Running on PNNL Systems

Charles Siegel edited this page Jun 14, 2017 · 7 revisions

Table of Contents

  1. Puma
  2. DGX-1
  3. Constance

Puma

DGX-1

The installation path for DGX-1 is /raid/matex/0.6/

To use MaTEx TensorFlow using GPUs 0,1,2 and 3, run

source /raid/matex/0.6/run_TFEnv_DGX1.sh
export CUDA_VISIBLE_DEVICES=0,1,2,3

Example scripts are located in

/raid/matex/0.6/examples/glibc_before_2.23/

To run a python script example.py use the following code after sourcing run_TFEnv_DGX1.sh:

mpirun -n 4 --mca opal_event_include poll $FAKE_SYSTEM_LIBS/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2 --library-path $PNETCDF_INSTALL_DIR/lib:$FAKE_SYSTEM_LIBS/lib/:$FAKE_SYSTEM_LIBS/lib/x86_64-linux-gnu/:$FAKE_SYSTEM_LIBS/usr/lib64/gconv:$FAKE_SYSTEM_LIBS/usr/lib64/audit:$LD_LIBRARY_PATH $PYTHONHOME/bin/python $PWD/example.py

Constance (as of 6/13/2017)

The installation path for Constance is /people/sieg052/matex/src/deeplearning/tensorflow/cpu/py3.x/

MaTEx TensorFlow is currently only configured for CPUs on Constance. To use set up the environment, run

source /people/sieg052/env_matex_cpu.sh
source /people/sieg052/matex/src/deeplearning/tensorflow/cpu/py3.x/run_TFEnv.sh

Example scripts are located in

/people/sieg052/matex/src/deeplearning/tensorflow/examples/glibc_before_2.23

To run a python script example.py use the following code after sourcing run_TFEnv.sh and setAlias.sh:

mpirun -n $nodes --mca opal_event_include poll $FAKE_SYSTEM_LIBS/lib/x86_64-linux-gnu/ld-linux-x86-64.so.2 --library-path $PNETCDF_INSTALL_DIR/lib:$FAKE_SYSTEM_LIBS/lib/:$FAKE_SYSTEM_LIBS/lib/x86_64-linux-gnu/:$FAKE_SYSTEM_LIBS/usr/lib64/gconv:$FAKE_SYSTEM_LIBS/usr/lib64/audit:$LD_LIBRARY_PATH $PYTHONHOME/bin/python $PWD/example.py
You can’t perform that action at this time.
You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session.
Press h to open a hovercard with more details.