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Summary20

We present Jobflow, a domain-agnostic Python package for writing computational workflows21

tailored for high-throughput computing applications. With its simple decorator-based approach,22

functions and class methods can be transformed into compute jobs that can be stitched23

together into complex workflows. Jobflow fully supports dynamic workflows where the full24

acyclic graph of compute jobs is not known until runtime, such as compute jobs that launch25

other jobs based on the results of previous steps in the workflow. The results of all Jobflow26

compute jobs can be easily stored in a variety of filesystem- and cloud-based databases without27

the data storage process being part of the underlying workflow logic itself. Jobflow has been28

intentionally designed to be fully independent of the choice of workflow manager used to29

dispatch the calculations on remote computing resources. At the time of writing, Jobflow30

workflows can be executed either locally or across distributed compute environments via an31

adapter to the FireWorks package, and Jobflow fully supports the integration of additional32

workflow execution adapters in the future.33

Statement of Need34

The current era of big data and high-performance computing has emphasized the significant35

need for robust, flexible, and scalable workflow management solutions that can be used to36

efficiently orchestrate scientific calculations (Ben-Nun et al., 2020; Silva et al., 2023). To date,37

a wide variety of workflow systems have been developed, and it has become clear that there is38

no one-size-fits-all solution due to the diverse needs of the computational community (Al-Saadi39

et al., 2021; Existing Workflow Systems, n.d.). While several popular software packages in40

this space have emerged over the last decade, many of them require the user to tailor their41

domain-specific code with the underlying workflow management framework closely in mind.42

This can be a barrier to entry for many users and puts significant constraints on the portability43
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of the underlying workflows.44

Here, we introduce Jobflow: a free, open-source Python library that makes it simple to45

transform collections of functions into complex workflows that can be executed either locally46

or across distributed computing environments. Jobflow has been intentionally designed to act47

as middleware between the user’s domain-specific routines that they wish to execute and the48

workflow “manager” that ultimately orchestrates the calculations across different computing49

environments. Jobflow uses a simple decorator-based syntax that is similar to that of other50

recently developed workflow tools (Babuji et al., 2019; Covalent, 2023; Prefect, n.d.; Redun,51

2023). This approach makes it possible to turn virtually any function into a Jobflow Job52

instance (i.e., a discrete unit of work) with minimal changes to the underlying code itself.53

Jobflow has grown out of a need to carry out high-throughput computational materials science54

workflows at scale as part of the Materials Project (Jain et al., 2013). As the kinds of55

calculations — from ab initio to semi-empirical to those based on machine learning — continue56

to evolve and the resulting data streams continue to diversify, it was necessary to rethink how57

we managed an increasingly diverse range of computational workflows. Going forward, Jobflow58

will become the computational backbone of the Materials Project, which we hope will inspire59

additional confidence in the readiness of Jobflow for production-quality scientific computing60

applications.61

Features and Implementation62

Overview63

As a simple demonstration, the example below shows how one can construct a simple Flow64

(i.e., a graph of interdependent Jobs) composed of two sequential Jobs: the first Job adds65

two numbers together (1 + 2), and the second Job multiplies the result by another number66

(3 * 3). For simplicity, this Flow is executed locally, but it can be easily dispatched to a67

remote computing environment via the selection of a different workflow manager with no68

modifications to the underlying function definitions. While trivial, this example demonstrates69

the simplicity of the Jobflow syntax and how it can be used to construct complex workflows70

from user-defined functions. Note that each Job object is not run when instantiated; rather,71

an OutputReference associated with the Job (presented to the user via a Universally Unique72

Identifier, or UUID) is returned, which is resolved when the workflow is ultimately executed.73

74

from jobflow import Flow, job, run_locally

@job

def add(a, b):

return a + b

@job

def multiply(a, b):

return a * b

job1 = add(1, 2) # 1 + 2 = 3

job2 = multiply(job1.output, 3) # 3 * 3 = 9

flow = Flow([job1, job2])

responses = run_locally(flow)
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Dynamic Workflows75

Beyond the typical acyclic graph of jobs, Jobflow fully supports dynamic workflows where the76

precise number of jobs is unknown until runtime. This is a particularly common requirement in77

chemistry and materials science workflows and is made possible through the use of a Response78

object that controls the flow execution. For instance, the example below is a Flow that will add79

two numbers (1 + 2), construct a list of random length containing the prior result (e.g. [3,80

3, 3]), and then add an integer to each element of the list ([3 + 10, 3 + 10, 3 + 10]).81

The Response(replace=Flow(jobs)) syntax tells Jobflow to replace the current Job with a82

(sub)workflow after the Job completes.83

84

from random import randint

from jobflow import Flow, Response, job, run_locally

@job

def add(a, b):

return a + b

@job

def make_list(val):

return [val] * randint(2, 6)

@job

def add_distributed(vals, c):

jobs = [add(val, c) for val in vals]

return Response(replace=Flow(jobs))

job1 = add(1, 2) # 1 + 2 = 3

job2 = make_list(job1.output) # e.g., [3, 3, 3]

job3 = add_distributed(job2.output, 10) # [3 + 10, 3 + 10, 3 + 10]

flow = Flow([job1, job2, job3])

responses = run_locally(flow)

Data Management85

Jobflow has first-class support for a variety of data stores through an interface with the maggma86

Python package (Maggma, 2023). This makes it possible to easily store the results of workflows87

in a manner that is independent of the choice of storage medium and that is entirely decoupled88

from the workflow logic itself. Additionally, it is possible within Jobflow to specify multiple89

types of data stores for specific Python objects (e.g., primitive types vs. large binary blobs)90
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created by a given workflow, which is often useful for storing a combination of metadata91

(e.g., in a NoSQL database like MongoDB or file-system based store like MontyDB (MontyDB,92

2023)‘) and raw data (e.g., in a cloud object store like Amazon S3 or Microsoft Azure).93

Promoting Code Reuse94

Unlike most workflow solutions that rely on the use of functional programming, Jobflow fully95

supports and encourages the use of compute jobs that involve class-based inheritance to reduce96

duplication of code. While subtle, this oft-overlooked feature is particularly useful for scientific97

workflows where very similar calculations need to be carried out but with slightly different98

parameters or implementation details.99

In particular, Jobflow has an abstract class called a Maker that makes it convenient to define100

a class that can return a Job to be executed. This makes it possible to take advantage of101

the benefits of object-oriented programming while still being able to use the straightforward102

Jobflow decorator syntax. The support for classes also avoids the need for each workflow to103

accept a large number of keyword arguments in order to give the user freedom to modify the104

behavior of any constituent Job in the Flow. Instead, the class variables of the Maker can be105

updated directly, and these changes will be reflected in the Job at runtime, as demonstrated106

in the example below. Inheriting from the Maker class also enables updating the parameters107

of specific Jobs in a Flow through a convenient Flow.update_maker_kwargs(...) function,108

which allows for easy customization of workflows even after the Jobs have been defined.109

from dataclasses import dataclass

from jobflow import job, Flow, Maker

from jobflow.managers.local import run_locally

@dataclass

class ExponentiateMaker(Maker):

name: str = "Exponentiate"

exponent: int = 2

@job

def make(self, a):

return a**self.exponent

job1 = ExponentiateMaker().make(a=2) # 2**2 = 4

job2 = ExponentiateMaker(exponent=3).make(job1.output) # 4**3 = 64

flow = Flow([job1, job2])

responses = run_locally(flow)

Workflow Execution110

One of the major benefits of Jobflow is that it decouples the details related to workflow111

execution from the workflow definitions themselves. The simplest way to execute a workflow is112

to run it directly on the machine where the workflow is defined using the run_locally(...)113

function, as shown in the examples above. This makes it possible to quickly test even complex114

workflows without the need to rely on a database or configuring remote resources.115

When deploying production calculations, workflows often need to be dispatched to large116

supercomputers through a remote execution engine. Jobflow has an interface with the117

FireWorks package (Jain et al., 2015) via a one-line command to convert a Flow and its118

underlying Job objects into the analogous FireWorks Workflow and Firework objects that119

enable execution on high-performance computing machines. The logic behind the Job and120

Flow objects are not tied to FireWorks in any direct way, such that the two packages are fully121

decoupled.122
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Additionally, a remote mode of execution built solely around Jobflow is currently under active123

development. With this approach, workflows can be executed across multiple “workers” (e.g.,124

a simple computer, a supercomputer, or a cloud-based service) and managed through a125

modern command-line interface without relying on an external workflow execution engine.126

The forthcoming Jobflow remote mode of execution has been designed such that no inbound127

connection from the workers to the database of jobs and results is needed, thus ensuring data128

and network security for professional usage.129

More generally, it is possible for users to develop custom “adapter” interfaces to their personal130

workflow execution engine of choice. As a result, Jobflow fills a niche in the broader workflow131

community and can help make the same workflow definition interoperable across multiple132

workflow execution engines.133

Testing and Documentation134

Jobflow has been designed with robustness in mind. The Jobflow codebase has 100% test135

coverage at the time of writing and is fully documented. The detailed testing suite, along136

with continuous integration pipelines on GitHub, makes it easy for users to write their own137

workflows with confidence that they will continue to work as expected for the foreseeable138

future. Furthermore, the ability to run Jobflow Flow objects locally makes it simple to write139

unit tests when designing a new Python package built around Jobflow without the need for140

complex monkey-patching or spinning up a test server.141

Usage To-Date142

While domain-agnostic, Jobflow has been used in several materials science Python packages to143

date, including but not limited to:144

• Atomate2 (Atomate2, 2023), Quacc (Quacc – the Quantum Accelerator, 2023): Libraries145

of computational chemistry and materials science workflows.146

• NanoParticleTools (NanoParticleTools, 2023): Workflows for Monte Carlo simulations of147

nanoparticles.148

• Reaction Network (McDermott et al., 2021; Reaction Network, 2023): Workflows for149

constructing and analyzing inorganic chemical reaction networks.150

• WFacer (WFacer, 2023): Workflows for modeling the statistical thermodynamics of151

solids via automated cluster expansion.152

Additional Details153

Naturally, the summary presented in this article constitutes only a small subset of the features154

that Jobflow has to offer. For additional details along with helpful tutorials ranging from basic155

applications to examples specifically targeting the computational materials science community,156

we refer the reader to the Jobflow documentation. Suggestions, contributions, and bug reports157

are always welcome.158
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