nemo, mastergreg Python Tutorial

Arithmetic
Strings

Data Structures
Functions
Epilogue

Python Standard Types

A set is an unordered collection with no duplicate
elements.
@ >>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> set(basket)
set([’orange’, ’pear’, ’apple’, ’banana’])
@ Operators:

e a-b (inabutnotinb)
e a|b(inaorinb)

nemo, mastergreg Python Tutorial

Arithmetic
Strings

Data Structures
Functions
Epilogue

Python Standard Types

A set is an unordered collection with no duplicate
elements.
@ >>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> set(basket)
set([’orange’, ’pear’, ’apple’, ’banana’])
@ Operators:

e a-b (inabutnotinb)
e a|b(inaorinb)
e a& b (inaandinb)

nemo, mastergreg Python Tutorial

Arithmetic
Strings

Data Structures
Functions
Epilogue

Python Standard Types

A set is an unordered collection with no duplicate
elements.

@ >>> basket = [’apple’, ’orange’, ’apple’, ’pear’, ’orange’, ’banana’]
>>> set(basket)
set([’orange’, ’pear’, ’apple’, ’banana’])
@ Operators:
e a-b (inabutnotinb)
e a|b(inaorinb)
e a& b (inaandinb)
e a "b (in a or b but not in both)

nemo, mastergreg Python Tutorial

Data Structures
Functions
Epilog

Python Standard Types

Dictionaries

Maps of objects

nemo,mastergreg

Arithmetic
Strings

Data Structures
Functions
Epilogue

Python Standard Types

Dictionaries

Maps of objects

@ Easy to create

>>> dict([(’sape’, 4139), (’guido’, 4127), (’jack’, 4098)])
{’sape’: 4139, ’jack’: 4098, ’guido’: 4127}

nemo, mastergreg Python Tutorial

Arithmetic
Strings

Data Structures
Functions
Epilogue

Python Standard Types

Dictionaries

Maps of objects

@ Easy to create
>>> dict([(’sape’, 4139), (’guido’, 4127), (’jack’, 4098)])
{’sape’: 4139, ’jack’: 4098, ’guido’: 4127}

@ Simple to use
>>> tel = dict([(’sape’, 4139), (’guido’, 4127), (’jack’, 4098)1)
>>> tell[’jack’]
4098

nemo, mastergreg Python Tutorial

Arithmetic

Str

Data Structures
Functions
Epilogue

Python Standard Types

To or not to return

@ No return value ("None’)
>>> def hi(s):
print "hello",s

nemo, mastergreg Python Tutorial

Arithmetic

Stri

Data Structures
Functions
Epilogue

Python Standard Types

To or not to return

@ No return value ("None’)
>>> def hi(s):
print "hello",s

@ int or string?
>>> def add(a,b):
if type(a)==int:
return at+b
else:
return "not int"
>>> add(1,2)

3
>>> add(’a’,1)
’not int’

nemo, mastergreg Python Tutorial

Arithmetic

Stri

Data Structures
Functions
Epilogue

Python Standard Types

To or not to return

@ No return value ("None’)
>>> def hi(s):
print "hello",s

@ int or string?
>>> def add(a,b):
if type(a)==int:
return at+b
else:
return "not int"
>>> add(1,2)
3
>>> add(’a’,1)
’not int’

@ lambdas
>>> add = lambda x,y : x+y
>>> add(1,2)
3

nemo, mastergreg Python Tutorial

Questions??

Ask! 1)

Python Standard Types

nemo, master

Arithmetic

Strir

Data Structures
Functions
Epilogue

Arithmetic

Stri

Data Structures
Functions
Epilogue

Python Standard Types

Thanks

@ Thanks for watching

@ Thanks to foss-ntua for hosting

nemo, mastergreg Python Tutorial

	Introduction to Python
	Zen
	What is Python?
	Freatures of Python
	Why Python?
	Dos and Don'ts
	Variables and dynamic typing

	Python Standard Types
	Arithmetic
	Strings
	Data Structures
	Functions
	Epilogue

